三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系

三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系
三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系

收稿日期:2005-01-04 修改稿收到日期:2005-03-29

基金项目:国家自然科学基金项目(30370817,30471006);土壤与农业可持续发展国家重点实验室开放基金资助。

作者简介:邵兴华(1969—

),女,内蒙古人,博士研究生,主要从事土壤磷素化学研究。3通讯作者三种铁氧化物的磷吸附解吸特性以及

与磷吸附饱和度的关系

邵兴华1,章永松1,2

3

,林咸永1,2,都韶婷1,于承艳1

(1浙江大学环境资源学院,教育部环境修复与生态健康重点实验室,浙江杭州310029;2土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏南京210008)

摘要:采用三种人工合成铁氧化物(针铁矿、赤铁矿和水铁矿)比较了结晶态和无定形铁氧化物对磷的吸附—解吸特性以及与磷吸附饱和度的关系。结果表明,三种铁氧化物的磷吸附特性均可用Langumir 方程来描述,相关系数

均大于019,达到极显著水平。从磷最大吸附量(Q m )、吸附反应常数(K )和最大缓冲容量(MBC

)三项吸附参数综合考虑,水铁矿(无定形)对磷的吸附无论在容量还是强度方面均比结晶态铁氧化物针铁矿和赤铁矿大得多。水铁矿吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸;水铁矿的大量活性表面并没有表现出增加磷释放的作用。磷吸附饱和度有望作为评价土壤或铁氧化物磷吸附—解吸的强度和容量因子的一个综合指标。关键词:铁氧化物;磷;吸附—解吸;吸附饱和度

中图分类号:S15316+1 文献标识码:A 文章编号:1008-505X (2006)02-0208-05

Phosphorusadsorptionanddesorptionpropertiesofthreesyntheticironoxides

andtheirrelationtophosphorusadsorptionsaturation

SHAOXing 2hua 1,ZHANGYong 2song

1,2

3

,LINXian 2yong 1,2

,DUShao 2ting 1,YUCheng 2yan 1

(1MOE KeyLab.of Environ .Remediation and EcosystemHealth,College of Natural Resour .and Environ .Sci.,Zhejiang Univ.,

310029Hangzhou,China;2State KeyLab.of Soil and Sustainable Agri.,

Inst.of Soil Sci.,

CAS ,Nanjing 210008,China )

Abstract:ThedifferencesofPadsorption 2desorptioncharacteristicsofamorphousandcrystallineironoxidesandtheir relation toPadsorptionsaturationwerestudiedbyusingthreesyntheticironoxides.TheresultsshowedthatPadsorption propertiesofthesethreesyntheticironoxidescouldbedescribedbyLangumirequationwithacorrelationcoefficientlarger

than019beingstatisticalsignificantat1%level.ItwasfoundbycomprehensivelytakingQ m (maximumquantityofad

2

sorption

),K (adsorptionconstant )andMBC (maximumbuffingcapacity )intoaccount,ferrihydrate (amorphous )was muchlargerthancrystallineironoxides (goethiteandhematite )inbothintensityandcapacityofPadsorption.Pad 2

sorbedbyferrihydratewasmuchmoredifficulttobedesorbedthanthosebygoethiteandhematite.Thelargeactivesur 2facesofferrihydratecontributelittleonPdesorption.ItwassuggestedbyourresultsthatPadsorptionsaturationmightbe apromisingintegratedindexforestimatingtheintensityandcapacityofPadsorption 2desorptioninsoilsorironoxides.Keywords:ironoxide;phosphorus;adsorption 2desorption;adsorptionsaturation

铁氧化物是土壤结构体的胶结物质之一,不仅是这些土壤中最常见和含量较高的氧化物,而更重要的是它具有较高的活性,易随环境条件的变化而转变[1]。铁氧化物可变电荷表面对磷的固定是影响磷在土壤中的浓度、形态、化学行为和生物有效性的重要因素,有关研究一直是土壤化学领域里的热

点[2]。水稻土淹水过程中,氧化还原电位降低,是促使氧化铁活化的重要条件之一[1]。活化程度不同,形成的铁氧化物的颗粒大小和比表面积有很大的差异,势必引起磷吸附解吸特性的差异。章永松等人[3]研究发现,土壤中的结晶态氧化铁随淹水期明显下降,而无定形氧化铁急剧增加,并且在不同土层

植物营养与肥料学报2006,12(2):208-212

PlantNutritionandFertilizerScience

中的分布状况也发生了变化。磷吸附与无定形氧化铁的增加存在密切的相关关系,说明土壤在淹水过程中,氧化铁在种类、数量、形态和分布等方面的变化是导致淹水减低土壤磷有效性的重要原因。苏玲等[4]研究了干湿交替过程中土壤中氧化铁形态的变化以及对土壤磷吸附和解吸的影响,结果也证明淹水使土壤中结晶态氧化铁含量明显减少,无定形氧化铁和土壤对磷的吸附量急剧增加,磷解吸下降;而落干过程则使之发生相反的变化。然而,Patrick 和Khalid等[5-6]指出,在淹水条件下,由结晶度极差的无定形铁氧化物引起的大量活性表面具有双重作用,即既可增加对磷的吸附,也能为磷的释放增加表面。同时,在还原条件下,土壤磷的释放与草酸可提取的铁氧化物有关。Shahandeh等人[7]得出的结论是,土壤中草酸可提取的铁氧化物数量越大,磷吸附和磷释放的有效活性表面就越大,淹水土壤中磷有效性与土壤中与草酸可提取态铁、锰结合的磷关系很大[8]。因此,无定形铁氧化物对磷吸附与解吸的双重作用究竟以那种起主导则成了淹水影响土壤磷有效性的一个关键。为此,采用人工合成的三种铁氧化物(针铁矿、赤铁矿和水铁矿),通过研究它们对磷吸附与解吸的特性,试图进一步探明淹水影响磷有效性的机制,并提出判断影响土壤磷有效性的新指标。

1 材料与方法

111 供试铁氧化物的合成

试验选择水稻土中最常见的针铁矿、赤铁矿和水铁矿三种铁氧化物作为试验材料,按照Schwert2 mann和Cornell[9]的方法合成。具体方法如下: 11111 针铁矿的人工合成 向2L聚丙烯容器中倒入100mL新鲜配制的5mol/LFe(NO3)3(未潮解的Fe(NO3)3?9H2O溶于去离子水),迅速加入180mL 1mol/LKOH,搅拌。迅速用去离子水稀释至2L,加盖,70℃下保持60h。抽去上清液,沉淀在25℃下透析除去剩余的OH-和NO-3,后者可用二苯胺检查。

11112 赤铁矿的人工合成 在2L聚丙烯容器中将40gFe(NO3)3?9H2O溶于500mL预热至90℃的去离子水,加入300mL预热至90℃的1mol/LKOH 沉淀水铁矿,加入50mL预热至90℃的NaHCO3,使水铁矿转化为赤铁矿,在加盖的聚丙烯容器中于90℃保持48h。抽去上清液,沉淀在25℃下透析除去剩余的OH-和NO-3。

11113 水铁矿的人工合成 将40gFe(NO3)3?9H2O 溶于500mL去离子水中,加入1mol/LKOH约330 mL,其中最后20mL逐滴加入,调节pH至7~8,剧烈搅拌,迅速离心洗涤除去电解质。

