图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法]
图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法] 第一章绪论

1.1 图像拼接技术的研究背景及研究意义

图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。

早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR )成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR 从一系列真是图像中快速绘制具有真实感的新视图。

在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说

360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。

微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和

仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键

环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术

将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。

从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义

1.2图像拼接算法的分类

图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:

(1) 基于区域相关的拼接算法。

这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。也可以通过FFT 变换将图像由时

域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。该方法的拼接效果要好一些,成功率有所提高。

(2) 基于特征相关的拼接算法。

基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

基于特征的配准方法有两个过程:特征抽取和特征配准。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集冈。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在

对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。如canny 算子、拉普拉斯高斯算子、区域生长。抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。

特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。

1.3本文的主要工作和组织结构

本文的主要工作:

(1) 了前人在图像拼接方面的技术发展历程和研究成果。

(2) 学习和研究了前人的图像配准算法。

(3) 学习和研究了常用的图像融合算法。

(4) 用matlab 实现本文中的图像拼接算法

(5) 总结了图像拼接中还存在的问题,对图像拼接的发展方向和应用前景进行展望。本文的组织结构:

第一章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,以及图像拼接技术的大致过程、图像拼接算法的分类和其技术难点。第二章主要介绍讨论了图像预处理中的两个步骤,即图像的几何校正和噪声点的抑制。第三章主要介绍讨论了图像

配准的多种算法。第四章主要介绍讨论了图像融合的一些算法。第五章主要介绍图像拼接软件实现本文的算法。第六章主要对图像拼接中还存在的问题进行总结,以及对图像拼接的发展进行展望。

1.4 本章小结

本章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研

究背景和应用前景,以图像拼接算法的分类和其技术难点,并且对全文研究内容进行了总体介绍。

第二章图像拼接的基础理论及图像预处理

2.1图像拼接

图像拼接技术主要有三个主要步骤:图像预处理、图像配准、图

像融合与边界平滑,如图。

图像拼接技术主要分为三个主要步骤:图像预处理、图像配准、

图像融合与边界平滑,图像预处理主要指对图像进行几何畸变校正和噪声点的抑制等,让参考图像和待拼接图像不存在明显的几何畸变。在图像质量不理想的情况下进行图像拼接,如果不经过图像预处理,很容易造成一些误匹配。图像预处理主要是为下一步图像配准做准备,

让图像质量能够满足图像配准的要求。图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息中寻找最佳的匹配,完成图像间的对齐。图像拼接的成功与否主要是图像的配准。待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像对齐。图像融合指在完成图像匹配以后,对图像进行缝合,并对缝合的边界进行平滑处理,让缝合自然过渡。由于任何两幅相邻图像在采集条件上都不可能做到完全相同,因此,对于一些本应该相同的图像特性,如图像的光照特性等,在两幅图像中就不会表现的完全一样。图像拼接缝隙就是从一幅图像的图像区域过渡到另一幅图像的图像区域时,由于图像中的某些相关特性发生了跃变而产生的。图像融合就是为了让图像间的拼接缝隙不明显,拼接更自然

2.2 图像的获取方式

图像拼接技术原理是根据图像重叠部分将多张衔接的图像拼合成

一张高分辨率全景图。这些有重叠部分的图像一般由两种方法获得 : 一种是固定照相机的转轴 , 然后绕轴旋转所拍摄的照片 ; 另一种

是固定照相机的光心 , 水平摇动镜头所拍摄的照片。其中 , 前者主要用于远景或遥感图像的获取 , 后者主要用于显微图像的获取 ,

它们共同的特点就是获得有重叠的二维图像。

2.3 图像的预处理

2.3.1 图像的校正

当照相系统的镜头或者照相装置没有正对着待拍摄的景物时候,那么拍摄到的景物图像就会产生一定的变形。这是几何畸变最常见的情况。另外,由于光学成像系统或电子扫描系统的限制而产生的枕形或桶形失真,也是几何畸变的典型情况。几何畸变会给图像拼接造成

很大的问题,原本在两幅图像中相同的物体会因为畸变而变得不匹配,这会给图像的配准带来很大的问题。因此,解决几何畸变的问题显得很重要。

图象校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。实际的复原过程是设计一个滤波器,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的误差准则,最大程度地接近真实图象。

2.3.2 图像噪声的抑制

图像噪声可以理解为妨碍人的视觉感知,或妨碍系统传感器对所

接受图像源信息进行理解或分析的各种因素,也可以理解成真实信号与理想信号之间存在的偏差。一般来说,噪声是不可预测的随机信号,通常采用概率统计的方法对其进行分析。噪声对图像处理十分重要,它影响图像处理的各个环节,特别在图像的输入、采集中的噪声抑制是十分关键的问题。若输入伴有较大的噪声,必然影响图像拼接的全过程及输出的结果。根据噪声的,大致可以分为外部噪声和内部噪声;从统计数学的观点来定义噪声,可以分为平稳噪声和非平稳噪声。各种类型的噪声反映在图像画面上,大致可以分为两种类型。一是噪声的幅值基本相同,但是噪声出现的位置是随机的,一般称这类噪声为椒盐噪声。另一种是每一点都存在噪声,但噪声的幅值是随机分布的,从噪声幅值大小的分布统计来看,其密度函数有高斯型、瑞利型,分别成为高斯噪声和瑞利噪声,又如频谱均匀分布的噪声称为白噪声等。

1. 均值滤波

所谓均值滤波实际上就是用均值替代原图像中的各个像素值。均

值滤波的方法是,对将处理的当前像素,选择一个模板,该模板为其邻近的若干像素组成,用模板中像素的均值来替代原像素的值。如图2.4所示,序号为0是当前像素,序号为1至8是邻近像素。求模板中所有像素的均值,再把该均值赋予当前像素点((x, y),作为处理

