微带线设计ADS

微带线设计ADS
微带线设计ADS

}

微带线设计ADS:

使用ADS中的微带线计算器LineCalc计算得到微带线的几何尺寸W、S、L。

具体方法是点击菜单栏Tools -> LineCalc -> Start Linecalc,出现一个新的窗口

1.在窗口的Substrate Parameters栏中填入与MSUB中相同的微带线参数。

2.在Cpmpnet Parameters填入中心频率。

栏中的W和L分别表示微带线的宽和长。

栏中的Z0和E_Eff分别表示微带线的特性阻抗和相位延迟。

·

5.点击Synthesize和Analyze栏中的↑箭头,可以进行W、L与Z0、E_Eff间的相互换算。填入75 Ohm和30deg可以算出微带线的线宽1.38 mm和长度15.54mm。

图计算

3.2.2连接好电路,将的W、S、L输入,进行、仿真

*

具体方法是:

1.在原理图设计窗口中选择微带电路的工具栏

窗口左侧的工具栏变为右图2-0所示。

(1)在工具栏中点击选择微带线MLIN并在右侧的绘图区放置。

(2)选择微带线MLIN以及控件MSUB分别放置在绘图区中。

(3)选择画线工具将电路连接好,连接方式见下图2-1。

^

图。

图传输线原理图

2.双击图上的控件MSUB设置微带线参数。

H:基板厚度(62 mil)

Er:基板相对介电常数

Mur:磁导率(1)

Cond:金属电导率+7)

Hu:封装高度+33 mm) T:金属层厚度(0.03mm)

TanD:损耗角正切

Roungh:表面粗糙度(0 mm)

3 .双击两边的引出线TL1、TL2,分别将其宽与长设为1.26mm和2.6 mm(其中线长只是暂定,以后制作版图时还会修改)。

4.在原理图设计窗口中选择S参数仿真的工具栏

(1)选择Term 放置在滤波器两边,用来定义端口1和2,点击图标,放置两个地,并按照

]

上图2-1连接好电路。

(2)选择S参数扫描控件放置在原理图中,并设置扫描的频率范围和步长,频率范围根据滤波器的指标确定(要包含通带和阻带的频率范围)。

5.点击工具栏中的Simulate按钮就开始进行优仿真,仿真结束后会出现图形显示窗口。(1)点击图形显示窗口左侧工具栏中的按钮,放置一个方框到图形窗口中,这时会弹出一个设置窗口(见下图2-2),在窗口左侧的列表里选择S(1,1)即S11参数,点击Add按钮会弹出一个窗口设置单位(这里选择dB),点击两次OK后,图形窗口中显示出S11随频率变化的曲线。

(2)用同样的方法依次加入S22,S21,S12的曲线,由于滤波器的对称结构,S11与S22,以及S21与S12曲线是相同的。

图 a 图 2-2 、,仿真输出图像图 b

}

图 c 图d

(

图2.3a

6.有时版图仿真结果与原理图仿真结果还是存在差异,那就得回到上一步对结构参数再次进行优化, 直到版图仿真结果满意如下图2-4所示。

具体方法是:

(

(1)首先要由原理图生成版图,生成版图前先要把原理图中用于S参数仿真的两个Term

以及接地去掉,不让他们出现在生成的原理图中。去掉的方法与前面关掉优化控件的相同,都是使用按钮,把这些元件打上红叉。

(2)然后点击菜单中的Layout -> Generate/Update Layout,弹出一个设置窗口,直接点OK,又出现一个窗口,再点OK,完成版图的生成,这时会打开一个显示版图的窗口,里面有刚生成的版图。

(3)版图生成后先要设置微带电路的基本参数(即原理图中MSUB里的参数),方法是点击版图窗口菜单中的Momentum -> Substrate -> Update From Schematic从原理图中获得这些参数,点击Momentum -> Substrate -> Create/Modi(4)为了进行S参数仿真还要在滤波器两侧添加两个端口,做法是点击工具栏上的Port按钮,弹出port设置窗口,点击OK关闭该窗口,在滤波器两边要加端口的地方分别点击加上两个port,将版图放大后可以看到两个端口(见下图2-3中的P1、P2)。