上述人工合成铁氧化物均经X-衍射分析鉴定,针铁矿和赤铁矿为结晶态氧化物,水铁矿为无定形氧化物。

112 铁氧化物的磷吸附与解吸试验

11211 吸附试验 称取针铁矿约95mg,赤铁矿约120mg,水铁矿约40mg于50mL塑料离心管中,加入30mL系列磷吸附液(磷浓度见表1,含0101 mol/L CaCl2,用KH2PO4配制)。25℃振荡1h,平衡23h,5000r/min离心10min,钼锑抗法测定上清液中磷含量。吸附曲线采用Langumir方程进行拟合。11212 解吸试验 吸附试验后的铁氧化物用无水乙醇悬浮洗涤,离心,弃上清,加入0101mol/LCaCl2 30mL,25℃振荡1h,再解吸23h,5000r/min离心10min,钼锑抗法测定上清液中磷含量。

表1 三种铁氧化物所用系列磷吸附液浓度

Table1 InitialPconcentrationusedinadsorptionexperimentforthreeironoxides

铁氧化物Ironoxide系列吸附液磷浓度InitialPconcentrationforadsorption(mg/L)

针铁矿Geothite051020406080100

赤铁矿Hematite051020406080100

水铁矿Ferrihydrite051020406080100120150180

2 结果与讨论

211 三种铁氧化物对磷吸附特性

图1是三种铁氧化物的等温吸附曲线。将供试的三种铁氧化物的磷吸附试验结果用一元Langmuir 方程C/Q=1/Q m K+C/Q m拟合,方程式中Q是单位铁氧化物的吸磷量,Q m是单位铁氧化物的最大吸磷量(Pμg/g),K是表示与结合能有关的常数。C是当吸附—解吸达到平衡时溶液中磷的浓度。直线斜率的倒数即为Q m值,常数项的倒数再除以Q m即得K

902

2期 邵兴华,等:三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系

图1 供试铁氧化物对磷的等温吸附曲线Fig.1 Pisothermaladsorptioncurveofthreeironoxides

值。三种铁氧化物的Langmuir方程分别为:

针铁矿C/Q=113332+01275C,R2=019891;

赤铁矿C/Q=113596+015249C,R2=019798;

水铁矿C/Q=010158+010236C,R2=019755。 从上述方程和由方程计算获得的吸附参数(表2)可以看出,Langmuir方程均能很好地拟合这三种铁氧化物对磷的吸附,拟合相关系数均在019以上,均达到1%显著水平。比较三种铁氧化物的磷吸附参数可清楚看出,赤铁矿对磷的最大吸附量(Q m)最小,其次是针铁矿,水铁矿对磷的Q m值最大,分别为针铁矿和赤铁矿的12倍和23倍。Schwertmann和Cornell[9]认为,水铁矿是一种无定形氧化物,是三种铁氧化物中活化度最高的,具有较大的比表面,因此其吸附容量比结晶度较高的针铁矿和赤铁矿要大得多。

吸附能常数K值是反映吸附能力大小的一个重要参数,K值越大,表明铁氧化物或土壤对磷酸根离子的吸附速率相对较快。表2看出,水铁矿吸附磷的速度比针铁矿和赤铁矿快得多。尽管赤铁矿的Q m值比针铁矿的要小,但吸附磷的速度则比针铁矿快。对于最大缓冲容量(MBC),Holford和Marting2 ly[10]等人认为,MBC是综合强度因子和容量因子两方面的一个参数。土壤的磷缓冲能力被定义为对土壤溶液浓度变化的一种对抗能力。本试验结果表明,针铁矿和赤铁矿的MBC差异不大,然而,水铁矿的MBC分别是针铁矿和赤铁矿的75倍和76倍,说明水铁矿对土壤溶液中磷浓度变化的缓冲能力比针铁矿和赤铁矿大得多。从图1的吸附曲线也可清楚地看出这一差异,当针铁矿和赤铁矿的吸附量达到015mg/g以上时,平衡液的磷浓度即开始明显升高,而水铁矿的吸附量需达到15mg/g以上。总之,从Q m、K值和MBC三项吸附参数综合考虑,水铁矿对磷的吸附无论在容量还是强度方面均比针铁矿和赤铁矿大得多。

表2 三种铁氧化物的磷吸附参数Table2P adsorptionparametersofthreeironoxides

铁氧化物Ironoxides 磷最大吸附量

Q m(Pμg/g)

吸附反应常数

K(mL/μg)

最大缓冲容量

MBC3(mL/g)

r

针铁矿Geothite3636140112384501101994533赤铁矿Hematite1905110123164411301989833水铁矿Ferrihydrite4504511017449335571101987733 3MBC=Q

m

?K

212 铁氧化物吸附磷的解吸以及与磷吸附饱和度的关系

图2是三种铁氧化物以磷吸附量与解吸量所作的解吸曲线。被吸附磷的解吸量均随磷吸附量的增加而增加,两者之间均呈指数函数关系。针铁矿、赤铁矿和水铁矿对磷的吸附量与解吸量之间的相关系数(R2)值分别为01988、01973和01929,均达极显著水平。从图2可以发现,三种铁氧化物的解吸曲线均呈现随吸附量增加解吸量先缓慢后急剧上升的趋势。然而,水铁矿发生磷解吸量急剧上升拐点时的

012植物营养与肥料学报12卷

图2 三种铁氧化物P吸附量与解吸量的相关方程

Fig.2 RelationshipbetweenPadsorptionanddesorptionofthreeFe-oxides

磷吸附量高达30mg/g左右,而针铁矿和赤铁矿只需2和115mg/g左右,这说明水铁矿吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸,即在本试验中结晶度极差的水铁矿并没有表现出大量活性表面也能为磷的释放增加表面这一作用。

通过计算各种铁氧化物解吸磷占吸附磷的百分比(表3),则可更清楚地发现,水铁矿所吸附的磷解吸率非常低,吸附起始磷浓度同样为100mg/L样品中被吸附磷的解吸率,水铁矿只有014%,而针铁矿和赤铁矿则分别高达12%和21%。目前认为,磷在氧化物表面的吸附主要以化学键形式与表面吸附位点键合,并有单基配位和双基配位两种形式[11]。通常磷酸盐浓度较低时,铁氧化物与磷形成双基配合物,难以解吸;当浓度较高时,则形成单基配合物,易于解吸。由此可以推测,水铁矿不但活性表面大,而且表面吸附点位与磷键合的形式很可能以双基配位为主,而针铁矿和赤铁矿与磷的结合方式则以单基配位为主,因而水铁矿在本试验范围内所吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸。

表3 不同铁氧化物吸附磷的解吸率

Table3 TheratioofdesorbedPfromadsorbedPbydifferentFe2oxides

针铁矿Geothite赤铁矿Hematite水铁矿Ferrihydrite

I A D D/A I A D D/A I A D D/A

501720100501735016501005018251176010020111 101116010090177100197010212120103152010040111 201168010382127201146011037106206158010100115 40216001137512540115601210131434013184010170112 60219501233719160116501285171266020171010250112 803120013621113280117301337191438026192010540120 100314501422121231001197014152110710032102011270140

12036192014591124

15043104016591153

18044173017371165

I:磷吸附起始浓度(InitialPconcentrationforadsorption,mg/L);A:吸附磷(AdsorbedP,mg/g);D:解吸磷(DesorbedP,mg/g);D/A:解吸磷/吸附磷(DesorbedP/AdsorbedP,%)。