后图像在该点上的灰度g(x,y),即

g(x,y)= (2-2-2-1)

其中,s 为模板,M 为该模板中包含像素的总个数。

图2.2.2.1模板示意图

2. 中值滤波

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。它的核心算法是将模板中的数据进行排序,这样,如果一个亮点(暗点)的噪声,就会在排序过程中被排在数据序列的最右侧或者最左侧,因此,最终选择的数据序列中间位置上的值一般不是噪声点值,由此便可以达到抑制噪声的目的。

取某种结构的二维滑动模板,将模板内像素按照像素值的大小进行排序,生成单调上升(或下降)的二维数据序列。二维德中值滤波输出为

( 2-2-2-2 )

其中,f(x,y),g (x,y)分别为原图像和处理后的图像,w 二维模板,k ,l为模板的长宽,Med 为取中间值操作,模板通常为3 3 、5 5 区域,也可以有不同形状,如线状、圆形、十字形、圆环形。

2.4 本章小结

本章主要介绍了图像几何畸变校正和图像噪声抑制两种图像预处理.

第三章图像配准算法

3.1 图像配准的概念

图像配准简而言之就是图像之间的对齐。图像配准定义为:对从不同传感器或不同时间或不同角度所获得的两幅或多幅图像进行最佳

匹配的处理过程。为了更清楚图像配准的任务,我们将图像配准问题用更精确的数学语言描述出来。配准可以用描述为如下的问题:

给定同一景物的从不同的视角或在不同的时间获取的两个图像

I ,I 和两个图像间的相似度量S(I ,I ),找出I ,I 中的同名点,确定图像间的最优变换T, 使得S(T(I ),I )达到最大值。图像配准总是相对于多幅图像来讲的,在实际工作中,通常取其中的一幅图像作

为配准的基准, 称它为参考图, 另一幅图像, 为搜索图。图像配准的一般做法是,首先在参考图上选取以某一目标点为中心的图像子块,并称它为图像配准的模板,然后让模板在搜索图上有秩序地移动,每移到一个位置,把模板与搜索图中的对应部分进行相关比较,直到找到配准位置为止。

如果在模板的范围内,同一目标的两幅图像完全相同,那么完成图像配准并不困难。然而,实际上图像配准中所遇到的同一目标的两幅图像常常是在不同条件下获得的,如不同的成像时间、不同的成像位置、甚至不同的成像系统等,再加上成像中各种噪声的影响,使同一目标的两幅图像不可能完全相同,只能做到某种程度的相似,因此图像配准是一个相当复杂的技术过程。

3.2 基于区域的配准

3.2.1 逐一比较法

设搜索图为s 待配准模板为T ,如图3.1所示,S 大小为M N,T 大小为U V,如图所示。

图3.1搜索图S 与模板T 示意图

逐一比较法的配准是:

在搜索图S 中以某点为基点(i,j),截取一个与模板T 大小一样的分块图像,这样的基点有(M-U+1) (N-V+1)个,配准的目标就是在(M-U+1) (N-V+1)个分块图像中找一个与待配准图像最相似的图像,这样得到的基准点就是最佳配准点。

设模板T 在搜索图s 上移动,模板覆盖下的那块搜索图叫子图S ,(i,j)为这块子图的左上角点在S 图中的坐标,叫做参考点。然后比较T 和S 的内容。若两者一致,则T 和S 之差为零。在现实图像中,两幅图像完全一致是很少见的,一般的判断是在满足一定条件下,T 和S 之差最小。

根据以上原理,可采用下列两种测度之一来衡量T 和S 的相似程度。D(i,j)的值越小,则该窗口越匹配。

D(i,j)=

或 [S (m,n)-T(m,n)] (3-1)

D(i,j)= [S (m,n)-T(m,n) (3-2)

或者利用归一化相关函数。将式(3-1)展开可得:

D(i,j)= [S (m,n)] -2 S (m,n)*T(m,n)+ [T(m,n)] (3-3)

式中等号右边第三项表示模板总能量,是一常数,与(i,j)无关; 第一项是与模板匹配区域的能量,它随((i,j)的改变而改变,当T 和S 匹配时的取最大值。因此相

关函数为:

R(i,j)= (3-4) 当R(i,j)越大时,D(i,j)越小,归一化后为: R(i,j)= (3-5)

根据Cauchy-Schwarz 不等式可知式(3-5)中0 R(i,j) 1,并且仅当值S (m, n)/T (m, n)=常数时,R(i,j)取极大值。

该算法的优点:

(1)算法思路比较简单,容易理解,易于编程实现。

(2)选用的模板越大,包含的就越多,匹配结果的可信度也会提高,同时能够对参考图像进行全面的扫描。

该算法的缺点:

(1)很难选择待配准图像分块。因为一个如果分块选择的不正确,缺少信息量,则不容易正确的匹配,即发生伪匹配。同时,如果分块过大则降低匹配速度,如果分块过小则容易降低匹配精度。·

(2)对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理,因此对照片的拍摄有严格的要求。

3.2.2 分层比较法

图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt 和Adelson 首先提出的,其早期主要用于图像的压缩处理及机器人的视觉特性研究。该方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大) 的子图像放在下层,低分辨率(尺寸较小) 的图像放在上层,从而形成一个金字塔形状。

在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。

算法的具体实现步骤如下:

(1)将待匹配的两幅图像中2 2邻域内的像素点的像素值分别取平均,作为这一区域(2 2)像素值,得到分辨率低一级的图像。然后,将此分辨率低一级的图像再作同样的处理,