(5) 点击Momentum -> Simulation -> S-parameter弹出仿真设置窗口,该窗口右侧的Sweep Type选择Adaptive,起止频率设为与原理图中相同,采样点数限制取10 (因为仿真很慢,所以点数不要取得太多)。然后点击Update按钮,将设置填入左侧列表中,点击Simulate按钮开始进行仿真。仿真过程中会出现一个状态窗口显示仿真进程。可以修改这些参(4)为了进行S参数仿真还要在滤波器两侧添加两个端口,做法是点击工具栏上的Port

按钮,弹出port设置窗口,点击OK关闭该窗口,在滤波器两边要加端口的地方分别点击加上两个port,将版图放大后可以看到两个端口(见下图2-3b中的P1、P2)。

(5) 点击Momentum -> Simulation -> S-parameter弹出仿真设置窗口,该窗口右侧的Sweep Type选择Adaptive,起止频率设为与原理图中相同,采样点数限制取10 (因为仿真很慢,所以点数不要取得太多)。然后点击Update按钮,将设置填入左侧列表中,点击Simulate按钮开始进行仿真。仿真过程中会出现一个状态窗口显示仿真进程。\

(

(6)仿真运算要进行数分钟,仿真结束后将出现曲线显示窗口,观察S11和S12曲线

图a 图b

图c 图d

仿真图

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.360docs.net/doc/0e17251425.html,。

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

ADS设计报告示例

应用ADS软件设计低噪声放大器 摘要:简单介绍了应用ADS软件设计一种低噪声放大器的过程,给出了仿真结果。Abstract:Introduce the design process of a kind of low noise amplifier with ADS software, and give out the simulative result. 关键词:ADS 低噪声放大器噪声系数三阶交截点 Key words: ADS LNA NF IP3 ADS(Agilent Design System)是安捷伦公司的一个高级的电路设计软件,它可以完成微波射频的设计、优化以及DSP的设计,是实际工作中倍受推崇的微波射频设计软件,当然其它如MWOFFICE、GENESYS、ANSOFT等也是常用的微波射频设计仿真软件。 一、设计方案要求 为保证低噪声放大器的技术指标,首先要根据频率以及增益的要求来选择好低噪声放大管,在此以Agilent的Phemt管ATF-54143为例来介绍设计过程,该器件在通讯频段具有低的噪声系数(Nf)以及较高三阶交截点(IP3),而ATF-54143在f=900MHz,Vds=3V Ids=60mA时关键指标是: Nf =0.3 dB Ga=23.4 dB OIP3=35.3 dBm P1dB=18.4 dBm 通常低噪声放大器中只用一级低噪声放大管并不能保证系统增益的要求,一般在其后还要其它放大管来提高低噪声放大器的增益和输出功率1dB压缩点(P1dB),因此必须考虑后几级放大管对整个放大器噪声系数的影响。 此外,一般要求通讯系统中低噪声放大器的输入输出驻波比小于1.5,而较低的噪声系数将造成输入驻波不能满足要求。要保证输入驻波指标,可采用双平衡放大或在低噪声放大管前加隔离器,或采取牺牲一点噪声系数做低噪声放大管的匹配电路。由于采用双平衡放大电路需要两个低噪声放大管,从而使电路变复杂,因此本设计采用加隔离器方案改善输入驻波,对隔离器的要求是具有很小的插入损耗(通常普通隔离器的插入损耗在此频段为0.3dB可满足要求)。 二、设计过程 针对方案要求,以下简要介绍采用单管方案进行设计和仿真的过程。 1、原理图设计 我们参考Agilent的器件资料(ATF-54143)来完成低噪声放大管的原理图设计,首先应在ADS软件中进行原理图的编辑,如图1所示。 在设计中需注意以下几点: (1)微带线的设计:微带线在相应频率上必须等效50 ,对于图中所用的PCB材料,常取微带传输线的宽度为1.9mm。 (2)元器件的取值:因为是在高频段内,我们必须考虑到每个元件,如电感、电容,并不能等效为理想器件,还应该考虑其它因数(如Q值、引线、管脚等)。在这里为方便说明均使用了理想化的电感、电容及电阻。 (3)相关器件可从ADS的元件库中调出,而ATF-54143的ADS模型可从Agilent 的网站上下载,不需要自己去做该元件。 (4)为了对电路进行S参数设计仿真,需给出相应的扫描频率范围S-PARAMETRS (本设计为100MHz~1500MHz)。 (5)印制板材料的参数MSUB:板厚1毫米,Er为4.3的普通PCB板。

