基于整机噪声的发动机曲轴扭转减振器的匹配分析

基于整机噪声的发动机曲轴扭转减振器的匹配分析
基于整机噪声的发动机曲轴扭转减振器的匹配分析

基于整机噪声的发动机曲轴扭转减振器的匹配分析

马俊达1,卢小锐1,王晖1

华晨汽车工程研究院,NVH工程室,沈阳,110141

【摘要】某机型在开发过程中,整机噪声比竞品机高,分析发现主要是由于轮系侧引起,本文对发动机曲轴扭转减振器进行重新匹配,降低发动机扭转波动,结果显示,重新匹配减振器后,发动机的扭转角度最大衰减量为0.095°,满足了单阶次扭转角度小于0.1°的目标要求,同时降低了发动机轮系侧噪声水平。经发动机台架试验验证,重新匹配后的减振器使发动机整机声压级在高转速工况下降低2.8dB(A),满足整机设计的目标要求。

【关键词】发动机;扭转减震器;激励力矩;曲轴系统

Matching Analysis of Crankshaft Torsional DamperBased on theEngine

Noise Performance

Junda Ma1, Xiaorui Lu1, Hui Wang1

Brilliance AutoR&D Center, China

ABSTRACT –In this article, the matching of engine crankshaft torsional vibration damper was analyzed based on torsional vibration test method, the testing results showed that the maximum attenuation of engine torsional angle was 0.095 °. After optimization,the target value was reached.The single order torsional angle was less than 0.1 °andthe noise level of the engine front end was reduced.These results were verified on test bench, it showed thatthe damperrematchesmakes the whole sound pressure level lower than priorin engine high speeds and satisfies the requirement of the whole machine design.

KEYWORDS-Torsional damper, Optimization,Noise level, Test bench

前言

近几年我国汽车工业迅猛发展,汽车在国内迅速普及的同时,汽车的NVH 性能也备受关注,已经成为了汽车性能最重要的评价指标之一。众所周知,曲轴扭转振动是整机激励振源中最重要的因素之一,不仅能够引起轴系和机体的振动,也是发动机轮系侧主要的噪声源。

某四缸机在开发过程中,NVH性能不满足竞品机的目标水平,试验分析表明主要的噪声贡献量来源于发动机轮系侧,为了满足NVH的目标要求,对曲轴扭转减振器进行重新匹配,降低曲轴前端扭转振动幅值。本文主要介绍了匹配不同的扭转减振器轴系扭振特性的试验测试,比较曲轴前端扭转角度的变化,并通过发

动机台架1米噪声试验对匹配后的噪声水平进行验证,最终满足目标要求。

1发动机轮系侧噪声特征

某发动机在开发过程中,NVH性能较差,与竞品机测试结果对比后发现,发动机前端(轮系侧)噪声测试结果曲线在3000rpm~5500rpm间存在“鼓包”,如图1所示,比竞品机同侧噪声总声压值高出4dB(A)左右;进气侧、排气侧、顶部的噪声水平与竞品机噪声水平相当。而四点平均后的声压级比目标值高1.7dB(A)左右,因此样机轮系侧噪声较大应是造成NVH水平不满足目标要求的主要原因。

图1 1m声压级发动机前端噪声对比

为了找出引起发动机轮系侧噪声较大的原因,在发动机半消声室进行摸底测试,找出引起轮系侧噪声大的主要原因。

试验工况:①满负荷工况下从1000rpm匀加速到最高转速;

②满负荷工况下稳态4000rpm、4500rpm、5000rpm;

在上述两种工况下,分别测试正时罩盖的结构振动、曲轴扭转振动、轮系侧的声学照相。

图2 发动机前端声学照相

声学照相结果如图2所示,在发动机前端,主要噪声源处于皮带轮区域,中心频率为1358Hz。

发动机结构振动和扭振测试结果如图3所示,皮带张紧器Y向振动频谱图显示,在340Hz附近存在明显的共振带,且Y向最大振动加速度达到36g,远远大于附件系统表面振动所设定的目标值要求。