也就是将低一级的图像4 4邻域内的像素点的像素值分别取平均,作为这一区域(4 4)点的像素值,得到分辨率更低一级的图像。依次处理,得到一组分辨率依次降低的图像。

(2)从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹

配位置是不精确的。所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。依次进行下去,直到在原始图像中寻找到精确的匹配位置。

算法的优点:

(1)该算法思路简单,容易理解,易于编程实现。

(2)该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。

算法的缺点:

(1)算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。

(2)对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。

3.2.3 相位相关法

相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。相位相关度法思想是利用傅立叶变换的位移性质,对于两幅数字图像s,t ,其对应的傅立叶变换为S,T ,即:

S=F{s}= e T=F{t}= e (3-6)

若图像s,t 相差一个平移量(x ,y ),即有:

s(x,y) = t(x-x ,y-y ) (3-7)

根据傅立叶变换的位移性质,上式的傅立叶变换为:

S( )=e T( ) (3-8)

也就是说,这两幅图像在频域中具有相同的幅值,只是相位不同,他们之间的相位差可以等效的表示为互功率谱的相位。两幅图的互功率谱为:

=e (3-9)

其中*为共扼符号,表示频谱幅度。通过对互功率谱式(3-9)进行傅立叶逆变换,在((x,y)空间的(x ,y ),即位移处,将形成一个脉冲函数,脉冲位置即为两幅被配准图像间的相对平移量x 和y

式(3-9)表明,互功率谱的相位等价于图像间的相位差,故该方法称作相位相关法。

相位相关度法的优点:

(1)该算法简单速度快,因此经常被采用。对于其核心傅立叶变换,现在己经出现了很多有关的快速算法,这使得该算法的快速性成为众多算法中的一大优势。另外,傅立叶变换的硬件实现也比其它算法容易。

(2)该算法抗干扰能力强,对于亮度变化不敏感。

相位相关度法的缺点:

(1)该算法要求图像有50%左右的重叠区域,在图像重叠区域很小的时,算法的结果很难保证,容易造成误匹配。

(2)由于Fourier 变换依赖于自身的不变属性,所以该算法只适用于具有旋转、平移、比例缩放等变换的图像配准问题。对于任意变换模型,不能直接进行处理,而要使用控制点方法,控制点方法可以解决诸如多项式、局部变形等问题。

3.3 基于特征的配准

3.3.1 比值匹配法

比值匹配法算法思路是利用图像中两列上的部分像素的比值作为模板,即在图像T 的重叠区域中分别在两列上取出部分像素,用它们的比值作为模板,然后在搜索图S 中搜索最佳的匹配。匹配的过程是在搜索图S 中,由左至右依次从间距相同的两列上取出部分像素,并逐一计算其对应像素值比值; 然后将这些比值依次与模板进行比较,其最小差值对应的列就是最佳匹配。这样在比较中只利用了一组数据,而这组数据利用了两列像素及其所包含的区域的信息。

该算法的具体实现步骤如下:

图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法] 第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR )成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR 从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说

360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和 仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键 环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术

常见的高效记忆方法及记忆规律

多见的高效记忆方法及记忆规律 多见的高效记忆方法 规律记忆法 事物是有规律的,掌握其规律,好理解,易记忆,能达到事半功倍的效果。 英语词汇记忆中,同学们可以根据构词规律,把某些单词分为词根、前缀、后缀来记忆,往往能很快记住单词。学物理时,掌握能量守恒和转化的原理,对理解力学、热学等例外运动形式有着共同的意义,也便于记忆。 系统记忆法 把需要记忆的知识放在整个知识系统中去理解、去记忆,而不是孤立地记单个事物。 心理学家作过试验,让学生读80个独立的词,读80遍后才能记住,并且很简易遗漏和颠倒。但是,读由80个词组成的一首诗,8遍就能背熟。同理,同学们要记住英语单词,记忆语文中的柔美词句,不妨放在课文中去记忆。 实验记忆法 中学物理、化学中有许多实验。这些实验有助于同学们对学科概念、定理、公式的理解。同时,学生观察实验,亲自操作,能激发兴趣,集中注意力,因此,对学习内容印象深刻,因而记忆牢靠。可见实验记忆是记忆的主要方法。 协同记忆法 把眼、耳、口和手等几个感觉器官都动员起来,集中记忆一个目标,往往会在脑子里留下比较牢靠的记忆。实践证明,边读边写,手脑并用,比单独用脑记忆得牢;而视、听、读、写并重,效果更好。 多见的记忆规律

1.时间xx 研究表明,每次信息的重复输入,其维持记忆的时间是各不相同的。以外语单词记忆为例,第一次可能几秒钟;第二次、第三次就可能由几分钟到几小时;再重复就能几天,甚至几个月。重复次数越多,记忆时间就越长。 2.数量xx 当需要记忆的材料数量偏大时,会给记忆带来困难。研究表明,在这种情况下,把记忆的组织合适分散成若干小单元后,再依次存贮,记忆的效果就可能好些。 3.联系xx 认识的循序渐进规律,揭示了新旧知识之间的内在联系。 任何新知识的获得都是由原来知识发展、衍生或转化而来的。 所以,对新信息的记忆,通过和原有知识的各种形式的联想(接近联想、类似联想、对比联想、因果联想等),形成新、旧知识之间有机联系的系统,是有利于知识储存的。 4.转化xx 记忆是一个不断巩固的过程。由瞬时记忆到短时记忆再 到长期记忆有一个转化过程;由感知保持到理解、到衍生新知也有一个转化过程。这个过程是一个由量变到质变的过程,质变之后外来信息就能长期、牢靠地保存在脑海中。 5.干涉xx 当一个新的信息输入后,它与原有的知识储备之间会产生一种相互干扰。一是前后信息互相加强,称为“正干涉”;二是前后信息互相干扰,称为“负干涉”。正干涉有利于记忆,负干涉则对记忆起抑制作用,所以,同学们在学习时要充分利用正干涉而避免负干涉。 6.强化xx

