第19章-蒙特卡罗法与自助法

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

蒙特卡罗仿真原理

蒙特卡罗仿真原理 蒙特卡罗(MonteCarlo)方法,又称随机抽样或统计模拟方法,泛指所有基于统计采样进行数值计算的方法。在第二次世界大战期间,美国参与“曼哈顿计划’’的几位科学家Stanislaw Ulam,John Von Neumann 和N.Metropolis等首先将这种方法用于解决原子弹研制中的一个关键问题。后来N.Metropolis用驰名世界的赌城---摩纳哥的MonteCarlo一来命名这种方法,为它蒙上了一层神秘色彩。随着现代计算机技术的飞速发展,蒙特卡罗方法已经在统计物理、经济学、社会学甚至气象学等方面的科学研究中发挥了极其重要的作用,将蒙特卡罗方法用于仿真即为蒙特卡罗仿真。蒙特卡罗方法适用于两类问题,第一类是本身就具有随机性的问题,第二类是能够转化为概率模型进行求解的确定性问题。 ※蒙特卡罗方法求解问题的一般步骤 用蒙特卡罗方法求解问题一般包括构造或描述概率过程、从已知概率分布抽样和建立估计量三个步骤。 构造或描述概率过程实际上就是建立随机试验模型,构造概率过程是对确定性问题而言的,描述概率过程是对随机性问题而言的,不同的问题所需要建立的随机试验模型各不相同。 所谓的从已知概率分布抽样指的是随机试验过程,随机模型中必要包含某些已知概率分布的随机变量或随机过程作为输入,进行随机试验的过程就是对这些随机变量的样本或随机过程的样本函数作为输入产生相应输出的过程,因此通常被称为对已知概率分布的抽样。如何产生已知分布的随机变量或随机过程是蒙特卡罗方法中的一个关键问题。 最后一个步骤是获得估计量,蒙特卡罗方法所得到的问题的解总是对真实解的一个估计,本身也是一个随机变量,这个随机变量是由随机试验模型输出通过统计处理得到的。

蒙特卡罗方法(MC)

蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。 传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并 用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 建立各种估计量: 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量: 于是,在N次实验后,正品个数为:

MATLAB的蒙特卡洛仿真

实验十五: MATLAB 的蒙特卡洛仿真 一、实验目的 1. 了解蒙特卡洛仿真的基本概念。 2. 了解蒙特卡洛仿真的某些应用 二.实验内容与步骤 1. 蒙特卡洛(Monte Carlo )仿真的简介 随机模拟方法,也称为Monte Carlo 方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进行的研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。冯·诺伊曼是公理化方法和计算机体系的领袖人物,Monte Carlo 方法也是他的功劳。 事实上,Monte Carlo 方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。18世纪下半叶的法国学者Buffon 提出用投点试验的方法来确定圆周率π的值。这个著名的Buffon 试验是Monte Carlo 方法的最早的尝试! 历史上曾有几位学者相继做过这样的试验。不过他们的试验是费时费力的,同时精度不够高,实施起来也很困难。然而,随着计算机技术的飞速发展,人们不需要具体实施这些试验,而只要在计算机上进行大量的、快速的模拟试验就可以了。Monte Carlo 方法是现代计算技术的最为杰出的成果之一,它在工程领域的作用是不可比拟的。 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 2. MC 的原理 针对实际问题建立一个简单且便于实现的概率统计模型,使问题的解对应于该模型中随机变量的概率分布或其某些数字特征,比如,均值和方差等。所构造的模型在主要特征参量方面要与实际问题或系统相一致的。 根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,再进行随机模拟试验。 收敛性: 由大数定律, Monte-Carlo 模拟的收敛是以概率而言的. 误差: 用频率估计概率时误差的估计,可由中心极限定理,给定置信水平 的条件下,有: ? ? 模拟次数:由误差公式得 3. 定积分的MC 计算原理 N U σεα2 /1||-≤))((X g Var =σ2 2/1)(εσα-≥U N

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.360docs.net/doc/0e17356335.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒙特卡洛模拟法

蒙特卡洛模拟法 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

第19章-蒙特卡罗法与自助法

? 陈强,《高级计量经济学及Stata 应用》课件,第二版,2014 年,高等教育出版社。 第 19 章蒙特卡罗法与自助法 19.1 蒙特卡罗法的思想与用途 通过计算机模拟从总体抽取大量随机样本的计算方法统称为“蒙特卡罗法”(Monte Carlo Methods,简记MC)。 例(计算圆周率π):在边长为1 的正方形中内接1单位圆。正方形面积为1,1 4圆面积为π 4。如知道1 4单位圆占 正方形面积的比例,就可计算π。