工程实际中要求,曲轴前端扭转振动角位移单阶次的目标值须小于0.1°,总值不能大于0.2°。从样机的扭振测试结果中可以看出,一阶共振频率为340Hz,发动机转速达到5050rpm时,4阶发生共振,扭转角度的最大幅值为0.16°,不满足单阶次扭振目标值。且一阶扭转共振频率与皮带张紧器的共振频率相吻合,曲轴扭转振动激励引起张紧器的振动较大,必须重新匹配曲轴扭转减振器。

图3 发动机结构振动与扭振测试结果

2轴系扭振微分方程

有阻尼强制振动多质量系统中任意质量k 处的力系,其运动方程为:

k 1k k k 11,,11,-1,11()()(-)()sin()

k k k k k k k k k k k k k k k k k k I c c c k k M t ??????????ωψ??

?

?

?

?

?

-+-+-++--+-+-+-=+(1) 其矩阵式为

I C K T φφφ??

?

++=(2)

其中,惯量矩阵为对角线

12

00

k

n nxn

I I I I I ??

????????

=????????????

(3) 刚度矩阵仍为对称的三线对角带矩阵

1,2

1,21,21,22,3

2,31,1,,1,1

2,12,11,1,1,1,0

0k k

k k k k k k n n n n n n

n n n n

n n nxn

k k k k k k k k k k k k k k k k k --++---------????-+-??

????-+-=?

?????-+-????--?

?

(4) 阻尼矩阵为

11,2

1,21,21,222,3

2,31,1,,1

,1

,1

,11,2

1,2

2,12,n 11n 1,n

n 1,n 1,1,0

0k k

k k k k k k k k k k k k k k k k n n n n n n

n n n nxn

c c c c c c c c c c c c c c c c c c c c c c c c c c c --++++++++---------+-????

-++-??????-++-??=??-++-??????

-++-????-+?

? (5) 当扭矩0T =时,计算系统的自由振动,计算结果包括特征值(固有频率)

及特征向量(振型);当扭矩0T ≠时,计算系统的强迫振动,计算结果包括扭振振幅、轴段扭矩等。

令干扰力矩

sin(t )sin cos t k k k ck sk T M M t M ωεωω=+=+(6) 式中

k M =7)

arctan

sk

k ck

M M ε=(8)

则特解为

sin(t )sin cos k k k k k A X t Y t ?ω?ωω=+=+(9)

3扭转减振器匹配分析

本文选取固有频率为340Hz 、306Hz 两款减振器分别进行扭振测试,测试结果如图4所示,在数据处理分析中提取第2、4、6、8阶次,由于2阶受滚振影响较大,滚振属于低频、低转速的问题,轴系滚振时其各节点振幅相等且较大,但不会在系统的轴段上激起扭振应力,所以在评价扭振的时候需要扣除滚振的影响,故重点分析4阶和6阶。由图4(a )可知,更换固有频率为340Hz 的减振器后,单阶次最大扭转角度均小于目标值0.1°;4阶在发动机转速5400rpm 左右处产生的最大峰值为0.074°,6阶在3700rpm 处峰值为0.048°,8阶最大扭转角度为0.023°,发生在2800rpm 。单阶次(4阶)最大扭转角度衰减量达到0.086

(a )340Hz 扭转减振器测试结果

(b)306Hz扭转减振器扭振测试结果

图4 重新匹配后的扭转减振器测试结果

由图4(b)可知,更换固有频率为306Hz的扭转减振器后,在5000rpm左右4阶最大扭转角度为0.065°, 6阶最大扭转角度发生在4900rpm时493Hz 的共振带上,为0.041°,8阶最大扭转角度在2800rpm时也衰减到0.12°。