记忆的基本原理与训练方法

记忆的基本原理1、资料压缩 主要是一个左脑的过程。我们在进行记忆之前,对资料进行分类,整理,归纳,总结,浓缩。 这是一个信息压缩的过程。把信息中的水份挤掉。 事实上,现在的科技越来越发达,手上电脑的普及也不会太久了。光是记知识,意义并不是太大。学习记忆术,是为了知识的运用。资料压缩就是为了把握信息中的精义。方便随时运用。 主要的工具就是导图。很多朋友都知道这个工具的。这是第一。 我们会发现有些事情我们容易记得,有些不易记得。 比如,今天我们看到一个人在身边走过,可能没啥印象。转身就忘了。可是,如果有一只恐龙在你身边走过。你就记得了。 所以,记忆术的第二个原理,就是把那些不好记的知识,转化成容易记忆的,让我们记忆深刻的信息。 A,一堆杂乱的资料,转化成有序的,有通顺的逻辑结构的。 B,一些抽象的资料,转化成一些有图像的,一看就有印象的资料。 C,一些让人看着晕晕欲睡的资料,转化成一些与性,美女,美食,音乐,欢乐……有关的。 第一原理是不断压缩,简化,减轻大脑的工作量。 第二原理是不断转化,整理,顺应大脑的工作习惯。

这就是理解的现代记忆术的基本原理。 件等枯燥乏味的东西,更需要循环往复地记忆。 ②早晚记忆。根据心理学原理,早晚记忆分别只受“倒摄抑制”和“前摄抑制”的单项干扰,因而记忆效果较好。 ③读写记忆法。边说边记,多种分析器的协同合作也是提高记忆成效的重要方法。这种方法特别适合于记字词、诗词、外文单词等。 ④间隔记忆方法。读一本书,学一篇文章,最好分段交替进行记忆,记忆时间不宜过分集中。 ⑤概要记忆法。在一般不可能把所有的内容和细节都记下来的场合,如听报告、故事,看电影、小说,可把其中心、梗概、主题记住;或先记一个初略的框架,然后再设法回忆补充。 ⑥选择记忆方法。古人云:“少则得,多则惑。”读书学习都要抓住其中的重点、难点和关键。记忆的内容有所选择,不要“眉毛胡子一把抓”,更不要“拣了芝麻,丢了西瓜”。 ⑦趣味记忆方法。“热爱是最好的老师。”一个学生倘若对某一门学科特别感兴趣,其学习成绩也往往较好。 ⑧运用记忆法。记忆是建立联系,运用则是巩固联系的最有效手段。我们一定要把所学到的东西运用到实践中去。在运用中加深理解,巩固记忆。 10个增强记忆的训练方法

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

记忆的基本规律

十大记忆规律 编著严泽绵 每个人记忆事物的方法是各种各样的。对于同一事物的记忆,不同的人可以采用不同的方法,这在某种程度上和他的知识背景和已建立起来的知识结构体系具大很大的关系。但这并不排除记忆的一些基本规律的存在,对于下面的一些关于记忆的基本规律的掌握,每个志立于从知识的土壤中吸取养分的人来说,其帮助是无容质疑的。 一.兴趣是记忆的前提 你一定有过这样的体会,当你兴致勃勃地观看一场精彩的足球赛后,过了很久还能清楚地回忆起这场球赛各方队员的表现及进球情况,甚至一此细节也历历在目。同样,当你对某一学科发生兴趣的时候,你不仅能很好地理解该学科的内容,而且很快容易记住它。为什么会这样呢?这是因为你对自己所感兴趣的事物采取一种积极的态度,其情绪达到了一种最佳的接受信息的准状态:轻松、愉快而注意力高度集中,这样你可以对周围的喧嚣听而不闻,视而不见,你的全部智能会集中于一点,并且乐此不疲。 当然,我们学习的并不都是自己感兴趣的东西,那么,对这此不感兴趣的东西,我们又如何来建立起自己的兴趣和培养学习的热情呢? 首先,你不妨思考一下为什么要学习它,这里你一定会找到充足的理由来,比如:为了应付考试,为了升学,为了将来找到一份好的工作,为了实现自己的梦想,造福人类……。那么,你就想象一下,你通过学习达到这些目的后的美好情景吧,它一定会使你激动不已,充满快乐。如果是这样的话,你就不妨经常对自己说:学习是艰苦一点,但没有今日艰苦的学习,那有明天成功的喜悦?慢慢地,你就会发现,其实,战胜艰苦本身就是一件有趣的事。同学们有过冥思苦想之后成功地解答一题几何题的体会吗?那种心情的愉悦和舒坦,恐怕对于那些在困难面前畏缩不前的人来说,是永远也不会得到的。如果你还没有这种体会,你就试一试吧,它会使你的学习充满欢乐。 其次,要相信兴趣是可以培养的。这主要决定于你对待事物的态度。如果你用一种积极乐观的态度对待学习,你就会觉得学习并不是一件艰苦的事,而是那样的充满了快乐,因为通过学习,许多人类和自然的秘密在你面前揭开了神秘了面纱,智慧的大门向你敞开了,你的心灵得到了充实。加上你在该学科成功的体验,你的兴趣就一定会大大增强。为什么我们对某些学科会越学越有趣而对另外的一些学科会越学越没趣呢?同学们,你不妨用对待有趣学科的态度来对待那些无趣的学科,试试看。当然,兴趣是与成功的体验相伴随的。如果你在付出了艰苦的劳动之后,得不到成功的喜悦,或者没有达到你预想的目标,你还会一如既往地努力吗?这时,希望你能分析一下,没有成功的原因,你的方法是否恰当?你是否比其它同学更努力?请所定的目标与自己的实际相符吗?请相信:一分汗水,必有一分的收获! 二.理解是记忆的基础 我们在学习中发现,有些知识我们如果很好地理解了它,就无需有意的去记忆,我们不仅能够记住而且记得很牢。这是因为理解有助于记忆。 为了证明理解对记忆的作用,艾宾浩斯曾做过这样的一个实验,他工学生们分别去记忆一些无意义的音节和有意义的音节,并将记忆的效果进行比较。结果,他在实验中发现:识记12个无意义的音节,平均需要复习16.5次,识记36个无意义的音节要复习54次,而为了识记含有480个音节的六节诗,只需要复习大约8次就能背诵。 理解在记忆中的作用经常使我们产生了许多误解,有人说:数理化知识不需记忆就是误解之一。在学习数理化知识时,我们确实存在着这样一种情况,如果我们对某一知识很好地理解了,不仅做到了知其然,而且知其所以然。我们就不需再花时间去进行记忆,对于那些理解