Beauchemin和Simard[12]以及Kuo等人[13]认为,土壤磷的饱和度可作为磷潜在解吸能力的一个指标。这就提示我们在淹水条件下形成的无定形铁氧化物对磷的吸附与释放所表现的双重作用很可能与其磷吸附的饱和度有关。即当土壤中无定形氧化铁处于磷吸附饱和度较低水平时,其双重作用主要表现为对磷吸附表面的增加;而饱和度处于较高状态下,则表现为磷释放表面的增加。为此,我们提出了采用吸附饱和度进行判断的新设想,即以吸附量除以该铁氧化物的磷最大吸附量作为该点吸附平衡时

112

2期 邵兴华,等:三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系

的磷吸附饱和度,然后以磷吸附饱和度为横坐标,磷解吸量为纵坐标作图。从图3可以发现,在图2中三种不同铁氧化物解吸曲线变化趋势明显不同的情况在这里出乎意料地得到了统一,即三种铁氧化物的磷解吸量均表现为磷吸附饱和度在30%以下时,被吸附的磷几乎难以解吸;在吸附饱和度30%~70%范围内,解吸量开始随吸附饱和度的增大而缓慢增加;当吸附饱和度超过70%以后,磷解吸量开始急剧上升,即曲线的拐点均出现在磷吸附饱和度70%左右。故此我们推测,铁氧化物磷吸附饱和度在30%以下的磷吸附有可能属双基配位,此时铁氧化物活性表面主要表现为增强对磷的吸附作用;吸附饱和度在30%~70%范围内的磷吸附为单基配位与双基配位吸附的过渡区,在这一区域内铁氧化物活性表面对磷的吸附与解吸作用处于相对平衡

;而吸附饱和度超过70%的磷吸附属单基配位吸附,此时铁氧化物活性表面则主要表现为增加磷的解吸。在一般土壤中,土壤溶液中的磷浓度都较低,几乎不可能达到我们试验中吸附饱和度达到30%时吸附平衡液的磷浓度,除施肥点以外,在土体中铁氧化物活性表面很难有机会表现为增加磷解吸的一面。

图3 P 吸附饱和度与P 解吸的关系

Fig.3 RelationshipbetweenPadsorption

saturationandPdesorption

值得一提的是,以往磷的解吸量常用来作为评价土壤磷素供应状况的一个指标,其实磷的解吸量

主要反映的是供磷的强度,很难反映供磷容量。并且由于不同土壤或铁氧化物性质差异较大,故没有一个统一的指标。然而,吸附饱和度则包含了土壤或铁氧化物磷吸附—解吸的强度因子和容量因子,

不同性质的土壤或铁氧化物的磷素供应状况完全有可能用一个统一指标来评价。因此,磷吸附饱和度有望作为评价土壤磷素供应状况的一个理想指标,但具体指标还有待通过进一步试验得出。参考文献:

[1] 陈家坊,何群,邵宗臣.土壤中氧化铁的活化过程的探讨[J].土

壤学报,1983,20(4):387-392.

ChenJF,HeQ,ShaoZC.Studyontheactivationprocessofiron oxidesinsoil[J].ActaPedologicaSinica,1983,20

(4):387-3921

[2] 刘凡,介晓磊,贺纪正,等.不同pH 条件下针铁矿表面磷的配

位形式及转化特点[J].土壤学报,1997,34:367-373.

LiuF,JieXL,HeJZ

et al.Coordinationformsandtransformations

ofphosphateadsorbedbygoethitesurfaceofdifferentpH[J].Acta PedologicaSinica,1997,34(4):367-3741

[3] ZhangYS,LinXY,WernerW.Theeffectofsoilfloodingonthe

transformationofFe 2oxidesandtheadsorption/desorptionbehaviorof phosphate[J].J.PlantNutr.SoilSci.,2003,166:68-75

1

[4] 苏玲,章永松,林咸永.干湿交替过程中水稻土铁形态和磷吸附

解吸的变化[J].植物营养与肥料学报,2001,7(4):410-415.

SuL,ZhangYS,LinXY.Changesofironoxidesandphosphorus adsorption 2desorptioninpaddysoilsunderalternatingfloodedanddried conditions[J].PlantNutritionandFertilizerScience,2001,7(4):

410-4151

[5] PatrickWHJr,KhalidRA.Phosphorusreleaseandsorptionbysoil

andsediments:Effectsofaerobicandanaerobicconditions[J].Sci 2

ence,1974,186:53-55

1

[6] KhalidRA,PatrickWHJr,DeLauneRD.Phosphorussorption

characteristicsoffloodedsoil[J].SoilSci.Soc.Am.J.,1977,42:305-3101

[7] ShahandehH,HossnerLR,TurnerFT.Phosphorusrelationshipsin

floodedricesoilswithlowextractablephosphorus[J].SoilSci.Soc.Am.J.,1994,58:1184-1189

1

[8] ShahandehH,HossnerLR,TurnerFT.Phosphorusrelationshipsto

manganeseandironinricesoils[J].SoilSci.,2003,168(7):489

-500.

[9] SchwertmannU,CornellRM.Ironoxidesinthelaboratorypreparation

andcharacterization[M].Wernheim:VCH,1991

161-1091

[10] HolfordICR,MattinglyGEG.Amodelforthebehavioroflabile

phosphateinsoil[J].PlantSoil,1976,44:219-229

1

[11] 刘凡,贺纪正,李学垣,等.磷溶液浓度与针铁矿表面吸附磷的

化学状态[J].科学通报,1994,39:1996-1999. LiuF,HeJZ,LiXY

et al.Phosphatesolutionconcentrationand

chemicalstateofphosphateadsorbedbygoethitesurface[J].Chinese ScienceBulletin,1994,39:1996-1999

1

[12] BeaucheminS,SimardRR.Soilphosphorussaturationdegree:Re

2

viewofsomeindicesandtheirsuitabilityforPmanagementinQuebec [J].Can.J.SoilSci.,1999,79

(4):615-6251

[13] KuoS,JellumEJ,PanWL.Influenceofphosphatesorptionparam

2

etersofsoilsonthedesorptionofphosphorusbyvariousextractants [J].SoilSci.Soc.Am.J.,1988,52:974-979

