波函数补充习题

大学物理机械波习题及答案解析

一、选择题: 1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为 (SI),该波在t = 0.5 s 时刻的波形图是 [ B ] 2.3407:横波以波速u 沿x 轴负方向传播。t 时刻波形曲线如图。则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 [ ] 3.3411:若一平面简谐波的表达式为 ,式中A 、B 、C 为正值常量,则: (A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ] 4.3413:下列函数f (x 。 t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。其中哪个函数表示沿x 轴负向传播的行波? (A) (B) (C) (D) [ ] 5.3479:在简谐波传播过程中,沿传播方向相距为(λ 为波长)的两点的振 动速度必定 ] 2)42(2cos[10.0π +-π=x t y ) cos(Cx Bt A y -=)cos(),(bt ax A t x f +=)cos(),(bt ax A t x f -=bt ax A t x f cos cos ),(?=bt ax A t x f sin sin ),(?=λ 21 x u A y B C D O x (m) O 2 0.1 0 y (m) ( A ) x (m) O 2 0.1 0 y (m) ( B ) x (m) O 2 - 0.1 0 y (m) ( C ) x (m) O 2 y (m) ( D ) - 0.1 0

(A) 大小相同,而方向相反 (B) 大小和方向均相同 (C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ] 6.3483:一简谐横波沿Ox 轴传播。若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的 (A) 方向总是相同 (B) 方向总是相反 (C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ] 7.3841:把一根十分长的绳子拉成水平,用手握其一端。维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长 (C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。若波的表达式以余弦函数表示,则O 点处质点振动的初相为: (A) 0 (B) (C) (D) [ ] 9.5193:一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是: (A) A ,0,-A (B) -A ,0,A (C) 0,A ,0 (D) 0,-A ,0. [ ] 10.5513:频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小 于波长的两点振动的相位差为,则此两点相距 (A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ ] 11.3068:已知一平面简谐波的表达式为 (a 、b 为正值常量),则 (A) 波的频率为a (B) 波的传播速度为 b/a (C) 波长为 π / b (D) 波的周期为2π / a [ ] 12.3071:一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示。则坐标原点O 的振动方程为 (A) (B) π21ππ 23π 31)cos(bx at A y -=]2)(cos[π+'-=t t b u a y ] 2)(2cos[π -'-π=t t b u a y x u a b y O 5193图 x y O u 3847图

一维定态波函数宇称的讨论

一维定态波函数宇称的讨论 一、一维定态波函数 波函数是量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(即测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。在量子力学中,为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即)(t z y x ,,,ψψ=,它是薛定谔方程的解,物理意义表达为:在空间某点附近发现实物粒子的概率正比于粒子波函数绝对值的平方。 二、简并能级与非简并能级 能级的简并就是微粒运动状态不同,但是能量(能级)一样;非简并就是每个不同运动状态的微粒具有不同的能量。量子力学中,解薛定谔方程能够得到一些相应的量子数,这些量子数能描述微粒的运动状态,比如:氢原子中的电子有:主量子数n 、角量子数l 、磁量子数m 、自旋量子数s 、自旋磁量子数ms(s 是下标),拥有不同量子数的电子说明运动状态不同。在没有外加磁场的情况下,电子的能量只和n 有关,而和其他4个量子数无关,但是同一个n 下有n2种运动状态(量子力学或者原子物理中的相关结论),我们就说能级En 是n2度简并的,表示同一个能级En 下电子最多可以有n2种运动状态。对于线性谐振子来说,n 与能级是一一对应的,所以线性谐振子是非简并系统。需要指出的是,有些简并能级在特殊情况下会变为非简并的,比如电子在磁场中由于磁量子数的变化,能级会分裂。 三、对一维定态波函数宇称的理解 1.对宇称的理解 引入宇称算符比较容易说明。宇称算符没有经典对应的力学量,宇称算符用∧P 标记,表示将波函数的坐标变量对原点做空间反演,即)()(→ →∧-=x x P ψψ。如果势函数是偶函数,那么它在空间反演下是不变的。换句话说,哈密顿量与宇称算符对易。于是可以选哈密顿量和宇称算符的共同本征态作为本征态组,使得问题得到简化。而宇称算符的本征态只有两个:奇宇称态和偶宇称态,所以我们这样选出的本征态组要么是奇宇称要么是偶宇称。当然,我们有选择的自由,完全可以选那些没有一定宇称的态作为本征态,但在多数情况下,这只会徒增麻烦。但