大脑中记忆的原理

大脑中记忆的原理 记忆的生理本质: 人类大脑内在数十亿个神经细胞,它们相互之间通过神经突触相互影响,形成极其复杂的相互联系。记忆就是脑神经细胞之间的相互呼叫作用,其中有些相互呼叫作用所维持时间是短暂的,有些是持久的,而还有一些介于两者之间。 记忆的形成原理: 当一个脑神经细胞受到刺激发生兴奋时,它的突触就会发生增生或感应阈下降,经常受到刺激而反复兴奋的脑神经细胞,它的突触会比其它较少受到刺激和兴奋的脑细胞具有更强的信号发放和信号接受能力。当两个相互间有突触邻接的神经细胞同时受到刺激而同时发生兴奋时,两个神经细胞的突触就会同时发生增生,以至它们之间邻接的突触对的相互作用得到增强,当这种同步刺激反复多次后,两个细胞的邻接突触对的相互作用达到一定的强度达到或超过一定的阈值,则它们之间就会发生兴奋的传播现象,就是当其中任何一个细胞受到刺激发生兴奋时,都会引起另一个细胞发生兴奋而,从而形成细胞之间的相互呼应联系,这就是即记忆联系。 说明:短期记忆脑细胞在受到反复刺激时,并不发生突触增生,而是发生突触感应阈下降,这种下降时短暂的,所以不能维持太长时间;而惰性记忆细胞则以突触增生为记忆基础,因而维持记忆的时间较长。 脑神经元的交互作用: 神经细胞之间存在四种基本相互作用形式: 单纯激发:一个细胞兴奋,激发相接的另一细胞兴奋。 单纯抑制:一个细胞兴奋,提高相接的另一细胞的感受阈。 正反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地降低前者的兴奋阈,或回输信号给前者的感受突触。 负反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地提高前者的兴奋阈,使前者兴奋度下降。多由三个以上细胞构成负反馈回路 由于细胞的交互作用,记忆会受到情绪、奖励、惩罚等的影响。 脑细胞的记忆分工: 人脑内存在多种不同活性的神经细胞,分别负责短期、中期、长期记忆。

图像拼接论文

基于特征点的图像拼接算法研究指导教师: 学生姓名:学号: 专业:计算机技术 院(系):信息工程学院 完成时间:2013年11月

摘要: 图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接的过程由图像获取,图像配准,图像合成三步骤组成。其中图像配准是整个图像拼接的基础。本文研究了基于特征图像配准算法。 利用基于特征Harris角点检测算法提取出初始特征点对,实现实现特征点对的精确匹配。最后用加权平均对实现图像融合。实验证明该算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。同时该算法准确率高,鲁棒性强,具有较高的使用价值。 关键词::图像拼接图像配准特征点图像合成

Abstract: Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other,and finally builds a seamless and high quality image which has high resolution and big eyeshot.The image mosaic process consists of the following steps.Image acquisition,image registration,image fusion.fusion.Image registration is the important foundation of image mosaic.This article has studied a image registration algorithrm feature-based image registration algorithm. Firstly,corners are extracted using improved Harris operator to extract the initial feature point pairs.Then,the correct matching feature point pairs are used to realize the image registration.Finally,use the Weighted Average Fusion Rule to fuse the images.The experiment results indicate this algorithmhas better registration results under a variety of conditions such as different light,bigger rotation and repetitive texture.At the same time,this algorithm has good effect in image registration,high accurate rate,strong robustness,higher use value. Key words:Image mosaic Image registration Feature points Image fusion