1

212

植物营养与肥料学报12卷

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

氮磷钾元素作用

氮磷钾营养元素的作用 氮 氮是蛋白质、叶绿素、酶等物质的重要组成部分。蛋白质是构成植物细胞原生质的基本物质,原生质是新陈代谢的活动中心。没有蛋白质就没有生命活动。酶是一种生物催化剂,植株体内的生物化学反应都有酶的参与。叶绿素是进行光合作用必不可少的物质,充足的氮能使叶色浓绿,提高光合作用效率,生长健壮,茎叶繁茂。另外,植株体内的核酸、磷脂和某些激素也都含有氮,这些物质也是许多生理生化过程所不可缺少的。可见氮的生理作用是多方面的。 氮不足,叶色转黄,生育延迟,植株瘦弱,抽穗晚,雌穗发育不良,穗小粒少,严重时不结实,形成空杆。缺氮症状先由叶尖变黄开始,沿着中脉向内扩展,严重时叶片变褐枯死,从全株看,先由下部老叶开始变黄,然后扩展到中部和上部叶片,这是因为缺氮时老叶中的氮转移到上部正在生长的幼叶和其它器官的缘故。 玉米对氮的需要量是诸多营养元素之中最大的,占茎叶子实及根系在内的干重的百分比达到1.46%,明显高于其它营养元素,所以在生产中一定要注意氮元素的施用。 磷 磷在植株体内含量虽比氮、钾少(仅占植株干重的0.2%)。但其生理作用确是非常重要的。磷是核蛋白的重要组成成分,核蛋白是原生质、细胞核和染色体的重要组成物质。磷也是核苷酸的主要成分之一。核苷酸的衍生物在新陈代谢中具有极重要的作用,与玉米植株的正常生命活动密切相关。磷在碳水化合物代谢及氮代谢中也都有重要作用,与脂肪代谢的关系也较密切。 磷对玉米植株发育及各生理过程均有促进作用,尤其是在苗期,能促进根的发育,如果供给适量的磷,根系干重可比缺磷的高1倍。对提高粒重、提高品质也有重要作用。 如果缺磷,影响玉米正常生长发育,产量降低。如果发现缺磷,即使再供给充足的磷也难以弥补前期所造成的损失。早期缺磷、幼苗生长缓慢,根系发育差,叶片呈紫红色,严重时叶尖及叶片边缘变成褐色并枯死。中、后期缺磷,花丝抽出晚,雌、雄间隔时间长,影响授粉,果穗缺粒秃尖,成熟延迟,产量降低。在生产中一定注意从苗期开始就供给充足的磷,确保一生对磷的需要。 钾 钾在幼苗植株中的含量较高,仅次于氮(占植株总干重的0.92%),它在玉米生长发育过程中的生理作用是多方面的。 钾能增强植株的抗旱性主要是由于钾是调节植株水分状况的重要元素。气孔开闭与K+含量有很大关系。施钾使叶肉K+细胞充足,气孔开放程度大,使细胞间隙进入的CO多,从而使光合速率增大,能增强光合产物的运输,提高光合速率,使碳氮代谢加强,有更多的碳水化合物往籽粒中输送。增施钾肥能增强作物的抗旱力,是由于钾离子有调节原生质的胶体特性,使胶体保持一定的分散度、水化度和粘滞性等。钾离子可增强原生质的水合作用,而钙能促使原生质浓缩,降低细胞的渗透性。当它们同时存在时,由于拮抗作用,可使胶体保持一定的分散度,又有一定的粘滞性和透性,使水分能顺利地进入细胞,加强了细胞的持水能力,从而增强了作物抗旱能力。 钾素能增强作物的抗病抗倒伏能力,因为钾对茎部纤维素合成有关。钾营养充足时,作物茎叶中纤维素含量增加,促进了作物维管束的发育,厚角组织细胞加厚,茎秆强度增加,植株生长健壮,不仅抗倒伏,也增强对病虫的抵抗能力。

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

氮磷钾分析

有机肥料氮、磷、钾的化学分析方法 摘要: 介绍了用化学分析方法测定有机肥料氮、磷、钾的含量, 即样品经硫酸—过氧化氢消化后, 制备待测溶液, 分取待测溶液用NC - 2 型快速定氮仪测定氮, 用磷钼酸喹啉重量法测定磷, 用四苯硼酸钾重量法测定钾,不须使用分光光度计和火焰光度计, 适宜一般复混肥料厂采用, 对含氮、磷、钾分别达011 %以上的样品均可用本法测定, 方法的准确度和精密度能满足生产的要求。 关键词: 有机肥料; 氮、磷、钾; 化学分析方法 有机肥料中氮、磷、钾含量的测定, 按国家行业标准NY525 —2002 的要求, 氮采用全量蒸馏滴定法、磷采用磷钒钼黄光度法、钾采用火焰光度法测定。对普通复混肥料厂来说, 一是测氮的时间过长; 二是因为这些厂一般都没有购置分光光度计和火焰光度计, 不便于磷、钾的测定。为了解决厂家都能分析测定有机肥料中氮、磷、钾的问题, 笔者在生产实践中总结出适宜厂家使用的有机肥料中氮、磷、钾快速测定的化学分析方法。方法的要点是用硫酸—过氧化氢消化样品制取待测液, 分别测定氮、磷、钾。测氮用NC - 2 型快速定氮仪, 在10 min 内可完成氮的蒸馏、吸收、滴定全过程, 具有快速、准确的特点; 测磷用磷钼酸喹啉重量法;测钾用四苯硼酸钾重量法。在温度120 ℃的条件下, 将磷、钾的沉淀物一起烘干115 h , 可以同时测定磷、钾, 大大缩短了操作的时间。此方法用于生产实践, 与国家行业标准的分析方法结果基本一致。普通的复混肥料厂不须增添分析仪器, 便可应用本法测定有机肥料氮、磷、钾的含量, 达到指导 生产的要求。 1 方法原理 有机肥料在硫酸溶液中加热, 滴加过氧化氢溶液, 使有机质迅速消化, 制备氮、磷、钾的待测液,然后用NC - 2 型快速定氮装置测定氮、磷钼酸喹啉重量法测定磷、四苯硼酸钾重量法测定钾。

氮磷钾的功能

N、P、K在植物生长中的功能 在各种营养元素之中,氮、磷、钾三种是植物需要量和收获时带走量较多的营养元素,而它们通过残茬和根的形式归还给土壤的数量却不多。因此往往需要以施用肥料的方式补充这些养分。 氮 氮是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是叶绿素的组成成分,叶绿素a和叶绿素?都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长炔,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,从右图可知,我国大部分耕地的土壤全氮含量都在0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于 0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 磷

氮磷钾对植物分别有什么作用

氮磷钾对植物分别有什么作用 氮肥:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。生产上常使用氮肥是植物快速生长。所以我们对于叶菜(吃叶子的菜)要多施氮肥。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见 磷肥:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。我们要使作物提前收获,一般多施用磷肥。 钾肥:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满 主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。 资料来源《植物生理学》 (1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。

(4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 1、氮素化肥氮是蛋白质构成的主要元素,蛋白质是细胞原生质组成中的基本物质。氮肥增施能促进蛋白质和叶绿素的形成,使叶色深绿,叶面积增大,促进碳的同化,有利于产量增加,品质改善。在生产上经常使用的氮素化肥有:①硫酸铵(硫铵):白色或淡褐色结晶体。含氮20%一21%,易溶于水,吸湿性小,便于贮存和使用。硫铵是一种酸性肥料,长期使用会增加土壤的酸性。最好做追肥使用,一般每667平方米施用量为15—20千克。②碳酸氢铵(碳铵):白色细小结晶,含氮17%,有强烈的刺激性臭味,易溶于水,易被作物吸收,易分解挥发。可作基肥或追肥使用,追肥时要埋施,及时覆土,以免氨气挥发烧伤秧苗。 ③尿素:白色圆粒状,含氮量为46%。尿素不如硫铵肥效发挥迅速,追肥时要比硫铵提前几天施用。尿素是固体氮肥中含氮量最高的一种,尿素为中性肥料,不含副成分,连年施用也不致破坏土壤结构。