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

定态薛定谔方程讲义

定态薛定谔方程 一、定态Schr?dinger 方程 2 2(,)[()](,)2i r t V r r t t m ψψ?=-?+? (1) 在一般情况下,从初始状态ψ(r,0)求 ψ(r,t)是不容易的。以下,我们考虑一个很重要的特殊情形——假设势场V 不显含时间 t (在经典力学中,在这种势场中运动的粒子,其机械能守恒),此时薛定谔方程(1)可以用分离变量数法求其特解。 ()V r 与t 无关时,可以分离变量 令(,)()()r t r f t ψψ= 代入(1)式 2 2()1[()]()()()2i df t V r r f t dt r m ψψ=-?+ E = 其中E 是即不依赖于t ,也不依赖于r 的常量,这样 ()()df t i Ef t dt = (2) 2 2[()]()()2V r r E r ψψμ -?+= (3) ——定态薛定谔方程 由(2)解得 Et i ce t f -=)( 其中c 为任意常数。把常数c 放到()E r ψ 里面去,则 (,)()i Et E r t r e ψψ-= (4) 这个波函数与时间的关系是正弦式的,其角频率是ω=Ε/?按照德布罗意关系E=h ν=?ω,E 就是该体系处于这个波函数所描写状态时的能量。由此可见,当体系处于(4)式所描写状态时,能量具有确定值E ,所以这种状态称为定态,波函数ψ(r,t)称为定态波函数。 定态有两个含义:1、(,)()i Et E r t r e ψψ-= ;2、E 具有确定值;(判断是否为定态的依 据) 空间波函数()E r ψ 可由方程 2 2[()]()()2E E V r r E r m ψψ-?+= 和具体问题()E r ψ 应满足的边界条件得出。方程(3)称为定态Schr?dinger 方程,()E r ψ 也可

大学物理机械波知识点总结

大学物理机械波知识点总结 【篇一:大学物理机械波知识点总结】 高考物理机械波知识点整理归纳 机械振动在介质中的传播称为机械波(mechanical wave)。机械波和电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁 波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的 传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以 在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械 波和电磁波的许多物理性质,如:折射、反射等是一致的,描述它 们的物理量也是相同的。常见的机械波有:水波、声波、地震波。 机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不 一定有机械波产生。 形成条件 波源 波源也称振源,指能够维持振动的传播,不间断的输入能量,并能 发出波的物体或物体所在的初始位置。波源即是机械波形成的必要 条件,也是电磁波形成的必要条件。 波源可以认为是第一个开始振动的质点,波源开始振动后,介质中 的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。介质 广义的介质可以是包含一种物质的另一种物质。在机械波中,介质 特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会 产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播 速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

下表给出了0℃时,声波在不同介质的传播速度,数据取自《普通高 中课程标准实验教科书-物理(选修3-4)》(2005年)[1]。单位v/m s^- 1 传播方式和特点 质点的运动 机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质 点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传 播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒 的运动.阻尼振动为能量逐渐损失的运动. 为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进 行介绍,其他形式的机械波同理[1]。 绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端 进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断 地进行周期性上下抖动,就形成了绳波[1]。 把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带 动第二个质点振动,只是质点二的振动比前者落后。这样,前一个 质点的振动带动后一个质点的振动,依次带动下去,振动也就发生 区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上 红布条,我们还可以发现,红布条只是在上下振动,并没有随波前 进[1]。 由此,我们可以发现,介质中的每个质点,在波传播时,都只做简 谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形 式的传播,质点本身不会沿着波的传播方向移动。