基于HFSS的双频微带天线仿真及设计

基于HFSS的双频微带天线仿真及设计 随着无线通信技术的快速发展,无线通信已经广泛应用到雷达"移动通信"卫星定位"无线局域网络"卫星电视等诸多领域!而天线则是无线通信系统中信号发射和接收的关键部分,它直接影响着无线通信的性。随着移动通信中跳频"扩频等通信技术的发展,同时为了满足与多个终端的通信要求,实现多系统共用和收发共用等功能,这就要求天线在不同频段下工作。因此天线的多频段通信技术成为现代无线通信领域迫切需要研究的问题。 微带天线有多种馈电方式,其中同轴线馈电是一种最常用的馈电方式!同轴线馈电是将同轴插座安装在接地板上,本文在一种常用的2.45GHz同轴馈电微带天线的基础上,利用HFSS三维电磁仿真软件合理设计同轴馈电的位置及改变辐射贴片的尺寸,使天线获得一个新的谐振频率,大小为 1.9GHz,且输入阻抗为50Ω左右,并且对仿真结果进行了详细的分析。最后根据仿真结果制作天线实物,在实际的电磁环境下对天线的驻波比进行测试,得到较好的效果。 1 2. 45 GHz同轴馈电微带天线参数 一种常用的2. 45 GHz同轴馈电微带天线的原理图如图1和图2所示

图1 中L0为辐射贴片X轴长度,L0= 27.9 mm; W0为辐射贴片Y 轴长度宽度,W0= 40 mm; L1为同轴馈电点离辐射贴片中心距离,L1 = 6.6 mm。图 2 中介质基片厚度H = 1. 6 mm; 介质基片介电常数ε = 4.4。 2双频微带天线设计 在 2. 45 GHz 微带天线中的辐射贴片在 X 轴方向的长度为 27. 9 mm,同轴线馈电点( A 点) 离辐射贴片中心距离为 6. 6 mm。只需在此基础上分析给出微带天线的辐射贴片在Y轴方向的长度和同轴线馈电点 ( B 点) 的位置,能够使天线能够工作于9 GHz,然后过 A 点和 B 点的垂直相交点( C 点) 即为需要找到的双频馈电点。X轴上的 A 点为激发2. 45 GHz 工作频率的馈电点,其输入阻抗为 50 Ω左右,由于 A 点位于辐射贴片Y轴方向的中心线上,因此不会激发Y轴上的工作频率。同时,Y轴上的 B 点为激发 1. 9 GHz 工作频率的馈电点,其输入阻抗为50 Ω左右,由于位于辐射贴片X方向的中心线上,因此不会激发X轴上的工作频率。如果将馈电点放置于C点位置,此时天线可以同时激发X轴的工作频率和Y轴的工作频率,且在这两种模式下均能得到50 Ω左右的输入阻抗,那么此时天线就可以实现双频工作。 扩展1. 95 GHz谐振频率后的馈电点(C点)位置如图3所示。

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

HFSS双频微带天线设计说明

一设计容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。

2.添加和定义设计变量 在HF SS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在Xsize,Ysize文本框中分别输入矩形面的长宽为L0,W0。如图3-2所示。这时就创建好了名称为patch辐射贴片模型。然后按Ctrl D 全屏显示物体。