图19.1 计算圆周率 的随机实验 向这个正方形随机地射箭,落点在正方形上服从二维均匀分布。重复实验n 次,其中有m 次落在1 4圆内。 2

3 ? ? 根据大数定律,m n ?p ?→π 4,故π≈ 4m n 。 在计量中,常用 MC 来确定统计量的小样本性质。 【例】对于y i = x i 'β + εi (i = 1, , n ),对H 0 : R β = r 进行显著性水平 为 5%的大样本检验: W ≡ n (R β? - r )' ? R A var(β?)R '?-1 (R β? - r ) ?d ?→ χ 2 (m ) 其中β? 为 OLS 估计量,m 为线性约束个数。 渐近χ 2 分布只是真实分布的近似,故“5%”可能只是“名义显著 性水平”(nominal size),而非“真实显著性水平”(true or actual size),二者之差称为“显著性水平扭曲”(size distortion)。

可用MC 来确定“真实显著性水平”。 第一步,给定β的具体取值,以及x 与的概率分布。第二步,从x 与的分布中随机抽样,得到{x1, {ε 1, ε2 , , εn }。 x 2 , , x n }与 第三步,根据方程y i=x i'β +εi 计算{y1,y2 , , y n }。 第四步,对此样本进行OLS 估计,计算统计量W ,与χ2 (m)的5%临界值比较,确定是否拒绝原假设H0 : Rβ =r 。 第五步,大量重复第二至第四步,得到M 个随机样本(比如,M =1 000),进行M 次检验,则拒绝原假设的比例就是真实显著性 4

蒙特卡洛仿真

实验12 检测性能的蒙特卡洛仿真 1、实验目的 了解蒙特卡洛仿真的基本概念,掌握蒙特卡洛仿真方法在分析检测性能方面的应用,通过蒙特卡洛仿真,对检测性能作出评估,通过和理论比较。 2、实验原理 正如(8.1.16)式所指出的那样,最佳检验总可以化简为 10() H T H >γ

可见积分的数值计算问题就转化成了一个概率的计算问题,而概率可以用相对频数来近似,相对频数可通过统计试验的方法求得。具体方法是将M 个随机点(X,Y)均匀地投放到x-y 平面上的正方形区域内,如果有N 个点落在区域G 内,那么相对频数为N/M ,因此, ?N I M = (4) (8.3.8)式是对积分I 的一个估计,很显然,估计的精度取决于试验次数M ,M 也称为蒙特卡洛仿真次数。下面给出了用蒙特卡洛方法计算积分I 的MATLAB 程序。 syms x; y1=int(0.5-(0.5-x).^2,0,1); zhenshizhi=eval(y1) N=0; x1=unifrnd(0,1,1,M); y1=unifrnd(0,1,1,M); for i=1:M if y1(i)<=(0.5-(0.5-x1(i)).^2) N=N+1; end end fangzhenzhi=N/M 从以上的例子可以看出应用蒙特卡洛仿真的一般步骤: 1 建立合适的概率模型; 2 进行多次重复试验; 3 对重复试验结果进行统计分析(估计相对频数、均值等)、分析精度。 利用蒙特卡洛仿真方法,可以仿真检测器的性能。假定判决表达式如(1)式所示,(3)式给出了检测概率的表达式,如果用蒙特卡洛仿真方法估计检测概率,则 11?(()M i i P U T M ==?γ∑z (5) 其中z i 表示第i 次仿真试验所用到的观测矢量。由于

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

基于蒙特卡罗法2PSK系统抗噪声性能仿真

通信原理 课程设计报告 题目:基于蒙特卡罗法2PSK系统抗噪声性能仿真院系:自动化学院与信息工程学院 专业:通信工程 班级:通信071 学号: 姓名: 指导教师: 职称: 2010年12月27日-2010年12月31日

编写MATLAB的M文件,用该文件的采用相干解调法的2PSK系统的抗噪性能进行1000个符号的蒙特卡罗法仿真,画出误码率与信噪比之间的关系曲线,其中信噪比的取值为r=0dB、2dB、4dB、6dB…20dB,同时画出误码率与信噪比的理论曲线,其中信噪比的取值为r=0dB、0.1dB、0.2dB…20dB。 分步实施: 1)熟悉2PSK系统调制解调,熟悉蒙特卡洛法;熟悉误码率计算; 2)编写主要程序; 3)画出系统仿真误码率曲线的系统理论误码率曲线。