第二章 波函数和 Schrodinger 方程

第二章 波函数和 Schrodinger 方程 §1 波函数的统计解释__量子力学的第一条假设:量子状态公设 一个微观粒子的状态可以由波函数来描述,波函数的模方为为粒子的概率密度,波函数满足归一化条件。简言之:波函数完全描述微观粒子状态 (一)波函数 描写自由粒子的平 面 波 称为 de Broglie 波。此式称为自由粒子的波函数。 如果粒子处于随时间和位臵变化的力场中运动,他的动量和能量不再是常量,粒子的状态就不能用平面波描写,而必须用 较复杂的波描写,一般记为: ,它通常是一个复函数。 如果用波函数描述粒子状态,则必须解决3个问题? (1) ψ 是怎样描述粒子的状态? (2) ψ 如何体现波粒二象性的? (3) ψ 描写的是什么样的波呢? (二)波函数的解释 波函数对微观粒子的描写统一了粒子性与波动性的关键在于波函数的统计解释: 如果微观粒子的波函数是 则某一时刻粒子出现在位臵r 处,体积元dV 中的粒子的概率,与波函数模的平方成正比。 exp ()i A Et ?? ψ=?-???? p r (,)t ψr (,)t ψr ()2 ,,,dW x y z t dV =ψ概率密度 /dW dV

所以, 与经典物理学中的波动不同,它不是某种实际的物理量振幅在空间的分布,而只是一种几率振幅。 波函数Ψ(x,y,z,t )的统计解释(哥本哈根解释):波函数模的平方代表某时刻t 在空间某点(x,y,z )附近单位体积内发现粒子的概率,即|Ψ| 2 代表概率密度。 波函数的统计意义是波恩于1926年提出的。由于波恩在量子力学所作的基础研究,特别是波函数的统计解释,他与博特共享了1954年的诺贝尔物理学奖。 玻恩对波函数的统计诠释—哥本哈根学派(以玻尔和海森伯为首)观点。 玻恩假定: 描述粒子在空间的概率分布的“概率振幅” ,而 则表示概率密度 例题1:电子的自由平面波波函数 在空间各点发现光子的概率相同 用电子双缝衍射实验说明概率波的含义 (1)入射强电子流 干涉花样取决于概率分布,而概率分 布是确定的。 (2)入射弱电子流 入射电子流强度小,开始显示电子的微粒性,长时间将显示衍射图样。电子干涉不是电子之间相互作用引起的,是电子波动 (,)t ψr (,)t ψr ()()()2* ,,,t t t ψ=ψψr r r (),exp ()i t A Et ??ψ=?-?? ?? r p r ()2 ,t ψ=r 常数

大学物理课后习题及答案 波动

第十四章波动 14-1 一横波再沿绳子传播时得波动方程为[] x m t s m y )()5.2(cos )20.0(11---=ππ。(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。 14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。将已知的波动方程按波动方程的一般形式 ?? ????+??? ??=0cos ?ωu x t A y μ书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。比较法思路清晰、求解简便,是一种常用的解题方法。 (2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。介质不变,彼速保持恒定。(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。 解(1)将已知波动方程表示为 ()()[] 115.25.2cos )20.0(--?-=s m x t s m y π 与一般表达式()[]0cos ?ω+-=x t A y 比较,可得 0,5.2,20.001=?==-?s m u m A 则 m v u Hz v 0.2,25.12====λπω (2)绳上质点的振动速度 ()()()[] 1115.25.2sin 5.0---?-?-==s m x t s s m dt dy v ππ 则1max 57.1-?=s m v (3) t=1s 和 t =2s 时的波形方程分别为 ()[]x m m y 115.2cos )20.0(--=ππ ()[] x m m y 125cos )20.0(--=ππ 波形图如图14-1(a )所示。 x =1.0m 处质点的运动方程为 () t s m y 15.2cos )20.0(--=π 振动图线如图14-1(b )所示。 波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况。