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

记忆的7大规律 6个要素 3个境界

记忆的7大规律6个要素3个境界 不记则思不起。记忆对于工作和生活的重要性都是不言而喻的。笔者认为,记忆是有技巧的,记忆是有规律的。哲学不是说吗,世界是发展的,发展是规律的,规律是可以被掌握的。只要我们在认知上了解记忆的规律,运用规律。在学习过程中,吸收知识的效果就会更好。在工作中,思考的质量就会更高。文章略长,试着耐心读完,笔者保证不会让你失望。 一、记忆的六要素 1.物象是记忆的根本。这和认识论所说的原理是相通的,即理性的认识是建立在感性的基础上的。 2.理解是记忆的基础。倘若只记忆而不理解,就像吃食物而不咀嚼,囫囵吞枣,不能消化,毫无益处。 3.联想是记忆的关键; 4.方法是记忆的途径。记忆讲究方法,否则就会陷入到死记硬背的死循环当中。 5.奇特是记忆的秘诀; 6.动脑是记忆的灵魂。 二、记忆的七大规律 ① 主体律: ⑴记忆的时间越长,记忆的效果越好。 ⑵记忆的目的越明确越具体,记忆效果越好。 ⑶在记忆的活动中自信心越强,记忆的效果越好。

⑷在记忆的过程中,注意力越集中,记忆的效果越好。 ⑸在记忆的活动中,动脑思考越积极,记忆效果越好。 ② 客体律: ⑴识记有意义的材料,比识记无意义的材料效果好。 ⑵识记直观形象的材料比识记枯燥抽象的材料效果好。 ⑶记忆有节奏、有韵律的材料,比记忆无节奏、无韵律的材料效果好。 ⑷识记系统条理的文章比识记杂乱无章的文章的效果好。 ⑸识记使人感兴趣的材料比识记使人厌倦的效果好。 ③ 方法律: ⑴意义记忆优于机械记忆。 ⑵形象记忆易于抽象记忆。 ⑶奇特记忆优于一般记忆。 ④ 干涉律: ⑴在记忆过程中,识记材料的首尾部分易记,而中间部分易遗忘。 ⑵在记忆过程中,两种材料相类似,会影响记忆效果。 ⑶识记两种材料或一段较长的材料时,中间安排间隔时间的记忆效果好。 ⑤ 强化律: ⑴在记忆活动中,各种感官同时参与比单一感官参与的记忆效果好。 ⑵在识记材料达到熟记后,适当增加学习次数,记忆保持效果好。

记忆原理之记忆从低到高的四个境界

记忆原理之记忆从低到高的四个境界 记忆从低到高的四个境界 1、声音记忆:死记硬背。 2、逻辑记忆:只需记住规律不记而记; 3、图像记忆:快速高效的记忆方式; 4、图像记忆+逻辑记忆 A. 声音记忆死记硬背最常用却是效率最低的方法 一般人通常用死记硬背的记忆方式记忆其实说白了就是声音记忆。无论我们是记忆手机号、记人名、还是记英语单词、背诵文章绝大多数人都是在对他们自己的声音进行不断地强化记忆。你现在就可以尝试着回忆一个手机号、或者是回忆一个单词、回忆一句歌词、诗句也一样你就可以很清楚地感觉到自己其实是在回忆一些声音的排列顺序。 声音(如果不加上优美旋律的话)本来就是一些毫无意义的音节我们记忆大部分资料都是通过诵读或默读的方式去记忆的即使我们通过默写的方式来记忆英语单词其实也是在帮助我们默读。如果我们在这样背诵的时候仅仅不断重复着记忆自己的声音而没有同时进行生动、丰富的相象那么就是纯粹的死记硬背这样的记忆效率是非常低下的。 B、逻辑记忆不记而记

逻辑记忆只是面对一些非常有规律的记忆材料的时候才会有用。当我们要记这些有规律的材料时只要它有着并不很复杂的规律那么无论这些材料的内容是多还是少我们所需要记忆的仅仅是其中所蕴含的规律。 因此逻辑记忆方法在面对那些非常有规律而又非常大量的记忆材料时就显示出其强大的威力我们根本不需要管这些资料到底有多少只需要记住那简单的规律就可以了。在回忆或者应用的时候我们只需要根据这个简单的规律就可以把所有的资料都准确无误地复述出来。 例如:记忆下面这组数字: 2、4、6、 8、 10、12、14; 1、4、7、10、15、18、22; 4、5、6、7、8、9、10; 只要稍微看一下找出排列的规律那么根本就不需要一个个数字去记而只需要记住这些规律就行了。特别是这些数字非常多但规律又很简单的时候逻辑记忆就能够充分显示出它的优势来了。当然逻辑记忆仅限于记忆那些非常有规律的资料而大部分情况下记忆的材料都是没有规律的这个时候逻辑记忆就派不上用场了。 C、图像记忆 快速高效的记忆方式 目前社会上流传的各种快速记忆方法基本上都是属于图像记忆变种或者结合图像记忆的。图像记忆的基本原理就是把所有需

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

图像匹配与拼接方法

图像匹配与拼接 分匹配和拼接两部分 一、匹配 当然匹配的方法,有sift,surf什么的,这里主要就介绍一下我自己的方法啦! 特征点提取是必须的,不然搜索范围太大哇!并且可能不可靠,所以特征点提取是必须的。什么点适合做特征点呢?这方面的论文很多啦,主要还是看你用什么方法匹配了,如果是用互相关作为相似性准则的话,那自相关系数随各个方向变化大的点就适合作特征点了,当然还要考虑稳定性,即特征点应该不太受光照、噪声、缩放、旋转等的影响,这样的才是好的特征点。当然,如果确定了应用坏境,不一定要满足不受上四个因素影响的,比如平行的双目匹配、全景图的匹配等,具体问题具体分析吧!角点特征是个人比较喜欢的特征。这里我自己定义了一种局部特征,效果还行,匹配采用互相关为准则的匹配,大概效果如下: 目测这几个匹配点还是正确的哇!在一些应用中,可能需要的匹配点数相当多,这就需要较密集的匹配了。密集的匹配可以根据初始的匹配结果估计搜索范围,这可以加速搜索,同时也要提取更多的特征点呀!话不多说了,下面是密集的匹配:

虽然这样的密度对于三维重构来说还不够,但对于一般的图像拼接来说足够了。匹配完了,下面就要将第二步了。 二、矫正 匹配好两幅图像了,接下来干啥呢?把它们对准呗。可惜了,两幅图像之间不但存在平移,还存在旋转缩放什么的,更复杂的,可能还存在所谓的3D变换,那就复杂啦!不管怎么样,所谓的对准,也就是矫正,总是基于一定的模型的,即基于相机拍摄两幅图像的相对姿态。对于全景图拼接(个人觉得是最简单的且较实用的拼接),需要根据相机焦距或者视场角投影到柱面上,然后两幅图像间的位置就只有一维的平移关系了。但是这对拍摄的相机也是有要求的,就是要保证拍摄两幅图像时,物防焦点是重合的,这样才能根据稀疏的几个点确定所有重叠区域内点的相对位置呀!但实际中很难做到物方焦点重合,比如数码相机或者所谓的智能手机的全景图拍摄,一般人都是拿着相机或者手机绕人旋转,而非绕物方焦点旋转拍摄的,这样拼接起来是绝对有误差的呀!特别是拼接近景,误差就更大了,远景还好。怎么克服这个缺点呢?简单的改进方法就是绕着摄像头旋转吧,虽然这也不是严格绕物方焦距旋转,但起码误差小得多啦,拼接的效果当然也就好得多了,可以试一试哦! 不扯了,第二种模型就是认为两幅图像间存在的变换关系是有2D旋转、缩放、平移的,可以通过一个旋转、缩放、平移矩阵来矫正,这个也不难,但是应用范围却相当有限,不详说了。 第三种模型就是不用模型,或者说认为两幅图像间的对应点存在的是一种线性变换关系,这样只要解一个线性方程组就可以了,似乎也挺简单的。但可惜的是,不是任给的两幅图像间都只存在线性变换呀!它可能是一个3D的线性变换,那就麻烦了,这个必须需要密匹配呀!不然就一定是有误差的,即不能通过稀疏的匹配点来矫正两幅图像的所有对应点的。 还有更多的模型,比如各方位的全景图,需要投影到球面上的哇!不过这个模型也不难。最难的当然是拍摄两幅图像时,相机不同,相机姿态也不同了,这个是很有挑战的,我也很惧怕这个。下面展示三种矫正结果: 1、2D线性模型: 2D矫正,认为匹配点之间存在线性变换,X=ax+by+c,Y=dx+ey+e这样的模型,业内称之放射变换,其中x,y是第一幅点的坐标,X,Y是对应的第二幅图像中的点坐标,使用最小二乘法计算a、b、c、d、e、f,第二幅图相对于第一幅图矫正的结果就是这样的了

简述如何运用记忆规律

1、简述如何运用记忆规律,促进知识保持? (1)深度加工知识(1分)(2)有效运用记忆术(1分)(3)进行组块化编码(1分) (4)适当过度学习(1分)(5)合理进行复习(1分) 2、当前我国基础教育课程改革中;课程任务和课程实施方面的改革目标是什么?改变课程过于注重知识传授的倾向;强调形成积极主动的学习态度;使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。 改变课程实施过于强调接受学习、死记硬背、机械训练的现状;倡导学生主动参与、乐于探究、勤于动手;培养学生搜集和处理信息的能力;获取新知识的能力;分析和解决问题的能力以及交流与合作的能力。 3、试论掌握知识和发展智力相统一的规律。 (1)掌握知识是发展智力的基础;不能脱离知识的传授和掌握凭空发展智力。 (2)智力的发展是学生进一步掌握知识的条件和工具;智力发展水平的高低直接制约着学生掌握知识的深度、广度和速度。(3)知识多少和智力水平高低不一定成正比。我们要求在教学过程中向学生传授知识的同时;有计划、有目的、自觉地发展学生智力。 4、请说明教育目的同培养目标的关系。 首先,教育目的是一个国家对其各级各类学校教育的总体要求,而培养目标是根教育目的制定的某一级或某一类学校或某一个专业人才培养的具体要求,是国家总体教育的在不同教育阶段或不同类型学校、不同专业的具体化;其次,培养目标的确定必须建立在教育目的的基础上,而教育目的又必须通过各级各类学校、各专业的培养目标而实现。 5、简述学校教育产生的条件是什么 (1)社会生产水平的提高,为学校的产生提供了必要的物质基础; (2)脑力劳动与体力劳动的分离,为学校产生提供了专门从事教育活动的知识分子 (3)文字的产生和知识的记载与整理达到了一定程度,使人类的间接经验得以传递 (4)国家机器的产生,需要专门的教育机构来培养官吏和知识分子。 6、联系实际,谈谈加强教师职业道德建设的意义与具体内容。 教师职业道德,简称师德,是指教师在教育教学活动中应当遵循的道德准则和行为规范。加强教师职业道德的建设,它的意义是:1、有利于提高教师的素质。2、有利于强化教师的事业心和责任感。3、有利于净化教育行业风气,推动社会主义精神文明建设。4、有利于推动素质教育的实施。 7、如何理解教育的经济功能 (1)教育能把可能的潜在的生产力转化为直接现实的生产力,是劳动力再生产和提高的重要手段之一; (2)教育是提高经济效益的重要前提; (3)教育是经济发展的重要因素,它能够为社会带来巨大的经济价值: (4)教育还可以生产新的科学知识、新的生产力。 8、能力与知识、技能的关系。 (1)能力与知识、技能的联系: ①知识、技能是能力形成的基础;并推动能力的发展; ②能力制约知识、技能的掌握水平;影响知识、技能的学习进度。 (2)能力与知识、技能的区别: ①知识是认知经验的概括;技能是活动方式的概括;能力是心理水平的概括; ②知识、技能的掌握并不必然导致能力的发展;知识、技能的掌握只有达到熟练程度;通过广泛迁移;才能促进能力的发展。9.简述助人行为的促进策略。 (1)增强责任明确性与人际相互作用; (2)提供亲社会行为榜样; (3)将助人行为归因于利他动机; (4)运用社会影响策略; (5)进行助人行为的社会实践。 10、如何培养创造性思维? (1)激发好奇心和求知欲;培养创造性动机; (2)培养发散思维与集中思维相结合的能力; (3)培养与发展学生的直觉思维能力; (4)进行创造性的活动;培养创造性人格。 11、美育能促进教育目的实现,促进学生德智体全面发展。具体表现为: (1)美育可以促进学生共产主义道德品质的形成,它对于培养学生高尚的道德情操,陶冶心灵,树立正确的世界观具有特殊的功效。 (2)美育能促进学生智力发展,扩大和加深他们对客观现实的认识。 (3)美育具有怡情健身作用,可以增进身心健康,促进体育 12、简述认知差异的教育含义。 认知方式没有优劣好坏之分,只是表现为学生对信息加工方式的某种偏爱,主要影响学生的学习方式。我们必须根据学生认知差异的特点与作用,不断改革教学,努力因材施教。 首先,应该创设适应学生认知差异的教学组织形式。 其次,采用适应认知差异的教学方式,努力使教学方式个别化。 最后,运用适应认知差异的教学手段。 13、课程内容包括哪几个方面的知识?课程内容的具体表现形式有哪些? 课程内容包括:关于自然、社会和人的发展规律的基础知识;关于一般智力技能和操作技能的知识经验;关于对待世界和他人的态度的知识经验。 课程内容的具体表现形式有:课程计划、学科课程标准和教材。 14、简述马克思主义关于人的全面发展学说的主要内容。 ①旧式分工造成了人的片面发展;②机器大工业生产提供了人的全面发展的基础和可能;③社会主义制度是实现人的全面发展的社会条件,教育与生产劳动相结合是实现人的全面发展的惟一途径。 15、教学过程中贯彻直观性教学原则有哪些基本要求?