1、蒙特卡罗思想概述 蒙特卡罗方法也称为随机模拟方法,有时也称为随机抽样技术或统计实验方法。它的基本思想是:为了求解数学、物理、工程技术以及生产管理等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。而解得精确度可用估计值的标准误差来表示。 蒙特卡罗方法可以解决各种类型的问题,但总的来说,视其是否涉及随机过程的性态和结果,该方法处理的问题可以分为两类:第一类是确定性的数学问题,首先建立一个与所求解有关的概率模型,使所求的解就是我们所建立模型的概率分布或数学期望;然后对其进行随机抽样观察,即产生随机变量;最后用其算术平均值作为所求解的近似估计值。第二类是随机性问题,被考察的元素更多的受到随机性的影响,一般情况下采用直接模拟方法,即根据实际物理情况的概率法则,用电子计算机进行抽样试验。 在应用蒙特卡罗方法解决实际问题的过程中,大体有如下几个内容: (1)对求解的问题建立简单而又便于实现的概率统计模型,使所求的解恰好是所建立模型的概率分布或数学期望。 (2)根据概率统计模型的特点和计算实践的需要,尽量改进模型,以便减小方差和费用,提高计算效率。 (3)建立对随机变量的抽样方法,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机变量的随机抽样方法。 (4)给出获得所求解的统计估计值及其方差或标准误差的方法。 2、2PSK 系统调制解调原理 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK 信号的时域表达式为 t nT t g a t s c n s n PSK ωcos )()(2?? ????-=∑∞-∞→

蒙特卡罗仿真的原理及应用

产业与科技论坛2012年第11卷第17期 2012.(11).17 Industrial &Science Tribune 蒙特卡罗仿真的原理及应用 □戚苇苇 【内容摘要】蒙特卡罗法又称随机抽样技巧法或统计试验法,在目前结构可靠度计算中,它被认为是一种相对精确法,具有在计 算机上实现蒙特卡罗计算时程序结构清晰简单,便于编制和调试的特点。【关键词】通信技术;蒙特卡罗法;仿真;误码率 【作者单位】戚苇苇,江苏省扬州技师学院 一、通信仿真概述 (一)通信的基本概念以及分类。通信是通过某种媒体进行的信息传递。古代,人们通过驿站、飞鸽传书、烽火报警 等方式进行信息传递。今天, 随着科学水平的飞速发展,相继出现了无线电,固话,手机,互联网甚至可视电话等各种通 信方式。对于点到点之间的通信, 按消息传送的方向与时间的关系,通信方式可分为:单工通信、半双工通信、全双工通 信。数字通信中,按照数字信号码元排列方法不同,通信方式可分为:串行传输和并行传输。 (二)通信系统的组成。 1.信息源。信源是发出信息的源,其作用是把各种可能消息转换成原始电信号。信源可分为模拟信源和数字信源。模拟信源(如电话机、电视摄像机)输出连续幅度的模拟信号;数字信源(如电传机、计算机等各种数字终端设备)输出 离散的数字信号。 2.变换器。因语声、图像等原始的消息不能以电磁波来传送,所以需要通过变换器将原始的非电消息变换成电信号,并再对这种电信号进一步转换,使其变换成适合某种具体信道传输的电信号。这种电信号同样载有原有的信息。例如电话机的送话器,就是将语声变换成幅度连续变化的电话信号,再进一步转换后送到信道上去。 3.信道。信道是指传输信号的通道,可以是有线的,也可以是无线的,有线和无线均有多种传输媒质。信道既给信号以通路,也对信号产生各种干扰和噪声。传输媒质的固有特性和干扰直接关系到通信的质量。 4.反变换器。反变换器的基本功能是完成变换器的反继续提升水头,管涌便不断向上游发展直至达到临界坡降,此时管涌通道便不能趋于稳定,不断有砂粒起动运移一直到与上游连通,连通的管涌水流强力冲刷堤基并最终导致堤基整体破坏和溃堤。 产生上述现象的原因是:孔口处出现沙沸使地基砂体液化,继续增加水头,砂粒便会从沙沸处向外涌出形成砂环,由于堤基砂层的水平破坏坡降比垂直破坏坡降要小得多,因此地基便会有砂粒从沙沸处涌出形成管涌通道,在未达到临界坡降前管涌通道最终趋于稳定,这是由于砂粒向沙沸处输送,积聚在孔口附近具有了一定的反滤作用,从而加大了局部水头损失,还有管涌通道中的砂粒被水流带出堆积在沙沸处形成砂环,从而抬升了水位降低了有效作用水头。由于地基砂粒的离散性具有随机性,因此这种稳定需要很长时间,条件的微小改变就有可能打破这种稳定,因此时间是影响管涌破坏发生与否非常重要的因素。 (三)管涌破坏位置分析。管涌产生的位置都是发生在强弱透水层接触面的浅层,对深层地基的渗流并无影响,其主要原因是:一是堤基砂层顶面的渗径最短因此此处水平水力坡降最大;二是堤基砂层的水平破坏坡降比垂直破坏坡降要小得多。 三、结语 堤基管涌发展的原因主要是在水平渗透力作用下的水平向浅层破坏。因此,垂直防渗是在发生管涌后地基渗透破 坏治理的优选方法。堤基管涌通道能否趋于稳定与管涌口是否涌砂有很大关系。所以,反滤压盖阻止堤基管涌通道内的砂粒持续涌出应当作为抗洪抢险时的首选。管涌通道趋于稳定的主要原因是:管涌通道的发展使管涌通道前端堤基砂层的水平渗透比降逐渐降低,和管涌口垂直破坏坡降不断增大,直至等于砂层的局部破坏比降。【参考文献】1.刘忠玉,乐金朝,苗天德.无黏性土中管涌的毛管模型及其应用[ J ].岩石力学与工程学报,20042.毛昶熙,段祥宝,蔡金傍,茹建辉.堤基渗流管涌发展的理论分析[J ].水利学报,20043.李广信,周晓杰.堤基管涌发生发展过程的试验模拟[J ].水利水电科技进展,20054.姚秋玲,丁留谦.单层和双层堤基管涌砂槽模型试验研究[J ].水利水电技术,2007 5.陈建生,李兴文,赵维炳.堤防管涌产生集中渗漏通道机理与探测方法研究[J ].水利学报,20006.朱伟,山村和也.日本阿武隈川的洪水灾害及其综合治理[J ].河海大学学报,2000 7.郭书亮.堤基管涌模型试验及形成机理研究[D ].河北工程大学, 2012· 67·