通过扭振测试结果分析可知,固有频率为306Hz的扭转减振器同样满足最大扭转角度总值小于0.2°,单阶次小于0.1°的目标要求,但与固有频率为365Hz的扭转减振器相比其扭振衰减量增加0.009°,虽然存在333Hz、490Hz 两处峰值,但扭振衰减效果更加明显。

41m噪声验证曲线

按照上述分析结果,选取固有频率为306Hz的扭转减振器作为重新匹配后的新减振器安装在曲轴前端,并进行发动机台架1米噪声测试。

测试结果如图5所示,发动机前端噪声水平明显降低,较优化前降低大约2.5dB(A)。由于4点1m噪声中发动机前端的贡献量明显减小,四点平均声压级与优化前相比降低了1.9dB(A),而且略低于目标线0.2dB(A),满足发动机整机噪声目标要求。

图5 优化后1m噪声对比

6结论

本文论述了某样机在开发过程中,通过发动机台架测试找出引起与目标值差异较大的主要噪声源,经过摸底测试,如声学照相等相关试验方法得知噪声贡献量较大的主要位置在曲轴皮带轮处,通过扭振测试发现现有的减振皮带轮不能满足扭转减振的目标要求,对扭转减振器重新进行匹配,选取合适的固有频率,降低曲轴的扭转振动,最终降低了整机的噪声水平,满足NVH性能要求。

参考文献

[1]陈超.发动机曲轴系统扭转振动计算方法及优化控制.机械传动.2012,02(36),53—57.

[2]郑长亮,王贵勇,毕玉华等.某四缸机曲轴扭转振动测试与分析.科学技术与工程.2012,25,(12),125-129.

[3]段秀兵,郝志勇,岳东鹏,宋宝安等.汽车发动机曲轴扭振的多体动力学分析汽车工程 2005,02,(27),233-237.

[4]上官文斌,陈超,段小成等.发动机曲轴系统扭转振动建模与实测分析.振动、测试与诊断.2012,04,(32),85-89.

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

扭转减震器设计开题报告

中北大学 毕业设计开题报告 学生姓名:蔡增源学号:0601074104 学院、系:机电工程学院动力机械系 专业:地面武器机动工程 设计题目:EQ1108K型柴油车离合器的扭转减震器设计 指导教师:徐忠四讲师 2010 年 3 月17日

毕业设计开题报告 1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1.1国内外研究现状、发展动态 随着社会经济的发展,汽车走进了千家万户,人们在享受着汽车带来的便利的同时也对汽车的性能提出了更高的要求。离合器作为汽车上一个必不可少的部件,除了能通断动力传动以外,还有减振调频的功能,越来越受人们的重视。 汽车传动系中的扭转振动将加大传动系零部件如轴、轴承、齿轮、壳体等的载荷,提高车厢内的噪声水平,降低汽车的行驶舒适性,汽车传动系的振动也是导致整车振动的主要原因。据统计,我国因运输车辆的振动使包装不妥的产品受损,所造成的经济损失一年达数亿元。同时由于轿车、客运车市场的发展,对汽车平顺性的要求也越来越高,振动使乘客产生不舒适的感觉,使驾驶者易疲劳降低了安全性,也使汽车零部件因振动而减少寿命,甚至使汽车的燃油经济性变差【1】。因此,需要分析研究汽离合器在汽车传动系统中的作用,建立传动系的振动模型,找出离合器最优工作状态和最优参数,为改善传动系的扭转振动状况找到一些新思路,为厂家研究开发新型离合器提供理论依据。 现今所用的盘片式离合器的先驱的多片盘式离合器,它是直到1925年以后才出现的。多片离合器最主要的优点是,在汽车起步时离合器的接合比较平顺,无冲击。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿车上使用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向与首选单片干式摩擦离合器,因为它具有从动部件转动惯量小、散热性好、结构简单、调整方便、尺寸紧凑、分离彻底等优点,而且在结构上采取一定措施,已能做到接合平顺,因此现在广泛用于大、中、小各类车型中。如今单片干式摩擦离合器在结构设计方面相当完善。采用具有轴向弹性的从动盘,提高了离合器接合时的平顺性。离合器从动盘总成中装有扭转减振器,防止了传动系统的扭转共振,减小了传动系噪声和动载荷,随着人们对汽车舒适性要求的提高,离合器已在原有基础上得到不断改进,汽车上愈来愈多地采用具有双质量飞轮的扭转减振器,能更有效地降低传动系的噪声【2】。

