2021届高三数学文一轮跟踪检测:第3章 第1节 变化率与导数、导数的计算

2021届高三数学文一轮跟踪检测:第3章 第1节 变化率与导数、导数的计算
2021届高三数学文一轮跟踪检测:第3章 第1节 变化率与导数、导数的计算

(完整word版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高中数学选修第一章导数测试题

高中数学选修第一章导 数测试题 Document number:PBGCG-0857-BTDO-0089-PTT1998

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( ) A. ???-33 f (x )d x f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④ 7.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P 元,销售量为Q ,则销量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元 9.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )大小关系不能确定 10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在? ? ???-∞,-13内

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

(完整版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1)lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1'(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

最新《导数及其应用》单元测试题(理科)

《导数及其应用》单元测试题(理科) (满分150分 时间:120分钟 ) 一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()() ()(f x f x g x g x -=--=,,且0x >时,()0()f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4. =-+? dx x x x )1 11(322 1 ( ) (A)8 7 2ln + (B)872ln - (C)452ln + (D)812ln + 5.曲线1 2 e x y =在点2 (4e ),处的切线与坐标轴所围三角形的面积为( ) A. 2 9e 2 B.24e C.2 2e D.2 e 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

(完整版)导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

导数单元测试题(含答案)

导数单元测试题(实验班用) 一、选择题 1.曲线3 2 3y x x =-+在点(1,2)处的切线方程为( ) A .31y x =- B .35y x =-+ C .35y x =+ D .2y x = 2.函数21()e x f x x +=?,[]1,2-∈x 的最大值为( ). A .14e - B . 0 C .2e D . 23e 3.若函数3()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是( ) A.(2,2)- B.[]2,2- C.(,1)-? D.(1,)+? 4.若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是( ) A.1 (0,)2 B. (,1)-? C. (0,)+? D. (0,1) 5.若2a >,则函数3 21()13 f x x ax =-+在区间(0,2)上恰好有( ) A .0个零点 B .3个零点 C .2个零点 D .1个零点 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e 7.函数()f x 的图象如图所示,下列数值排序正确的是( ). A .(3)(2) 0(2)(3) 32 f f f f -''<<< - B .(3)(2) 0(3)(2)32 f f f f -''<<<- C . (3)(2) 0(3)(2)32 f f f f -''<<<- D .(3)(2) 0(2)(3)32 f f f f -''<<<- 8设(),()f x g x 分别是R 上的奇函数和偶函数, 当0x <时,' ' ()()()()0f x g x f x g x +>,

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

相关文档
最新文档