主要作物所需氮磷钾比例

主要作物所需氮磷钾比例(2013-05-15 12:38:00)转载▼ 一、葡萄1、营养特性 据研究,一般成年葡萄园每生产1000千克果实需吸收氮6.0千克、磷3.0千克、钾7.2千克,其吸收比例为1:0.5:1.2,钾>氮>磷。葡萄对氮的需要量前、中期较大,而磷、钾吸收高峰偏中、后期,尤其是开花、授粉、坐果以及果实膨大对磷、钾的需要量很大。另外,葡萄对微量元素硼的需要量也较多。一般亩施高浓度复合肥90-100千克/亩(以产量1000千克/亩计)。 2、施肥建议 基肥:以有机肥为主,配施化肥。幼龄树每株施有机肥20-30千克,成龄果树50-100千克,每100千克有机肥混入总养分≥45%(15-15-15)复合肥1-2千克。基肥以葡萄收获后施入为宜,而且越早越好。 追肥:一般2-3次。新梢萌芽至开花前进行第一次追肥,一般每株施总养分≥40%(16-16-8)复合肥1-1.5千克,开小沟施入。第二次追肥在浆果生长前,每株施总养分≥40%(16-8-16或14-6-20)或总养分≥45%(15-10-20)复合肥1千克左右;第三次在进入浆果生长期,此时果实膨大增重和新的花芽分化,均要消耗大量养分,需肥量大,且以氮、钾养分为主,可施用总养分≥40%(16-8-16)复合肥,每株2千克左右。 二、番茄 1、营养特性 番茄,又名西红柿,其采收期比较长,需要时边采收,边供给养分,才能满足不断开花结果的需要.具体施肥量应根据土壤供肥能力,养分利用率,蔬菜吸收养分量等参数来确定。据研究,番茄每生产1000千克鲜果,需吸收氮3.18千克、磷0.74千克、钾4.83千克、钙3.35千克、镁0.62千克。以中等肥力的土壤为例,若目标产量为亩产6000千克,则需N17千克,P2O59千克,K2O11千克。一般亩施高浓度复合肥90-110千克/亩。番茄对钙、镁的需要量也比较大,缺乏易产生脐腐病。这是番茄的生育与营养特点,也是茄果类蔬菜生育与营养的共性。 2、施肥建议 基肥:番茄产量高,需肥量大,施肥应以基肥为主,亩施优质有机肥3000-5000千克,配施总养分≥40%(18-8-14)40-45千克/亩或(16-8-16)45-50千克。 追肥:在定植后5~6天追施一次“催苗肥”,每亩施尿素5千克左右;第一穗果开始膨大时,追施“催果肥”每亩施总养分≥40%(18-8-14)复合肥10千克左右;进入盛果期,当第一穗果发白,第二、三穗果迅速膨大时,应继续追肥2-3次(在每次采果后追施),每次每亩施用总养分≥40%(18-8-14)或(16-8-16)复合肥15-20千克;进入盛果期后,根系吸肥能力下降可采用喷施尿素、硝酸钙、硼砂等水溶液,有利于延缓衰老,延长采收期以及改善果实品质。 (三)辣椒 1、营养特性 辣椒耐肥能力强,据研究,每生产1000千克辣椒,需吸收氮3.5-5.5千克、磷0.7-1.4千克、钾5.5-7.2千克、钙2.0-5.0千克、镁0.7-3.2千克。一般亩施高浓度复合肥90-120千克/亩。辣椒在不同生育阶段对养分吸收不同,其中氮素随生育进展稳步提高,果实产量增加,吸收量增多;磷德吸收量在不同阶段变幅较小;钾的吸收量在生育初期较少,从果实采收初期开始明显增加,一直持续到结束;钙的吸收量也随生长期而增加,在果实发育期供钙不足,易出现脐腐病;镁的吸收高峰在采果盛期。 2、施肥建议 基肥:每亩施优质有机肥3000-5000千克,总养分≥40%(16-8-16)或(14-6-20)复

氮磷钾的作用

植物生育过程中,常有一个时期,对某种养分的要求在绝对数量上虽不多,但很敏感,需要迫切,此时如缺乏这种养分,对植物生育的影响极其明显,并由此而造成的损失,即使以后补施该种养分也很难纠正和补充,这一时期就叫植物营养临界期。 大多数植物的磷素营养临界期都在幼苗期,棉花在出苗后10-20天,玉米在出苗后一星期左右(三叶期)。作物氮素营养临界期则常比磷稍向后移,通常在营养生长转向生殖生长的时期,冬小麦在分蘖和幼穗分化期,棉花在现蕾初期,玉米在幼穗分化期。 植物生长发育过程中,另一个时期,植物需要养分的绝对数量最多,吸收速率最快,所吸收的养分能最大程度地发挥其生产潜能,增产效率最高,这就是植物营养最大效率期。此期往往在作物生长的中期,此时作物生长旺盛,从外部形态上看,生长迅速,作物对施肥的反应最为明显。玉米氮素最大效率期在大喇叭口期到抽雄初期,小麦在拔节到抽穗期,棉花在开花结铃期,苹果结果树在花芽分化期,大白菜在结球期,甘蓝在莲座期。 作物营养临界期和最大效率期是作物营养和施肥的两个关键时期,在这两个阶段内,必须根据作物本身的营养特点,满足作物养分状况的要求,同时还必须要注意作物吸收养分的连续性,才能合理地满足作物的营养要求。 植物对氮、磷、钾三种元素需要量最多,其次是钙、镁、硫以及铁、锰、锌、硼、铜、钼等微量元素。 1 氮肥 氮肥主要是促使树木茂盛,增加叶绿素,加强营养生长。氮肥太多会导致组织柔软、茎叶徒长,易受病虫侵害,耐寒能力降低。缺少氮肥则植株瘦小,叶片黄绿,生长缓慢,不能开花。氮肥有动物性氮肥和植物性氮肥:人粪尿,马、牛、羊、猪等粪便,鱼肥、马掌等属动物性氮肥。芝麻渣、豆饼、菜籽饼、棉籽饼等属植物性氮肥。以上两类均系有机肥料。矿物质氮肥亦即无机肥或称化。硫酸氨、硝酸氨、尿素、氨水等,均为速效氮肥,通常用作根外追肥,如经常用作根部施肥易使土壤板结。 2 磷肥 磷肥能使树木茎枝坚韧,促使花芽形成,花大色艳,果实早熟,并能使树木生长发育良好,多发新根,提高抗寒、抗旱能力。磷肥不足树木生长缓慢,叶小、分枝或分蘖减少,花果小,成熟晚,下部叶片的叶脉间先黄化而后呈现紫红色。缺磷时通常老叶先出现病症。 含磷较多的有机肥有骨粉、米糠、鱼鳞、家禽粪便等。无机磷肥有过磷酸钙、磷矿粉、钙镁磷肥等。其中最常用的过磷酸钙常与有机肥混合后用作基肥,亦可用作花果盆景的根外追肥。 3 钾肥 钾肥能使树木茎杆强健,提高抗病虫、抗寒、抗旱和抗倒伏的能力,促使根部发达,球根增大,并能促使果实膨大,色泽良好。缺钾会导致树木叶缘出现坏死斑点,最初下部老叶出现斑点,叶缘叶尖开始变黄,继之发生枯焦坏死。钾肥过量,会引起树木节间缩短,全株矮化,叶色变黄,甚至枯死。 最具代表性的有机钾肥首推草木灰,用作追肥和基肥均可。其含速效钾(K2O)5~10%|磷(P2O5)2~3%,还含有其他微量元素。草木灰是一种碱性肥料。无机钾肥有氯化钾、硫酸钾等均属酸性肥料,可用作基肥和追肥。 还有一些肥料,如磷酸二氢钾既含磷又含钾;硝酸钾含氮和钾,均可用于树木盆景的叶面喷施。 至于其他稀有元素只要注意用土、及时换盆,一般不必额外补充。 自制肥料方法很简单: 将用来制肥的有机物加水所装入广口容器,如瓶、罐后加盖,经两个月左右的腐熟发酵即成