汽车发动机曲轴材料的选择及工艺的设计说明

专业课程设计任务书 学生:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回

火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足............................................................. (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献……………………………………....................... 15 8 工艺卡................................................................. . (16)

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

发动机曲轴结构设计

2.1 曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图1.1所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图1.1 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等

于气缸数的一半。 曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 2.2 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图2.1所示。

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 GB/T 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 GB/T 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖20Hz~20000Hz的频率范围。 加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。传声器、加速度传感器在测量前必须进行标定。 测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 发动机状态 发动机不带空气滤清器和排气消声器,引出进、排气噪声。

曲轴扭转减振器概述

1.1 课题背景 由于汽车工业具有很强的产业关联度,因而被视为一个国家工业和经济发展水平的重要标志,因此汽车被称为“改变世界的机器”。 随着科技的进步,社会的发展,人们对生活质量的要求越来越高,包括对汽车舒适性、安全性等性能提出了越来越苛刻的要求。为了提高汽车舒适性,减轻汽车的振动,首先要找到汽车的振源,汽车是多自由度的振动体,并受到各种振源的作用而发生振动,发动机就是振源之一。 当发动机工作时,曲轴在周期性变化的转矩作用下,各曲拐之间发生周期性相对扭转的现象称为扭转振动,简称扭振[1]。发动机的振动关系到它的寿命、工作效率和对周围环境的影响。曲轴系统的振动是引发内燃机振动的重要因素。由于曲轴上作用有大小、方向都周期性变化的切向和法向作用力, 曲轴轴系将会同时产生弯曲振动和扭转振动。因为内燃机曲轴一般均采用全支承结构, 弯曲刚度较大, 所以其弯曲振动的自然频率较高。虽然弯曲振动不会在内燃机工作转速范围内产生共振, 但它会引起配套轴系和机体其它部件的振动, 是内燃机的主要噪声源。对扭转振动而言, 由于曲轴较长,扭转刚度较小, 而且曲轴轴系的转动惯量又较大, 故曲轴扭振的频率较低, 在内燃机工作转速范围内容易产生共振,当发动机转矩的变化频率与曲轴扭转的自振频率相同或成整数倍时,就会发生共振。共振时扭转振幅增大,并导致传动机构磨损加剧,发动机功率下降,甚至使曲轴断裂。曲轴作为内燃机中主要的运动部件之一,它的强度和可靠性在很大程度上决定着内燃机的可靠性。因此, 扭转振动是内燃机设计过程中必须考虑的重要因素[2]。 如何降低曲轴的振动是发动机曲轴设计的重要内容之一,为了消减曲轴的扭转振动,现在汽车发动机多在扭转振幅最大的曲轴前端装置扭转减振器,目前在汽车发动机曲轴系统中广泛采用的是橡胶阻尼式扭转减振器(图 1.1),有效地改善了发动机曲轴系统的扭振特性,降低了扭振幅值。 a) b) c) a)橡胶扭转减振器(CA8V100);b)带轮-橡胶扭转减振器;c)复合惯性质量减振器(尼桑VH45DE) 1-减振器壳体;2-硫化橡胶层;3-扭转减振器惯性质量;4带轮毂; 5-带轮;6-紧固螺栓;7-弯曲振动惯性质量