实验五 微带天线设计

实验五 微带天线设计、仿真、制作与测试 一.实验目的 1.了解描述天线性能的主要参数及天线类型 2.了解微带天线的辐射机理和设计方法 3.掌握用ADS 进行微带天线优化仿真的方法与步骤 二.天线的基本原理 1.天线的辐射原理: 将传输线中的高频电磁能转成为自由空间的电磁波 将自由空间中的电磁波转化为传输线中的高频电磁能 2.电磁波辐射与场区的划分 (a) 感应近场 (b) 辐射近场 (c) 辐射远场 天线实际使用区域为辐射远场区 3.天线的分类 从方向性分:有强方向性天线、弱方向性天线、定向天线、全向天线、针状波束天线、扇形波束天线等。 从极化特性分:有线极化天线、圆极化天线和椭圆极化天线。线极化天线又分为垂直极化和水平极化天线。 从频带特性分:有窄频带天线、宽频带天线和超宽频带天线。 按天线上电流分布分: 有行波天线、驻波天线。 按使用波段分类: 有长波、超长波天线、中波天线、短波天线、超短波天线和微波天线。 按天线外形分类 : 有鞭状天线、T 形天线、Γ形天线、V 形天线、菱形天线、环天线、螺旋天线、波导口天线、波导缝隙天线、喇叭天线、反射面天线等。还有八木天线,对数周期天线、阵列天线。阵列天线又有直线阵天线、平面阵天线、附在某些载体表面的共形阵列天线等。 4.天线的技术指标 (1)天线的方向性因子 方向性因子 归一化方向性因子 λ/62.031D R <λ/222D R >1(,)jkr E f e r θφ-→max ) ,(),(f f F ?θ?θ=

(2)E 面和H 面方向图 工程上常采用通过最大辐射方向的两个正交平面上的剖面图来描述天线的方向图。这两个相互正交的平面称之为主面,对于线极化天线来说通常取为E 面和H 面。 E 面:指通过天线最大辐射方向并平行于电场矢量的平面。 H 面:指通过天线最大辐射方向并平行于磁场矢量的平面。 (3)主瓣宽度 方向图主瓣上两个半功率点之间的夹角,记为2θ0.5。又称为半功率波束宽度或3dB 波束宽度。一般情况下,天线的E 面和H 面方向图的主瓣宽度不等,可分别记为2θ0.5E 和2θ0.5H 。可以描述天线波束在空间的覆盖范围,主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。 (4)天线方向性系数 Pr :被测天线距离R 处所接收到的功率密度,单位为W/m2; Pi :为全向性天线距离R 处所接收到的功率密度, 单位为W/m2 (5)天线增益G Pr :被测天线距离R 处所接收到的功率密度,单位为W/m2; Pi :为全向性天线距离R 处所接收到的功率密度, 单位为W /m2 一个天线与对称振子相比较的增益用“dBd ”表示 一个天线与各向同性辐射器相比较的增益用“dBi ”表示 (6)辐射效率 Pr 为天线辐射出的功率;Pin 为馈入天线的功率。 天线增益、方向性系数和辐射效率的关系: (7)天线输入阻抗 (8)天线的极化 无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化波。如果电波的电场方向与地面平行,则称它为水平极化波。 天线辐射的电磁场的电场方向就是天线的极化方向 (9)天线带宽 有几种不同的定义:一种是指天线增益下降三分贝时的频带宽度;一种是指在规定的驻波比下天线的工作频带宽度。在移动通信系统中是按后一种定义的,具体的说,就是当天线的输入驻波比ρ≤1.4时,天线的工作带宽。 三.微带天线 1.微带天线优点: 相同辐射功率 i r P P D =相同输入功率 i r P P G =in r P P =ηD G η=I U Z in =

HFSS双频微带天线设计

一设计内容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使 用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口 归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。

(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。 2.添加和定义设计变量 在HFSS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在

[整理]ADS设计混频器

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 )2 cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2 cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以 2π相位差分配到两只二极管上,故这类混频器称为2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑ ∑∞ -∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

一种用于WLAN的双频微带天线的设计与分析

泉州师范学院 毕业论文(设计) 题目一种用于WLAN的双频微带天线的设计与分析 物理与信息工程学院电子信息科学与技术专业07 级学生姓名刘文杰学号070303048 指导教师余燕忠职称副教授 完成日期2011年4月 教务处制