苏汝铿量子力学习题答案第二章2.16-2.18

14QM-2.16设氢原子处在基态,求: (1) 它在动量表象中的表达式; (2) x p 和2 x p 的平均值; (3) x 和2x 的平均值; 解:氢原子基态波函数为 120121 (,,)r a r e a φθ?π-= 22h a e μ= 而动量p 本征函数为 2./3/2 1()(2)p r p r e φπ=v v h v v h 所以它在动量表象中的表达式为 2cos //223/200011()()1/21/20 1/23/222 3222 1()sin (2)[]2()111[]11(2)()()2(/)ipr a r a ip ip r r a a p e e r d d dr a e e rdr a ip ip ip i p a a a a p a πφθθ?ππππ∞-----+∞==-=--+=+????h h h h h h h g g h h h h h 于是 |()|0 x x x y z p p p dp d p dp φ∞-∞==? 由于被积函数对x p 是奇函数 22222542250004 2 2 2|()|1|()|3 8sin 3()3x x x y z x y z p p p dp d p dp p p dp d p dp p dp d d a p a a ππφφθ?π∞-∞∞-∞∞== =+=?????h h h

而223223243532 113434()4!32 r a r a r a x e x dxdydz a e r dxdydz a e r dr a a a a ππ ---====?=???g 2==>h 14QM-2.17利用氢原子的能谱公式,写出: (1)电子偶素,即e e +--形成的束缚态的能级; (2)以μ-子代表核外电子所形成的μ原子的能级; (3)μ+和e - 形成的束缚态能级。 解:氢原子束缚态的能级公式为: 42 22 (2)(1,2,3,)2n me E n h n π=-= (1) 对于电子偶素来说,束缚态的能级为: 42422222(2)(2)(1,2,3,)24e n m e e E n h n h n πμπ=-=-= 其中μ为系统折合质量,e m 为电子质量。 (2)对于μ原子来说,束缚态的能级为: 42422222(2)207(2)(1,2,3,)22e n m e m e E n h n h n μππ=- =-= 其中m μ为μ原子质量,e m 为电子质量。 (3)μ+和e - 形成的束缚态能级为: 4222(2)(1,2,3,)2e n m e E n h n π=-= 其中e m 为电子质量。 14QM-2.18 设势场为2()(,0)a A U r a A r r =-+>,求粒子的能量本征值。

大学物理A第十章 波函数

第十章波函数 一、填空题(每空3分) 10—1 A,B就是简谐波同一波线上两点,已知B点得相位比A点超前,且波长,波速,则两点 相距 ,频率为。() 10—2 A,B就是简谐波同一波线上两点,已知B点得相位比A点超前,且波长,波速,则两 点相距 .(1m ) 10—3 一列横波沿X正向传播,波速u=1m/s,波长λ=2m,已知在X=0.5m处振动表达式为Y=2cos t(SI),则其波函数为_______、(y=2cos(t-x+) (SI)) 10—4波源位于x轴得坐标原点,运动方程为,式中y得单位为m,t得单位为s,它所形成得波形以得速度沿x轴正向传播,则其波动方程为___ _____。() 10—5机械波得表达式为,则该波得周期为。() 10-6一平面简谐波得波动方程为,式中单位为SI制。则:(1)对于某一平衡位置,s与s时得相位差为;(2)对于同一时刻,离波源0。80m及0.30m两处得相位差为.(0、4π;π) 10—7 一列横波在x轴线上沿正向传播,在t1=0与t2 =0、5s时波形如图所示,设周期,波动方程 为. () 10-8某波线上有相距2.5cm得A、B两点,已知振动周期为2、0s,B点得振动落后于A点 得相位为π/6,则波长λ= ,波速u= 。(λ=0.3m,u=0。15m/s) 10-9一横波沿x轴正向传播,波速u = 1m/s, ,已知在x =0.5m处振动表达式为(S I),则其波函数为___。() 10—10两波相干得充要条件就是 .(频率相同、振动方向平行、相位相同或有恒定得相位差.) 10-11一简谐波沿X轴正向传播,λ = 4m,T = 已知点得振动曲线如图所示, 点得振动方程为____________________, 波函数为___________________________ (, ) 10-12 为两相干波源,其振幅相等,并发出波长为得简谐波,P点就是两列波相遇区域中得