氮磷钾

第五章土壤全氮的测定(凯氏蒸馏法) 5.1 方法提要样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,计算土壤全氮含量(不包括硝态氮)。 包括硝态和亚硝态氮的全氮测定,在样品消煮前,需先用高锰酸钾将样品中的亚硝态氮氧化为硝态氮后,再用还原铁粉使全部硝态氮还原,转化成铵态氮。 5.2 适用范围本方法适用于各类土壤全氮含量的测定。 5.3 主要仪器设备 5.3.1 消化管(与消煮炉、定氮仪配套),容积250mL。 5.3.2 定氮仪。 5.3.3 可控温铝锭消煮炉(升温不低于400℃)。 5.3.4 半微量滴定管,10mL。 5.3.5 分析天平(精确到0.0001g)。 5.4 试剂 5.4.1 硫酸[ρ(H2SO4)=1.84g?mL-1]; 5.4.2 硫酸标准溶液[c(1/2H2SO4)=0.01mol?L-1]或盐酸标准溶液[c(HCl)=0.01mol?L-1]:配制及标定参见附录1。 5.4.3 氢氧化钠溶液[ρ(NaOH)=400g?L-1 ]:称取400g氢氧化钠溶于水中,稀释至1L。 5.4.4 硼酸—指示剂混合液。 硼酸溶液[ρ(H3BO3)=20g?L-1]:称取硼酸20.00g溶于水中,稀释至1L。 混合指示剂:称取0.5g溴甲酚绿和0.1g甲基红于专用玻璃研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL。使用前,每升硼酸溶液中加5mL混合指示剂,并用稀酸或稀碱调节至红紫色(PH约4.5)。此液放置时间不宜过长,如在使用过程中PH有变化,需随时用稀酸或稀碱调节。 5.4.5 加速剂:称取100g硫酸钾,10g硫酸铜(Cu SO4?5H2O),1g硒粉于研钵中研细,必须充分混合均匀。 5.4.6 高锰酸钾溶液[ρ(KMnO4)=50g?L-1 ]:称取25g高锰酸钾溶于500mL 水,贮于棕色 瓶中。 5.4.7 硫酸溶液(1:1)。 5.4.8 还原铁粉:磨细通过0.149mm孔径筛。 5.4.9 辛醇。 5.5 分析步骤 5.5.1 称样:称取通过0.25mm(60号筛)孔径筛的风干试样0.3g(含氮约1mg,精确到0.0001g)。 5.5.2 土样消煮:①不包括硝态和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入2.0加速剂,加水约2mL湿润试样,再加8mL浓硫酸,摇匀。将消化管置于控温消煮炉上,用小火加热,约200℃,待管内反应缓和时(约 10~15min),加强火力至375℃。待消煮液和土粒全部变为灰白稍带绿色后,

有机肥料氮磷钾的测定

有机肥料氮磷钾含量的测定 学院:材料与化工学院(化学1班姓名:李美玲学号:201104034013 摘要: 介绍了用化学分析方法测定有机肥料氮、磷、钾的含量, 即样品经硫酸 —过氧化氢消化后, 制备待测溶液, 分别取待测溶液用NC - 2 型快速定氮仪测 定氮, 用磷钼酸喹啉重量法测定磷, 用四苯硼酸钾重量法测定钾,不须使用分光 光度计和火焰光度计, 适宜一般复合肥料厂采用, 对含氮、磷、钾分别达11 % 以上的样品均可用本法测定, 方法的准确度和精密度能满足生产的要求。 Summary: Describes has with chemical analysis method determination organic fertilizer nitrogen, and phosphorus, and potassium of content, is samples by sulfuric acid-hydrogen peroxide digestive Hou, preparation to measuring solution, respectively take to measuring solution with NC-2 type fast will nitrogen instrument determination nitrogen, with phosphorus Mo acid quinoline weight method determination phosphorus, with four benzene boric acid potassium weight method determination potassium, does not be using min light photometric meter and flame photometric meter, suitable General compound fertilizers factory used, on with nitrogen, and phosphorus, and potassium respectively up 11% above of samples are available this method determination, Method of accuracy and precision to meet the production requirements. 关键词: 化学分析方法、有机肥料、氮磷钾含量 引言:有机肥料中氮、磷、钾含量的测定, 按国家行业标准NY525 —2002 的要 求, 氮采用全量蒸馏滴定法、磷采用磷钒钼黄光度法、钾采用火焰光度法测定。 对普通复混肥料厂来说, 一是测氮的时间过长; 二是因为这些厂一般都没有购 置分光光度计和火焰光度计, 不便于磷、钾的测定。为了解决厂家都能分析测定 有机肥料中氮、磷、钾的问题, 笔者在生产实践中总结出适宜厂家使用的有机肥 料中氮、磷、钾快速测定的化学分析方法。方法的要点是用硫酸—过氧化氢消化 样品制取待测液, 分别测定氮、磷、钾。测氮用NC - 2 型快速定氮仪, 在10 min 内可完成氮的蒸馏、吸收、滴定全过程, 具有快速、准确的特点; 测磷用磷钼酸 喹啉重量法;测钾用四苯硼酸钾重量法。在温度120 ℃的条件下, 将磷、钾的沉 淀物一起烘干115 h , 可以同时测定磷、钾, 大大缩短了操作的时间。此方法 用于生产实践, 与国家行业标准的分析方法结果基本一致。普通的复混肥料厂不 须增添分析仪器, 便可应用本法测定有机肥料氮、磷、钾的含量, 达到指导生产 的要求。 1 方法原理 有机肥料在硫酸溶液中加热, 滴加过氧化氢溶液, 使有机质迅速消化, 制备氮、 磷、钾的待测液,然后用NC - 2 型快速定氮装置测定氮、磷钼酸喹啉重量法测 定磷、四苯硼酸钾重量法测定钾。 2.仪器与试剂 盐酸标准溶液01025 mol/ L ; 混合指标剂: 称取溴甲酚绿015 g和甲基红011 g 溶于100 mL 乙醇中, 用氢氧化钠溶液(约011 mol/ L) 和盐酸溶液(约011 mol/ L) 调至紫红色(pH 约为415) ; 中性硼酸: 20 g/ L 加入混合指示剂, 用上述 氢氧化钠和盐酸调至紫红色。喹钼柠酮试剂、四苯硼酸钠溶液; 四苯硼酸钠洗液:

主要作物所需氮磷钾

主要作物所需氮磷钾 一、葡萄 1、营养特性 据研究,一般成年葡萄园每生产1000千克果实需吸收氮6.0千克、磷3.0千克、钾7.2千克,其吸收比例为1:0.5:1.2,钾>氮>磷。葡萄对氮的需要量前、中期较大,而磷、钾吸收高峰偏中、后期,尤其是开花、授粉、坐果以及果实膨大对磷、钾的需要量很大。另外,葡萄对微量元素硼的需要量也较多。一般亩施高浓度复合肥90-100千克/亩(以产量1000千克/亩计)。 2、施肥建议 基肥:以有机肥为主,配施化肥。幼龄树每株施有机肥20-30千克,成龄果树50-100千克,每100千克有机肥混入总养分≥45%(15-15-15)复合肥1-2千克。基肥以葡萄收获后施入为宜,而且越早越好。 追肥:一般2-3次。新梢萌芽至开花前进行第一次追肥,一般每株施总养分≥40%(16-16-8)复合肥1-1.5千克,开小沟施入。第二次追肥在浆果生长前,每株施总养分≥40%(16-8-16或14-6-20)或总养分≥45%(15-10-20)复合肥1千克左右;第三次在进入浆果生长期,此时果实膨大增重和新的花芽分化,均要消耗大量养分,需肥量大,且以氮、钾养分为主,可施用总养分≥40%(16-8-16)复合肥,每株2千克左右。

二、番茄 1、营养特性 番茄,又名西红柿,其采收期比较长,需要时边采收,边供给养分,才能满足不断开花结果的需要.具体施肥量应根据土壤供肥能力,养分利用率,蔬菜吸收养分量等参数来确定。据研究,番茄每生产1000千克鲜果,需吸收氮3.18千克、磷0.74千克、钾4.83千克、钙3.35千克、镁0.62千克。以中等肥力的土壤为例,若目标产量为亩产6000千克,则需N17千克,P2O59千克,K2O11千克。一般亩施高浓度复合肥90-110千克/亩。番茄对钙、镁的需要量也比较大,缺乏易产生脐腐病。这是番茄的生育与营养特点,也是茄果类蔬菜生育与营养的共性。 2、施肥建议 基肥:番茄产量高,需肥量大,施肥应以基肥为主,亩施优质有机肥3000-5000千克,配施总养分≥40%(18-8-14)40-45千克/亩或(16-8-16)45-50千克。 追肥:在定植后5~6天追施一次“催苗肥”,每亩施尿素5千克左右;第一穗果开始膨大时,追施“催果肥”每亩施总养分≥40%(18-8-14)复合肥10千克左右;进入盛果期,当第一穗果发白,第二、三穗果迅速膨大时,应继续追肥2-3次(在每次采果后追施),每次每亩施用总养分≥40%(18-8-14)或(16-8-16)复合肥15-20千克;进入盛果期后,根系吸肥能力下降可采用喷施尿素、硝酸钙、硼砂等水溶液,有利于延缓衰老,延长采收期以及改善果实品质。

氮磷钾三种肥对植物的作用是什么

氮磷钾三种肥对植物的作用是什么?如何使用? (_为愛壊①點发表于2009年08月27日 08:20 阅读(3) 评论(0) 分类:农业知识 举报 1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。 (4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。 作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 目前,市场经销的肥料以氮磷钾肥为主,并且每种肥料也有许多品种。主要氮肥品种有;尿素、碳酸氢铵(碳铵)、氯化铵、硫酸铵、硝酸铵、硝酸钙,还有氨水、石灰氮等也属于氮肥,但目前已较少使用。硝酸钙既是氮肥,也可作钙肥用。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见。主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,我国市场上流通的大多为进口肥料,盐湖钾肥产自我国青海省,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。微量元素肥料品种也较多,最常用的硼肥为硼砂,

氮磷钾

农作物必需的营养元素 作物生长要从土壤中吸收几十种化学元素作为养料。主要有:碳(c)、氢(H)、氧(0)、氮(N)、磷(P)、钾(K)、钙(Ca )、镁(Mg)、硫(s)、铁(Fe )、铜(Cu )、锌(zn )、硼(B)、铬(M0)、锰(Mn)、氯(cl )等。前十种,花木需要 量较多,约占于物重的百分之几至千分之几,通常称为大量元素;而后六种,花木需要量 很少,约占于物重的万分之几,乃至百万分之几,称微量元素。尽管花木对各种营养元素 需要量差别很大,但它们对花木的生长、发育却起着不同的作用,既不可缺少,也不可相 互代替。碳、氢、氧是组成花木的主要元素,占干物重的90~以上,它们能从空气中和土 壤中获得。但对氮、磷、钾,花木的需要量要比土壤的供应量大得多,故必须经常施肥来 加以补充。通常把氮、磷、钾称为肥料的“三要素”。在一般条件下,钙、镁、硫、铁和其 他微量元素都从土壤中得到但我国南方地区,因雨水多,钙、镁容易流失,需要适当补充。铁在石灰性土壤中,有效性降低,会引起植株黄化,也需要补充。 二、各种营养元素的主理作用 氮:是构成植物体的最小单位—细胞的重要组成部分之一。蛋白质是细胞的主要组成 部分,而氮在蛋白质中约含:6~18~。氮也是时绿素的重要组成部分,植物进行光合作用,需要叶绿素。此外,植物体内所含的维生素、激素、生物碱等有机物中也含有氮素。氮一 般积集在幼嫩的部位和种子里。当氮素供应充足时,植物的茎叶繁茂、时色深绿、延迟落叶;反之,氮素不足,植株就矮小,下部叶片首先缺绿变黄,逐步向上扩展,叶片簿而黄。当然,如果缺氮,肥施得过多,尤其在磷、钾供应不足时,会造成徒长、贪青、迟熟、易 倒伏、感染病虫害,特别是一次用量过多会引起烧苗,所以一定要注意合理的施肥。 磷:磷是组成植物细胞的重要元素,也是很多酶的组成部分,它能促进细胞分裂,对 根系的发育有很大的促进作用。磷参与植物体内的一系列新新陈代谢的过程,如光合作用、碳水化合物的合成、分解、运转等。磷能促进体内可溶性糖类的贮存,因而能增强植物的 抗旱抗寒能力。在苗期能促进根系发育,使根系早生快发,促进开花,对球根花卉能提高 质量和产量。反之,磷素供应不足时,植物生长受到抑制,首先下部时片叶色发暗呈紫红色,开花迟,花亦小。 钾:它不直接组成有机化合物,而参与部分代谢过程和起调节作用。主要以离子态存在,在休内移动性大,通常分布在生长最旺盛的部位,如芽、幼叶、根尖等处。钾供应充 足时,能促进光合作用,促进植物对氮、磷的吸收,有利于蛋白质的形成,使圭叶茁壮, 枝杆木质化、粗壮,不易倒伏,增强抗病和耐寒能力。缺钾时,休内代谢易失调,光合作 用显著下降,茎杆细瘦,根系生长受抑制,首先者叶的尖端和边缘变黄直至桔死,严重时 会使大部分叶片枯黄。 钙:钙是细胞壁中胶层的组成成分,以果胶钙的形态存在。钙易被固定下来,不能转 移和再度利用。植物缺钙时,细胞壁不能形成,并会影响细胞分裂,妨碍新细胞的形成致使根系发育不良,植株矮叭严重时会使植物幼叶卷曲、叶尖有粘化现象,叶缘发黄,逐渐 枯死,根尖细胞腐烂、死亡。

常见农作物吸收氮磷钾比例

常见农作物吸收氮磷钾比例作物收获物形成100公斤经济产量所吸收的养分数量(公斤) 氮(N)磷(P205) 钾(K20) 小麦籽粒 3 1-1.5 2-4 玉米籽粒 3 1 2.5. 花生荚果 7 1.3 4 马铃薯鲜块根 0.55 0.22 1.06 棉花皮棉 13.8 4.8 14.4 烟草烟叶 4.1 1.3 5.6 生姜肉质根 0.63 0.13 1.12 大葱果实0.35 0.08 0.5 大蒜肉质根 0.50 0.12 0.4 萝卜肉质根 0.45 0.16 0.5 洋葱葱头 0.27 0.12 0.23 胡萝卜肉质根 0.41 0.17 0.58 芋头肉质根 0.48 0.12 0.35 番茄果实 0.3 0.12 0.4 茄子果实 0.81 0.23 0.68 菜豆果实 0.35 0.07 0.14