一种用于WLAN的双频带微带天线的设计与分析 物理与信息工程学院电子信息科学与技术专业 070303048 刘文杰 指导教师余燕忠副教授 【摘要】对于频谱的资源日益紧张的现在通讯领域,迫切要求天线具有双极化的功能。利用Ansoft HFSS 设计一个微带天线结构,使其具有双频带特性,微带天线的两个工作中心频率分别为2.4GHZ和5.8GHZ。本文提出并设计一款双频微带天线的结构,借助HFSS软件对该结构进行仿真。经过仿真分析,该天线的谐振频率分别为:2.53GHZ和6.05GHZ的相对带宽分别达到632%和10.8%,满足无线局域网的标准的要求。【关键词】Ansoft HFSS;微带天线;双频带;无线通讯。

目录 引言 (5) 第一章微带天线的简介 (6) 1.1当今天线的发展趋势 (6) 1.2微带天线研究的背景 (6) 1.3双频微带天线的研究意义 (6) 第二章双频微带天线设计 (7) 2.1双频微带设计的任务 (7) 2.2双频微带天线设计的基本要求 (7) 2.3双频微带天线设计方案论证 (7) 2.4A NSOFT HFSS软件的介绍 (7) 2.5A NSOFT HFSS设计的流程 (9) 2.6A NSOFT HFSS可显示的参数 (9) 2.7双频微带天线的设计过程 (10) 第三章双频微带天线的仿真及分析 (12) 3.1天线的仿真图形 (12) 3.2改变天线的双缝宽度对天线的影响 (144) 3.3改变天线的双缝位置对天线的影响 (17) 3.4天线的改进方向 (19) 第四章微带天线的优化设计 (20) 4.1优化设计的定义 (20) 4.2优化设计的步骤 (20) 4.3对微带天线的优化设计 (20) 4.4优化后微带天线的性能 (21) 第五章结束语...................................................................................................... 错误!未定义书签。致谢........................................................................................................................ 错误!未定义书签。

ads设计的滤波器.

1 课题背景 随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。如图1.1所示。

ADS设计D触发器

Sheet 1 of 7
D-Type flip-flop (Toggle switch) The D-type flip-flops are used in prescalar/divider circuits and frequency phase detectors. Figure 1 shows how the flip-flop (latch) can be made using 2-input logic circuits and Figure 2 shows the input and output waveforms The enable pin needs to be high for data to be fed to the outputs Q and Q bar. The output will only change on the falling edge or trailing edge of the applied clk input.
D
NAND
NAND
Q
Enable
NAND
Q
NAND
NOT
Latch
Figure 1 Simple D-type Flip-flop circuit The D type flip-flop has only one input (D for Data) apart from the clock. The INDETERMINATE state is avoided with this flip-flop. When the clock goes high, D (a 0 or a 1) is transferred to Q. When the clock goes low, Q remains unchanged. Q stores the data until the clock goes high again, when new data may be available.
Figure 2 Output waveforms of the D-type flip-flop. In this circuit the Q output changes state on the leading edge of the clock.

阵列原计划微带天线设计要点

编号:毕业设计(论文)说明书 题目:圆极化微带4单元阵列天线 学院: 专业: 学生姓名: 学号: 指导教师: 职称: 题目类型:理论研究实验研究工程设计工程技术研究软件开发 2012 年 6 月 5 日 摘要

圆极化天线具有一些显著的优点: 任意线极化的来波都可以由圆极化天线收到, 圆极化天线辐射的圆极化波也可以由任意极化的天线收到; 圆极化天线具有旋向正交性, 圆极化波入射到对称目标反射波变为反旋向等。正是由于这些特点使圆极化天线具有较强的抗干扰能力, 已经被广泛地应用于电子侦察和干扰,通信和雷达的极化分集工作和电子对抗等领域。