《大学物理学》机械波练习题

机械波部分-1 《大学物理学》机械波部分自主学习材料(解答) 一、选择题 10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A)均为2π; (B)均为 π-; (C)π 与 π-; (D)π-与π。 【提示:图(b ) 2 π- ,图(a ) 可见0x =则初相角为2 π】 10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A)波长为5m ; (B)波速为1 10m s -?; (C)周期为 1 3秒; (D)波沿x 正方向传播。 【提示:利用2k πλ=知波长为1003λ= m ,利用u k ω=知波速为1 100u m s -=?,利用2T πω=知周期为1 3 T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】 10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4 T t =时刻的波形如图所示, 则该波的表达式为( D ) (A)cos[()]x y A t u ωπ=- +; (B)cos[()]2x y A t u π ω=--; (C)cos[()]2x y A t u π ω=+-; (D)cos[()]x y A t u ωπ=++。 【提示:可画出过一点时间的辅助波形, 可见在4 T t = 时刻,0x =处质点的振动 为由平衡位置向正方向振动,相位为2 π-, 那么回溯在0t =的时刻,相位应为π】 10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相就是1?,到P 点的距离就是1r 。波在点2S 振动的初相就是2?,到P 点的距离就是2r 。以k 代表零或正、负整数,则点P 就是干涉极大的条件为( D ) (A)21r r k π-=; O O 1 S 2 S r

大学物理 机械波习题思考题及答案

习题8 8-1.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位 比A 点落后 6 π ,已知振动周期为2.0s ,求波长和波速。 解:根据题意,对于A 、B 两点,m x 26 12=?=-=?,π ???, 而m 242=??= ?λλ π ?x ,m/s 12== T u λ 8-2.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为 )cos(?ω+=t A y ,波速为u ,求: (1)平面波的波动式; (2)若波沿x 轴负向传播,波动式又如何? 解:(1)设平面波的波动式为0cos[]x y A t u ω?=-+(),则P 点的振动式为: 1 0cos[]P x y A t u ω?=- +(),与题设P 点的振动式cos()P y A t ω?=+比较, 有:10x u ω??=+,∴平面波的波动式为:1 cos[()]x x y A t u ω?-=-+; (2)若波沿x 轴负向传播,同理,设平面波的波动式为: 0cos[]x y A t u ω?=++(),则P 点的振动式为: 10cos[]P x y A t u ω?=++(),与题设P 点的振动式cos()P y A t ω?=+比较, 有:10x u ω??=-+,∴平面波的波动式为:1 cos[()]x x y A t u ω?-=++。 8-3.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πν?=+,试写出: (1)该平面简谐波的表达式; (2)B 点的振动表达式(B 点位于A 点右方d 处)。 解:(1)仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为: 0cos[2]x y A t u πν?=++(),则A 点的振动式:

大学物理平面简谐波波动方程讲课稿

§4-2平面简谐波的波动方程 振动与波动 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。任何复杂的波都可看成是若干个简谐波的叠加。 对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。需要定量地描述出每个质点的振动状态。 波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。 一、平面简谐波的波动方程 设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点 参考点原点的振动方程为 ()00cos y A t ω?=+ 任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢? 沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π 现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相 位比 O 点落后 22x x π πλλ = P 点的振动方程为 区别 联系 振动研究一个质点的运动。 波动研究大量有联系的质点振动的集体表现。 振动是波动的根源。 波动是振动的传播。 x