辣椒果实 0.28 0.09 0.39 黄瓜果实 0.13 0.06 0.15 冬瓜果实 0.18 0.04 0.2 西瓜果实0.8 0.33 1 草莓果实 0.35 0.17 0.69 卷心菜叶球 0.41 0.05 0.38 韭菜地上部 0.17 0.05 0.18 芹菜全株 0.4 0.14 0.6 大白菜 0.15 0.07 0.2 菠菜 0.36 0.18 0.52 结球甘蓝 0..83 0.14 0.59 苹果果实 0.6 0.34 0.66 梨果实 0.47 0.23 0.48 樱桃果实 0.25 0.1 0.33 葡萄果实 0.38 0.22 0.45 柿子果实 0.8 0.3 1.2 枣果实 1.5 1 1.3 (此数据仅作参考)

常见农作物吸收氮磷钾比例

常见农作物吸收氮磷钾比例 作物收获物形成100公斤经济产量所吸收的养分数量(公斤) 作物类型作物名称氮磷钾需肥比例 大田作物水稻 1.7-2.5 0.9-1.3 2.1-3.3 1:0.53:1.28 小麦 3 1-1.5 2-4 1:0.4:1 玉米 3 1 2.5 1:0.33:0.83 蔬菜马铃薯0.55 0.22 1.06 1:0.4:1.93 生姜0.63 0.13 1.12 1:0.21:1.78 大葱0.35 0.08 0.5 1:0.23:0.14 大蒜 0.50 0.12 0.4 1:0.24:0.8 萝卜0.45 0.16 0.5 1:0.13:1.11 洋葱0.27 0.12 0.23 1:0.44:0.85 胡萝卜0.41 0.17 0.58 1:0.41:1.41 芋头 0.48 0.12 0.35 1:0.25:0.73 番茄0.3 0.12 0.4 1:0.4:1.33 茄子0.81 0.23 0.68 1:0.28:0.84 菜豆0.35 0.07 0.14 1:0.2:0.4 辣椒0.28 0.09 0.39 1:0.32:1.39 黄瓜0.13 0.06 0.15 1:0.46:1.15 冬瓜0.18 0.04 0.2 1:0.22:0.11 西瓜0.8 0.33 1 1:0.41:1.25

草莓0.35 0.17 0.69 1:0.49:1.97 卷心菜0.41 0.05 0.38 1:0.12:0.93 韭菜0.17 0.05 0.18 1:0.29:1.06 芹菜0.4 0.14 0.6 1:0.35:1.5 大白菜0.15 0.07 0.2 1:0.47:1.33 菠菜0.36 0.18 0.52 1:0.5:1.44 结球甘蓝0.83 0.14 0.59 1:0.17:0.71 花生7 1.3 4 1:0.19:0.57 水果苹果0.6 0.34 0.66 1:0.57:1.1 梨0.47 0.23 0.48 1:0.49:1.02 樱桃0.25 0.1 0.33 1:0.4:1.32 葡萄0.38 0.22 0.45 1:0.58:1.18 柿子0.8 0.3 1.2 1:0.38:1.5 枣子 1.5 1 1.3 1:0.67:0.87 经济作物棉花13.8 4.8 14.4 1:0.35:1.04 烟草 4.1 1.3 5.6 1:0.32:1.37 茶叶 4 1.6 2.8 1:0.4:0.7

教你如何自制氮磷钾肥及应用

教你如何自制氮磷钾肥及应用 氮肥——叶肥;钾肥——根肥;磷肥——花肥。观叶植物多施氮肥和钾肥,观花植物应多施磷肥。氮肥(豆渣、尿液、过期牛奶)煮黄豆水+美国二胺缺氮植物生长慢。氮是植物体内的氨基酸、蛋白质,也是植物进行光合作用的叶绿素。氮肥有:尿素,复合肥有磷酸铵。自然界中,尿液中含尿素0.4%。 虎皮兰、绿萝在整个生长期中都需要较多的氮肥。施肥不应过量。生长盛期,每月可施1~2次肥,施肥量要少(三份泡好的肥料汁液加七份水)。长期只施氮肥,叶片上的斑纹就会变暗淡,故一般使用复合肥(含氮磷两种营养成分的复合肥美国二胺)。黄豆煮烂、尿液、洗奶盒的水都可装入可乐瓶再加满水,密封沤制,经半个月即可舀取上层清水兑水使用。底下渣子可作底肥,换盆时用。 磷肥(鸡粪、蛋壳、淘米水)直接用磷酸二氢钾,底肥上鸡粪缺磷对开花影响很大。磷不足,植株矮小,下部叶片发暗呈紫红色,开花迟,花也小,而且颜色暗淡,味不浓不香,花骨朵提前枯萎脱落。(我养的天竺葵好像就是缺磷,骨朵没开就蔫了。)磷肥有过磷酸钙、钙镁磷肥等。磷不能撒在盆土表面,易被表土吸附固定,即使浇水后,向深层渗透也很少,不易被根系吸收利用。 磷肥的肥效长,应在每次换盆的时候,适量的参点鸡粪(鸡粪相对其它的肥料,磷含量较高,所以很适合开花的植物,南湖

有卖鸡粪颗粒的)。对不需要每年换盆的,可在植株周围挖一小坑埋点。一般花养2~3年后,根系老化,生长缓慢,叶片变小,叶色暗绿或灰绿,缺乏光泽。严重时叶片枯死脱落,此时,可将水溶性的过磷酸钙配制成1%~3%的溶液,用家庭用的小喷雾器喷洒在盆花的叶面上,可达到补磷的效果,促进盆花植株的继续生长。天竺葵可用钾——促使植物根茎健壮(草木灰)。 钾充足,植物健壮直立,花色也十分的艳丽。缺钾时,植株生长低矮,茎杆细瘦,枝叶柔弱,不能直立。叶的尖端和边缘变黄直至枯死。肉质根植物对钾肥的需求量相对较多些。常见的钾肥有硫酸钾、氯化钾、硝酸钾等。 养花的前期还是以氮肥为主,花芽分离期要催花保果时以磷.钾为主,(即磷肥、钾肥为主,氮肥为辅),不行就买点磷酸二氢钾叶面喷施. 常用的有:氮肥~尿素,磷肥~磷酸二铵、磷酸一铵,钾肥~磷酸二氢钾 一、自制氮磷钾氮肥:将大豆彻底煮熟、烧烂,再沤制。尿液:含氮较多,也有一定的磷和钾。但人尿不是家庭自制有机肥的好原料。 花生渣:含氮较多,也含磷和钾。磷肥: 煮鸡蛋的壳在太阳下晒干,捣碎,可按1份鸡蛋壳粉3份盆土的比例混合拌匀,上盆栽花。它是一种长效磷肥,一般在栽后浇水的过程中,有效成分就会析出,被花卉生长吸收利用。栽花用鸡蛋壳粉在栽植花卉后,开出的花大色艳,结出的果大饱满,

相关文档
最新文档