发动机曲轴结构设计说明

目录 1 绪论 (1) 1.1 本课题的目的及意义 (1) 1.2 国外研究的现状与发展趋势 (1) 1.2.1 曲轴结构设计的发展 (1) 1.2.2 曲轴强度计算发展 (2) 1.3 有限元分析 (3) 2 1015柴油机曲轴结构设计 (4) 2.1 曲轴的结构 (4) 2.2 曲轴的疲劳损坏形式 (5) 2.2.1 弯曲疲劳裂纹 (6) 2.2.2 扭转疲劳裂纹 (6) 2.2.3 弯曲--扭转疲劳裂纹 (6) 2.3 曲轴的设计要求 (7) 2.4 曲轴的结构型式 (7) 2.5 曲轴的材料 (8) 2.6 曲轴的主要部件设计 (8) 2.6.1 主轴颈和曲柄销 (8) 2.6.2 曲柄臂 (9) 2.6.3 曲轴圆角 (10) 2.6.4 润滑油道 (11) 2.6.5 平衡重 (12) 2.6.6 曲轴两端和轴向止推 (12) 2.6.7 曲轴的强化 (13) 2.7 曲轴的强度校核 (14) 2.7.1 曲柄销应力 (14) 2.7.2 圆角形状系数 (17) 2.7.3 安全系数 (19)

3 有限元分析 (21) 3.1 ANSYS软件介绍 (21) 3.2 整体曲轴有限元模型的建立 (22) 3.2.1 有限元网格的划分 (22) 3.2.2 载荷状况的确定 (22) 3.3 曲轴整体模型计算结果分析 (24) 3.3.1 压应力分析 (24) 3.3.2 拉应力分析 (25) 3.4 疲劳强度校核 (26) 3.5 结论 (26) 4 总结 (26) 参考文献 (28) 致 (32)

1 绪论 1.1 本课题的目的及意义 柴油机与汽油机相比其燃料、可燃混合气的形成以及点火方式都不相同,而柴油机采用压缩空气的办法提高空气温度【1】,因此柴油机的功率更大、经济性能更好,这也导致柴油机工作压力大,要求各有关零件具有较高的结构强度和刚度,所以柴油机比较笨重,体积较大;柴油机的喷油泵与喷嘴制造精度要求高【2】,所以成本较高;另外,柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬季冷车时起动困难。因而柴油发动机一般用于大、中型载重货车上【3】。 曲轴是发动机的关键零件,其尺寸与燃机整体尺寸和重量有很大关系,如曲柄销直径直接影响连杆大端尺寸和重量,后者又影响曲轴箱宽度,曲轴单位曲柄长度影响燃机总长度,曲轴尺寸大小在很大程度上影响着发动机的外形尺寸和重量。曲轴是燃机曲柄连杆机构的主要组成部分、三大运动件之一,是主要传力件。它的功用是把气缸中所作的功,通过活塞连杆汇总后以旋转运动形式输出。此外,曲轴还传动保证燃机正常工作需要的机构和系统附件(如配气机构、燃油泵、水泵、润滑油泵等),因此曲轴工作的可靠性和寿命在很大程度上影响燃机工作的可靠性和寿命。【4】。曲轴的工作情况及其复杂,基本工作载荷是弯曲载荷和扭荷;对不平衡的发动机曲轴还承受弯矩和剪力;未采取扭转振动减振措施的曲轴还可能作用着幅值较大的扭转振动弹性力矩。这些载荷都是交变性的,可能引起曲轴疲劳失效。曲轴的破坏事故可能引起其它零件的严重损坏。曲轴又是一根连续曲梁,结构形状复杂,刚性差,材质要求严,制造要求高,是燃机造价最贵的机件。随着燃机的发展与强化,曲轴的工作条件愈加严酷了【5】,必须在设计上正确选择曲轴的结构形式,并根据设计要求选择合理的尺寸、合适的材料与恰当的工艺,以求获得满意的技术经济效果【6】。由以上所述可以看出曲轴设计的重要性。 1.2 国外研究的现状与发展趋势 1.2.1 曲轴结构设计的发展 曲轴结构设计在过去的几十年中得到了飞速的发展。在曲轴的设计初期一般是按照已有的经验公式计算或者与已有的曲轴进行类比设计【7】。在进行了初步的设计后造出曲轴样品再进行试验,通过实验数据进行适当的改进【8】。曲轴设计发展到今天已经有了很大的发展。随着燃机向高可靠性、高紧凑性、高经济性的不断发展,传统的以经验、试