02cos P y A t x πω?λ? ?=+- ?? ? 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉 02cos y A t x πω?λ? ?=+- ?? ? 就是沿 x 轴正向传播的平面简谐波的波动方程。 如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π λ 沿 x 轴负向传播的波动方程为 02cos y A t x πω?λ??=++ ??? 利用 2ωπν=, u λν= 沿 x 轴正向传播的平面简谐波的波动方程又可写为 02cos y A t x πω?λ??=-+ ??? 02cos A t x u πνω??? =-+ ??? 0cos x A t u ω??? ??=-+ ??????? 即 0cos x y A t u ω??? ??=-+ ??????? 原点的振动状态传到 P 点所需要的时间 x t u ?= P 点在 t 时刻重复原点在 x t u ?? - ??? 时刻的振动状态 波动方程也常写为 x

武汉纺织大学 大学物理 机械波

第十三章 (在下列各题中,均给出了4个~5个答案,其中有的只有1个正确答案,有的则有几 1.在下列关于机械波的表述中,不正确的是 A. B.在波的传播方向上,相位差为2π C. D.波的振幅、频率、相位与波源相同; E.波线上离波源越远的质元,相位越落后。 ( 解:选(D )。简谐波的频率与波源的频率相同。对于平面简谐波,我们假设了介质是均匀、无吸收的,那么各点的振幅将保持不变,且与波源的振幅相同,但对于简谐球面波,其振幅与离开波源的距离成反比。波的相位与位置有关,且总是落后于波源的相位。 2.已知一平面简谐波的波函数为y =A cos (at -bx )(a 、b 为正值) A.波的频率为a ; B.波的传播速度为 a b C.波长为 πb D.周期为 2π a 解:选(D )。沿Ox 轴正方向传播的平面简谐波的波函数具有标准形式: cos 2π()λ t x y A T =-。 将题中给出的波函数化为cos 2π( )2π2πt x y A a b =-,与标准形式比较得:周期2πT a =,波长2πλ= b ,波速λ=a u T b =,频率1==2π a T ν。 3. A. 波的能量2 2 1kA E E E P K = +=

B. 机械波在介质中传播时,任一质元的K E 和P E 均随时间t 变化,但相位相差 π 2 C. 由于K E 和P E 同时为零,又同时达到最大值,表明能量守恒定律在波动中不成立; D.K E 和P E 同相位,表明波的传播是能量传播的过程。( 解:选(D )。在有波传播的介质中,任一体积元中的动能和势能随时间变化的规律完全相同,也就是说,当该体积元内的动能最大时,势能也最大,动能为零时,势能也为零。但这并不表明能量守恒定律本身不成立,因能量守恒定律只适用于封闭(孤立)系统,而该体积元是开放系统,它不断从后面的介质中获得能量,又不断地把能量传给前面的介质。这与单个质点的简谐振动不同,当单个质点做简谐振动时,其动能最大时势能为零,势能最大时动能为零,两者之和为2 2 1kA E E E P K = +=,机械能守恒。 4.传播速度为100m/s ,频率为50Hz 的平面简谐波,在波线上相距为0.5m 的两点之间 A. π 3 ; B. π6; C.π2; D. π 4 。 ( 解:选(C )。波长m 250 100 ===νλu ,相位 差x ?=?λ?π22 π 5.02π2=?=。 5.一列平面余弦波t 时刻的波形如图13-1所示,则该时刻能量为最大值的介质质元的位置是: A.e c a ,, ; B.f d b ,, ; C.e a , ; D.c 解:选(B )。由图可知,该时刻b 、d 、f 三个质元位移为零,说明此时它们正通过平衡位置,因此动能最大,根据波动过程中能量传播的规律,它们的势能也最大。 6.一频率为500Hz 的平面简谐波,波速为360m/s ,则同一波线上相位差为 3 π 的两点间 A. 0.24m ; B.0.48m ; C.0.36m ; D.0.12m 。 ( 图13-1

第二章波函数和薛定谔方程

第二章波函数和薛定谔方程 ●§2.1 波函数的统计解释 ●§2.2 态叠加原理 ●§2.3 薛定谔方程 ●§2.4 粒子流密度和粒子数守恒定律●§2.5 定态薛定谔方程 ●§2.6 一维无限深势阱 ●§2.7 线性谐振子 ●§2.8势垒贯穿