项目管理常用工具蒙特卡罗

蒙特卡罗 模拟风险因素,评估项目风险 什么是蒙特卡罗 蒙特卡罗(Monte Carlo)得名于摩洛哥的一个着名赌城,它实质上是利用服从某种分布的随机变量来模拟现实系统中可能出现的随机现象。在项目管理中,可以用来模拟计算不确定性很强的项目收益、进度和成本,以及评估不确定因素对项目结果的影响。 蒙特卡罗的作用 计算在众多不确定性因素影响下,项目可能的收益、进度和成本; 分析在众多不确定性因素影响下,达到项目目标的概率; 分析各种不确定性因素对项目的影响程度; 找出关键性的影响因素。 怎么做 1.确定要分析的不确定因素 例:三项项目活动的时间估计T1,T2,T3。 T1 ①T2② T3 2.确定目标函数 例:项目活动总时间=Max(T1,T2,T) 3.找出不确定因素的概率分布 例:三项项目活动的时间T1,T2,T符合β分布。 项目管理中常用的概率分布: 4.利用随机数表或计算机在其概率区间内产生随机数 例:设项目活动的最短时间为8天,最长为12天,在8-12的区间内随机产生三个变量,分别模拟三项项目活动的时间。 5.进行大量次数的模拟实验 例:产生随量的过程重复300次(或以上)。 6.计算目标函数值 7.对实验结果进行统计 例:分别统计项目总时间分别落在“项目开始-第8天”、“第9天-第10天”、“第11天-第2天”的频率。 8.对影响项目结果的因素做出敏感性分析 例:分别计算T1,T2,T3落在关键路径上的次数,从而算出三条路径对项目总时间的影响程度。适用范围: 1.蒙特卡罗的特点是模拟次数越多,计算结果的可靠性越大。特别适用于在计算机上对大型项 目、新产品项目和其他含有大量不确定因素的复杂决策系统进行风险模拟分析; 2.蒙特卡罗模拟法不可能使计算结果发生实质性变化,但是可以给算结果的概率分布,便于预 测达到预期目标的可能性。 例:用蒙特卡罗做敏感性分析的流程图:

相关文档
最新文档