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

最新发动机曲轴溷联式扭转减振器

发动机曲轴溷联式扭 转减振器

摘要 发动机的扭转振动严重影响了整车的舒适性。本文基于多级并联和串联扭转减振器的设计背景,提出混联式曲轴扭转减振器的设计,对扭转减振器的优化方案做了介绍,建立了两种三级混联减振器的简化模型,运用MATLAB软件对其参数进行优化分析,并运用CATIA软件对其进行实体建模。分析完扭转减振器的优化参数,结果表明本研究成果对曲轴扭转减振器的设计有一定借鉴价值。 关键词:发动机振动;曲轴扭转减振器;混联;优化

Abstract The Torsional Vibration (TV) of engine seriously affects the comfort of vehicle. Based on the background of parallel and serial multi-stage torsion damper design, the hybrid design of crankshaft Torsional Vibration Absorber (TVA) is proposed. This paper describes the optimization program of the TVA and establishes two simplified models of hybrid tri-mode TVA. The paper analyzes the optimization parameters with MATLAB and modeling TVA with the CATIA. After analyzing optimization parameters of TVA, the result indicates that the conclusions of this paper have some reference value for the design of TVA. Keywords: engine vibration; torsional absorber; hybrid-mode; optimization.

噪声测量噪声源识别与定位的方法简析

噪声测量:噪声源识别与定位的方法简析噪声测量的一项重要内容就是估计和寻找产生噪声的声源。 确定噪声源位置是实施控制噪声措施的先决条件。从声源上控制噪声可以大大减轻噪声治理的工作量,而且对促进生产低噪声产品研制,提高产品质量和寿命有直接效果,同时噪声源识别技术是声学测量技术的综合运用,具有很强的技术性。因此,噪声源识别有很大的现实意义。 噪声源识别的本质在于正确地判断作为主要噪声源的具体发声零部件,主要辐射部分。有时还要求对噪声源的特点及其变化规律有所了解。噪声源识别的要求有以下两个主要方面: ?确定噪声源的特性,包括声源类别,频率特性,变化规律和传播通道等。在复杂的机械中,用一种测量方法要明确区分声源的主次及其特性实际上往往是比较困难的。因此经常需要综合应用多种测量方法和信号处理技术,以便最终达到明确识别的目的。 ?确定噪声产生的部位、主要的发声部件等以及各噪声源在总声级中的比重。对多声源噪声,控制噪声的主要方法之一是找到

发声部件中占噪声总声级中比重最大的声源噪声,采取措施进行降噪,可达到事半功倍的效果。 噪声源识别方法很多,从复杂程度、精度高低以及费用大小等方面均有不少的差别,实际使用时可根据研究对象的具体要求,结合人力物力的可能条件综合考虑后予以确定。具体说来,噪声源识别方法大体上可分为二类: ?第一类是常规的声学测量与分析方法,包括分别运行法、分别覆盖法、近场测量法、表面速度测量法等。 ?第二类是声信号处理方法,它是基于近代信号分析理论而发展起来的,象声强法、表面强度法、谱分析、倒频谱分析、互相关与互谱分析、相干分析等都属于这一类方法。 在不同研究阶段可以根据声源的复杂程度与研究工作的要求,选用不同的识别方法或将几种方法配合使用。 声学测量法 人的听觉系统具有比最复杂的噪声测量系统更精确的区分不同声音的能力,经过长期实践锻炼的人,有可能主观判断噪声声