本章主要介绍了波函数的统计解释、薛定谔方程的建立过程、用定态薛定方程处理势阱问题和线性谐振子问题。

§2.1 波函数的统计解释(一)波函数 (二)波函数的解释 (三)波函数的性质

?? ????-?=ψ)(exp Et r p i A ?3个问题? 描写自由粒子的 平面波 ),(t r ψ?如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为: 描写粒子状态的 波函数,它通常 是一个复函数。 称为de Broglie 波。此式称为自由粒子的 波函数。 (1) ψ是怎样描述粒子的状态呢? (2) ψ如何体现波粒二象性的? (3) ψ描写的是什么样的波呢? (一)波函数

电子源感 光 屏(1)两种错误的看法 1. 波由粒子组成 如水波,声波,由分子密度疏密变化而形成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。 P P O Q Q O 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。

一维定态波函数宇称的讨论

一维定态波函数宇称的 讨论 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

一维定态波函数宇称的讨论 一、一维定态波函数 波函数是量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(即测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。在量子力学中,为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即)(t z y x ,,,ψψ=,它是薛定谔方程的解,物理意义表达为:在空间某点附近发现实物粒子的概率正比于粒子波函数绝对值的平方。 二、简并能级与非简并能级 能级的简并就是微粒运动状态不同,但是能量(能级)一样;非简并就是每个不同运动状态的微粒具有不同的能量。量子力学中,解薛定谔方程能够得到一些相应的量子数,这些量子数能描述微粒的运动状态,比如:氢原子中的电子有:主量子数n 、角量子数l 、磁量子数m 、自旋量子数s 、自旋磁量子数ms(s 是下标),拥有不同量子数的电子说明运动状态不同。在没有外加磁场的情况下,电子的能量只和n 有关,而和其他4个量子数无关,但是同一个n 下有n2种运动状态(量子力学或者原子物理中的相关结论),我们就说能级En 是n2度简并的,表示同一个能级En 下电子最多可以有n2种运动状态。对于线性谐振子来说,n 与能级是一一对应的,所以线性谐振子是非简并系统。需要指出的是,有些简并能级在特殊情况下会变为非简并的,比如电子在磁场中由于磁量子数的变化,能级会分裂。 三、对一维定态波函数宇称的理解 1.对宇称的理解 引入宇称算符比较容易说明。宇称算符没有经典对应的力学量,宇称算符用∧P 标记,表示将波函数的坐标变量对原点做空间反演,即)()(→→∧-=x x P ψψ。如果势函数是偶函数,那么它在空间反演下是不变的。换句话说,哈密顿量与宇称算符对易。于是可以选哈密顿量和宇称算符的共同本征态作为本征态组,使得问题得到简化。而宇称算符的本征态只有两个:奇宇称态和偶宇称态,所以我们这样选出的本征态组要么是奇宇称要么是偶宇称。当然,我们有选择的

大学物理A第十章 波函数

第十章 波函数 一、填空题(每空3分) 10-1 A,B 是简谐波同一波线上两点,已知B 点的相位比A 点超前2π,且波长4m λ=,波速 2u m s =,则两点相距 ,频率为 。(1,12m Hz ) 10-2 A,B 是简谐波同一波线上两点,已知B 点的相位比A 点超前2π,且波长4m λ=,波速 2u m s =,则两点相距 。(1m ) 10-3 一列横波沿X 正向传播,波速u=1m/s,波长λ=2m,已知在X=0.5m 处振动表达 式为Y=2cos πt(SI),则其波函数为_______.( y=2cos(πt-πx+ 2 π ) (SI )) 10-4波源位于x 轴的坐标原点,运动方程为t y π240cos 100.43 -?=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以 1 s m 30-? 的速度沿x 轴正向传播,则其波动方程为___ _____。 ())(8240cos(100.43 m x t y ππ-?=-) 10-5机械波的表达式为()()0.05cos 60.06y t x m ππ=+,则该波的周期为 。(13s ) 10-6一平面简谐波的波动方程为)2 4cos(08.0x t y ππ-=,式中单位为SI 制 。则:(1)对于某一平衡位置,2=t s 与1.2=t s 时的相位差为 ;(2)对于同一时刻,离波源0.80 m 及0.30 m 两处的相位差为 。(0.4 π;π) 10-7 一列横波在x 轴线上沿正向传播,在t 1=0和t 2=0.5s 时波形如图所示,设周期12t t T ->,波动方程为 。 ()4 2 cos(2.0x t y ππ π- + =) 10-8 某波线上有相距2.5cm 的A 、B 两点,已知振动周期为2.0s ,B 点的振动落后于A 点的相位为π/6,则波长λ = ,波速u = 。(λ=0.3m ,u=0.15m/s ) 10-9一横波沿x 轴正向传播,波速u = 1m/s, ,已知在 x = 0.5m 处振动表达式为t y πcos 5=(SI) , o 2 4 2 .0m y /m x /01=t s 5.02=t