大脑(记忆)运作原理

为什么要采纳这样的学习方法呢? 一般人学习之所以低效,是因为不了解自己的大脑怎么运作。一旦你开始了解自己的大脑是怎么运作的,很快的,你就会发现学习是有套路的,而且你可以利用这套方法,大幅拉升自己的学习初速度。 在这里我先告诉各位五个结论: ?大脑并不擅长思考,而且大脑的思考是很缓慢的 ?多数的思考,并不是真的思考,而是调用过去记忆所组成的结果?人是利用已知的事务理解新的事物,但「理解」其实是「记忆」?没有重复的练习,不可能精通任何脑力活 ?题海战术以及填鸭教育,有时是必须的 1. 大脑并不善于思考 在这社会上我们最常嘲讽的一个现象:「大多数人是不用脑子思考的」。其实这真是事实! 你仔细想想,其实大脑真是用来思考的吗?如果你叫大脑随便做一则演算,其实大脑的演算,往往是比我们现在所发明的计算机来说,效率是极其低的。做个7 * 8的数学还行,但要是改个177*288的快速演算。就瞬间就当机了。 蜡烛、火柴、图钉 在这里,我举一个「大脑其实不善于思考」的例子。 一个空屋子里有一支蜡烛,一些火柴,和一盒图钉。目标是让点燃的蜡烛离地五英尺高,你已经尝试把蜡烛底部沾上蜡液,但还是沾不到墙上,怎样才不用手扶,让点燃的蜡烛离地五英尺高? 这一个题目,正常一般人在看到题目后,很少能在20 分钟内给出解决答案。 但是如果你把这个题目「具象化」,也就是真的生出这些设备,放在眼前。 你就会发现这道题目的答案其实并不难。你只要把图钉倒出来,把盒子用图钉钉在墙壁上,再把蜡烛黏在盒子里,就完成了这个任务。

大脑的「思考」特性 这个例子解释了「思考」的几个特性。 ?首先,大脑的思考是很缓慢的。 ?接着,思考是很费力的。大脑很难凭空想像出这个场景并运算出解答。甚至可能「完全答不出来」。 ?但是如果把大脑接上视觉系统与触觉系统。因为视觉系统与触觉系统进行了可靠的回传,大脑实质上是调用了其他地区可用的资源做了运算。就能迅速得出答案。 那么,既然思考那么费力。我们平时是怎么样不费工夫的做出日常生活中的各样决策? 习惯 答案是:习惯。 「习惯」就是「我们做过某件事的记忆回路」,大脑调用「过去的记忆」,让身体自动做出判断。 所以,在这里,我们要引出今天要介绍的第二条认知学事实: 大部分人做的决策,其实真不是基于大脑所做的思考,他们是「记忆」组成的结果 2. 多数的思考,并不是真的思考,而是调用过去记忆所组成的结果 大脑的运作原理是这样的: 接收到环境刺激=> 然后把决策放到工作记忆上=> 熟练之后烧到长期记忆中(事实性知识、过程性知识)。 ?工作记忆就是我们当前正在意识、思考的「工作区域」。 ?(以计算机比喻,就是电脑的内存。容量小,资料存在时间短,重开机就不见了。) ?长期记忆就是我们长久以来储存的事实性知识、经验。

相关文档
最新文档