扭转减振器的参数确定

3.4.3扭转减振器的参数确定 1、扭转减振器的角刚度 决定于减振弹簧的线刚度及结构布置尺寸,按下列公减振器扭转角刚度k a 式初选角刚度 ≤13T j(3-19) K a 式中:T j为极限转矩,按下式计算 T j=(1.5~2.0)T e max(3-20)式中:2.0适用乘用车,1.5适用商用车,本设计为商用车,选取1.5, T e max 为发动机最大扭矩,代入数值得T j=257.25N.M,K a ≤ 3344.25N.mm/rad 2、扭转减振器最大摩擦力矩 由于减振器扭转刚度C 受结构及发动机最大转矩的限制,不可能很低,故 a 为了在发动机工作转速范围内最有效地消振,必须合理选择减振器阻尼装置的阻尼摩擦转矩Tμ。一般可按下式初选为 Tμ=(0.06~0.17)T e max(3-21)取Tμ=0.15T e max,本设计按其选取Tμ=25.725N·m。 3、扭转减振器的预紧力矩 减振弹簧安装时应有一定的预紧。这样,在传递同样大小的极限转矩它将降低减振器的刚度,这是有利的,但预紧力值一般不应该大于摩擦力矩否则在反向工作时,扭转减振器将停止工作。 一般选取T预=(0.05~0.15)T e max,取T预=0.12T e max=20.58 N·m。 4、扭转减振器的弹簧分布半径 减振弹簧的分布尺寸 R的尺寸应尽可能大一些,一般取 =(0.60~0.75)d/2 (3-22) R 取 R 0.7 d/2 0 = 其中d为摩擦片内径,代入数值,得R =54.25mm。 5、扭转减振器弹簧数目 可参考表3.10选取,本设计D=250mm,故选取Z=6。 表3.10减振弹簧的选取

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

扭转减振器设计

第五节 扭转减振器的设计 扭转减振器主要由弹性元件(减振弹簧或橡胶)和阻尼元件(阻尼片)等组成。弹性元件的主要作用是降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振;阻尼元件的主要作用是有效地耗散振动能量。所以,扭转减振器具有如下功能: 1)降低发动机曲轴与传动系接合部分的扭转刚度,调谐传动系扭振固有频率。 2)增加传动系扭振阻尼,抑制扭转共振响应振幅,并衰减因冲击而产生的瞬态扭振 3)控制动力传动系总成怠速时离合器与变速器轴系的扭振,消减变速器怠速噪声和主减速器与变速器的扭振与噪声。 4)缓和非稳定工况下传动系的扭转冲击载荷和改善离合器的接合平顺性。 扭转减振器具有线性和非线性特性两种。单级线性减振器的 扭转特性如图2-1 4所示,其弹性元件一般采用圆柱螺旋弹簧, 广泛应用于汽油机汽车中。当发动机为柴油机时,由于怠速时发 动机旋转不均匀度较大,常引起变速器常啮合齿轮齿间的敲击, 从而产生令人厌烦的变速器怠速噪声。在扭转减振器中另设置一 组刚度较小的弹簧,使其在发动机怠速工况下起作用,以消除变 速器怠速噪声,此时可得到两级非线性特性,第一级的刚度很小, 称为怠速级,第二级的刚度较大。目前,在柴油机汽车中广泛采 用具有怠速级的两级或三级非线性扭转减振器。 图2-14 单机线性减震器 在扭转减振器中,也有采用橡胶代替螺旋弹簧作为弹性元件,以液体阻尼器代替干摩擦阻尼的新结构。减振器的扭转刚度 ?K 和阻尼摩擦元件间的摩擦转矩μT 是两个主要参数。其设计参数还包括极限转矩j T 、预紧转矩n T 和极限转角j ?等。 1.极限转矩j T 极限转矩为减振器在消除限位销与从动盘毂缺 口之间的间隙△1(图2-1 5)时所能传递的最大转矩, 即限位销起作用时的转矩。它与发动机最大转矩有 关,一般可取 j T =(1.5~2.O) max e T (2-27) 式中,货车:系数取1.5,轿车:系数取2.O 。 2.扭转刚度尾?k 为了避免引起系统的共振,要合理选择减振器 的扭转刚度足?K ,使共振现象不发生在发动机常用 工作转速范围内。 图2-15 减震器尺寸简图 ?K 决定于减振弹簧的线刚度及其结构布置尺寸(图2-15)。 设减振弹簧分布在半径为 0R 的圆周上,当从动片相对从动盘毂转过?弧度时,弹簧相应变形量为0R 。此时所需加在从动片上的转矩为