大学物理机械波练习习题思考题及标准答案.doc

习题 8 8-1 .沿一平面简谐波的波线上,有相距 2.0 m 的两质点A与B,B点振动相位比 A 点落后,已知振动周期为 2.0 s ,求波长和波速。 6 解:根据题意,对于A、 B 两点,21 , x 2m , 2 6 而x 24m , u 12m/s T 8-2 .已知一平面波沿x 轴正向传播,距坐标原点O 为x1处 P 点的振动式为y A cos( t) ,波速为 u ,求: (1)平面波的波动式; (2)若波沿x轴负向传播,波动式又如何 ?解:( 1)设平面波的波动式为y Acos[ (t x )0 ] ,则 P 点的振动式为: x 1 )u y P A cos[ ( t 0 ] ,与题设P点的振动式 y P Acos( t ) 比较, x1 u x x1 有:0 ,∴平面波的波动式为:y Acos[ (t ) ] ; u u ( 2)若波沿x轴负向传播,同理,设平面波的波动式为: y A cos[ ( t x 0 ] ,则P点的振动式为:) u y P A cos[ ( t x1)0 ] ,与题设P点的振动式 y P Acos( t ) 比较, x1 u x x 1 ) 有:0 ,∴平面波的波动式为:y A cos[ (t u ] 。 u 8-3 .一平面简谐波在空间传播,如图所示,已知A点的振动规律为y A cos(2 t ) ,试写出: ( 1)该平面简谐波的表达式; ( 2)B点的振动表达式( B 点位于 A 点右方 d 处)。 解:( 1)仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为: y A cos[2 (t x )0 ] ,则A点的振动式: y A A cos[2 ( t l )0 ] u 2 l u 题设 A 点的振动式y A cos(2 t) 比较,有:, u

大学物理学机械波练习题

《大学物理学》机械波部分自主学习材料(解答) 一、选择题 10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A )均为2π; (B )均为 π-; (C )π 与π-; (D )2π-与 2 π。 【提示:图(b )为振动曲线,用旋转矢量考虑初相角为 2 π- ,图(a )为波形图,可画出过一点时间的辅助波形, 可见0x =处质点的振动为由平衡位置跑向负方向, 则初相角为2 π】 10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A )波长为5m ; (B )波速为1 10m s -?; (C )周期为 1 3秒; (D )波沿x 正方向传播。 【提示:利用2k πλ=知波长为1003λ= m ,利用u k ω=知波速为1 100u m s -=?,利用2T πω=知周期为1 3 T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】 10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4 T t =时刻的波形如图 所示,则该波的表达式为( D ) (A )cos[()]x y A t u ωπ=- +; (B )cos[()]2x y A t u π ω=--; (C )cos[()]2x y A t u π ω=+-; (D )cos[()]x y A t u ωπ=++。 【提示:可画出过一点时间的辅助波形, 可见在4 T t =时刻,0x =处质点的振动 为由平衡位置向正方向振动,相位为2 π -, 那么回溯在0t =的时刻,相位应为π】 O O

相关文档
最新文档