目录 第一章微带天线简介 ............................. 错误!未定义书签。

§1.1微带天线的发展............................. 错误!未定义书签。 §1.2微带天线的定义和结构....................... 错误!未定义书签。 §1.3微带天线的优缺点........................... 错误!未定义书签。 §1.4微带天线的应用 (6) 第二章微带天线的辐射原理与分析方法.............. 错误!未定义书签。 §2.1微带天线的辐射原理......................... 错误!未定义书签。 §2.2微带天线的分析方法......................... 错误!未定义书签。 §2.2.1 传输线模型法 (8) §2.2.2 空腔模型法........................... 错误!未定义书签。 §2.2.3 积分方程法........................... 错误!未定义书签。 §2.3微带天线的馈电方法......................... 错误!未定义书签。 第三章圆极化微带天线单元的设计与仿真............ 错误!未定义书签。 §3.1A NSOFT HFSS高频仿真软件的介绍............... 错误!未定义书签。 §3.2微带天线圆极化技术 (14) §3.2.1 圆极化天线的原理..................... 错误!未定义书签。 §3.2.2 圆极化实现技术 (15) 第四章圆极化微带4单元阵列天线的设计与仿真...... 错误!未定义书签。 §4.1圆极化微带天线单元的设计与仿真............. 错误!未定义书签。 §4.1.1圆极化微带天线单元的设计仿真......... 错误!未定义书签。 §4.1.2天线单元轴比的优化................... 错误!未定义书签。 §4.2馈电网络的仿真与设计....................... 错误!未定义书签。 §4.2.1两路微带等功率分配器的设计与仿真..........错误!未定义书签。 §4.2.2连续旋转馈电网络............................错误!未定义书签。 §4.3圆极化阵列天线模型的设计与仿真 ............. 错误!未定义书签。 §4.3.1阵列天线的创建与仿真................错误!未定义书签。 §4.3.2阵列天线的优化设计................错误!未定义书签。 第五章结论 致谢........................................... 错误!未定义书签。 参考文献错误!未定义书签。

微带天线和缝隙天线

第四讲微带天线 一、引言 上一讲介绍了对称振子和接地单极子天线。这两种天线本质上属于线天线。但是手机内置天线往往都不是线天线的形式,常见的PIFA天线和单极子变形天线往往都是平面天线的形式。尽管在某种程度上它们也和对称振子或接地单极子天线有某种程度的相似性。在现有理论基础下,由于专门对手机天线进行严格理论分析的论著还很少,所以为更加深入地理解手机天线,我们还有必要了解几种其他类型的天线的一般特性。这一讲主要介绍微带天线的概念和基本原理。 二、微带天线的结构 如下图所示,结构最简单的微带天线是由贴在带有金属地板的介质基片 ()上的辐射贴片所构成的。贴片上导体通常是铜和金,它可以为任意形状。但通常为便于分析和便于预测其性能都用较为简单的几何形状。为增强辐射的边缘场,通常要求基片的介电场数较低。 三、微带天线的特点 微带天线的典型优点是:

1.重量轻、体积小、剖面薄; 2.制造成本低,适于大量生产; 3.通过改变馈点的位置就可以获得线极化和圆极化; 4.易于实现双频工作。 但微带天线也有如下缺点: 1.工作频带窄; 2.损耗大,增益低; 3.大多微带天线只在半空间辐射; 4.端射性能差; 5.功率容量低。 四、微带天线的辐射机理 微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。这可以从以下图中的情况简单说明,这个图是一个侧向馈电的矩形微带贴片,与地板相距高度为h。假设电场沿微带结构的宽度和厚度方向没有变化,则辐射器的电场仅仅沿 约为半波长()的贴片长度方向变化。辐射基本上是由贴片开路边沿的边缘场 引起的。在两端的场相对地板可以分解为法向和切向分量,因为贴片长度为,所以法向分量反相,由它们产生的远区场在正面方向上互相抵消。平行于地板的切向分量同相,因此合成场增强,从而使垂直于地板的切向分量同相,因此合成场增强,从而使垂直于结构表面的方向上辐射场最强。 根据以上分析,贴片可以等效为两个相距、同相激励并向地板以上半空间辐射的两个缝隙。对微带贴片沿宽度方向的电场变化也可以采用同样的方法等效为同样的缝隙。这样,微带贴片天线的辐射就等效为微带天线周围的四个缝隙的辐射。 这种分析方法不仅适用于微带矩形贴片天线,同样也适于其他形状微带天线。

相关文档
最新文档