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

车辆噪声源识别方法综述

文章编号:1006-1355(2012)05-0011-05 车辆噪声源识别方法综述 胡伊贤,李舜酩,张袁元,孟浩东 (南京航空航天大学能源与动力学院,南京210016) 摘要:在车辆产业中,噪声问题越来越突出,噪声源识别方法是车辆噪声控制的重要前提。近年来,车辆噪声源识别的方法得到快速发展,但仍需不断改进和完善。本文对车辆噪声源识别方法进行总结,将车辆噪声源识别方法分为传统方法、基于信号处理方法和基于声阵列技术方法三类,并描述和分析各种识别方法的特点。最后总结全文,展望未来车辆噪声源识别方法。 关键词:声学;车辆;噪声控制;综述;噪声源识别方法 中图分类号:V231.92文献标识码:A DOI编码:10.3969/j.issn.1006-1335.2012.05.003 Reviews of Vehicle Noise Source Identification Methods HU Yi-xian,LI Shun-ming,ZHANG Yuan-yuan,MENG Hao-dong (College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing210016,China) Abstract:In the vehicle industry,noise issues have become more evident.Vehicle noise source identification is an important prerequisite for noise control.In recent years,new methods of vehicle noise source identification have been developed,but it is necessary still for them to improve and optimize.The different methods for identifying noise sources are reviewed in this paper.All methods are divided into three categories,i.e.the traditional analysis method,the method based on signal processing,and method based on acoustic array technology.The features of various identification method are described and compared.Finally,some prospects of noise source identification method are given. Key words:acoustics;vehicle;noise control;review;noise source identification method 车辆噪声源识别是指在有许多噪声源或包含许多振动发声部件的复杂声源情况下,为了确定各个声源或振动部件的声辐射的性能,区分噪声源,并加以分等而进行的测量与分析。车辆的噪声主要分为发动机噪声、进排气噪声、传动噪声、轮胎噪声以及其他机械噪声[1,2]。 车辆噪声产生机理不同,针对不同噪声源有不同的识别方法[3]。本文将车辆噪声源识别方法分为三类:一类是传统噪声源识别方法,包括主观识别法、铅覆盖法、分部运行法、表面振速法和近场声压 收稿日期:2011-11-23;修改日期:2012-01-21 项目基金:江苏省普通高校研究生科研创新计划资助(基金编号:CX10B_094Z) 作者简介:胡伊贤(1986-),男,江苏,江苏宿迁泗阳县人,硕士,目前从事车辆噪声与振动控制研究。 E-mail:nuaayixian@https://www.360docs.net/doc/0e3651723.html, 测试法等。这些方法可以简单的对车辆噪声源进行识别。第二类是以信号处理为基础的噪声源识别方法,典型的有时域平均法、相关分析法、相干分析法、倒谱分析法、阶次分析法、小波分析法以及盲源分离法等。其中时域平均与相关分析是描述幅值随时间变化的时域分析方法。相干分析、倒谱分析在频域内对噪声信号进行分析,主要针对平稳噪声信号;阶次分析、小波分析、盲源分离识别方法在时频域内对信号进行分析,一般用于非平稳噪声信号。第三类是以声阵列技术为基础的噪声源识别方法,主要包括声强测试、波束成形以及声全息测试技术,它们主要特征是以全息面来直观全面反映各声源对整车噪声贡献的大小。本文在对各种声源识别方法总结基础上,分析声源识别方法的使用特点、优点与不足,对车辆噪声源识别方法进行总结与展望。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

相关文档
最新文档