理论计算反射系数公式

理论计算反射系数公式

投射角90°,即垂直入射时:

λσ

εει60j r r ?=反射系数r

r R ιιεε+?=⊥11令2

2)60(),/60arctan(λσεελσθ+=?=r r A 则:反射系数:)

2/sin()2/cos(1)2/sin()2/cos(111112/2/θθθθεεθθιιA j A A j A e A e A R j j r r ++??=+?=+?=⊥)

2/(sin ))2/cos(1()2/(cos ))2/sin(1(2222θθθθA A j A A j ++??==2cos 212sin

22cos 211θ

θθA A A j A A A ++?++?

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

过剩空气系数的计算方法 系数公式

系数公式过剩空气系数的计算方法引言在燃气燃烧产物(烟气)的计算工作中,过剩空气系数的计算是经常遇到的。一般用于以下两方面:一为在控制燃烧过程中,需要检测燃烧过程中的过剩空气系数,防止过剩空气变化而引起的热效率的降低,以及燃烧工况的恶化。一为在检测燃气燃烧设备的烟气中的有害物质时,需要根据烟气样中氧含量或二氧化碳含量确定过剩空气系数,从而折算成过剩空气系数为1时的有害物含量。为了简化计算,通常是采用近似的计算公式。但是这些近似公式都有一定的设定条件。不考虑设定条件,盲目地使用近似公式,往往会引起较大的偏差,甚至于出现错误。这也是在检测工作中经常发现数字矛盾的原因之一。为了减少读者的查阅资料的时间,本文适当地重复过去推导的公式,强调的是近似公式的使用条件以及应用时应该考虑的问题。最后提出两个比较精确的过剩空气计算公式,供有关人士参考。一.根据燃烧产物的成分计算过剩空气系数本文讨论的主要是完全燃烧情况下的过剩空气系数。这里的完全燃烧是指燃烧产物中未完全燃烧成分很低,例如CO与NOX含量属于ppm级。在计算燃烧产物成分时可以不计入这些未完全燃烧成分。 1.过剩空气的来源在完全燃烧条件下,燃烧产物中有过剩空气,来源于两个情况。一为在燃烧过程中混入过多空气,使燃烧后燃烧产物中有过剩的空气;另一为根据分析燃烧产物成分的需要抽取烟气样时,混入了周围的空气。在燃烧以前混入过多的空气,会增加热损失,降低热效率;混入的空气过少(过剩空气系数小于1)也会恶化燃烧,造成污染环境与能源浪费。为此在运行过程中需要根据烟气样中的成分计算过剩空气系数。从而做出调整燃烧工况的措施。在燃烧以后混入周围的空气大多数是在抽取烟气样时发生的。为了消除多余空气对烟气样中成分的影响,需要折算到没有多余空气时(过剩空气系数=1)烟气样的成分。这也需要计算过剩空气系数。虽然在燃烧前混入过多空气会影响燃烧工况,而燃烧后混入空气对燃烧工况没有关系。但是它们对烟气样的成分的影响是相同的。都可以用烟气样中的氧或二氧化碳含量计算过剩空气系数。当然这个结论都是在本文的先提条件,完全燃烧的情况下才能成立。 2.根据干烟气中的O2含量计算过剩空气系数在燃烧过程中,供给燃烧需要的空气往往会大于燃烧实际需要的空气量。这样,实际的空气量与燃烧理论需要的空气量的比值即为过剩空气系数。 1 过剩空气系数a,可用下面公式计算,根据以上公式推导,可以看出公式(6)与(7)都是有条件的,要强调指出的是使用这些公式时必须研究其特定的条件。需要经过验算与分析才能确定公式(7)的使用范围。参1指出的条件本文将进一步验证。 3.根据干烟气中的CO2含量计算过剩空气系数 2 公式(10b)中的CO2m可以根据燃气成分计算出来,所以在已知燃气成分条件下,只要测得干烟气中的CO2含量就可以求得过剩空气系数。根据以前讨论的前提条件,公式(10a)是一个完全燃烧的关系式。也就是说完全燃烧必然满足公式(10a),公式(10a)也是完全燃烧的判别式。用公式(10b)计算出过剩空气系数a,其计算结果应该与公式(7)所得的结果是一样的。再一次提醒读者,以上结论都是在完全燃烧(CO含量属ppm级)条件下成立的。二.燃烧产物的成分与燃烧三角图 1.城市燃气燃烧产物中的成分由于城市燃气尤其是天然气中基本上没有氮、硫与氧的成分。在完全燃烧的条件下,燃烧产物中主要成分是CO2、H2O和N2。在实际燃烧过程中,燃烧再完全也会有微量不完全燃烧及其他气体,也就是说在烟气样中总会有些CO、NOX等ppm级的微量的气体。另外,在燃烧过程中,为了使燃气燃烧完全,要求燃气与空气充分混合,为此混入的空气量略大于燃烧需要的空气量。这就是说完全燃烧条件下,过剩空气系数大于1,烟气样中还应有氧成分O"2。因此城市燃气完全燃烧下的烟气样中的主要成分为CO2、H2O、O2 及 N2;城市燃气完全燃烧下的干烟气样中的主要成分为CO2、O2 及N2。以后讨论的主要是干烟气(或干燃烧产物)。 3

CEMS数据折算计算公式

Cems环保数据折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于折算系数为; 燃煤锅炉大于折算系数为; 燃气、燃油锅炉折算系数为 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中

SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 )其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

如何用SPSS求相关系数

参见: [1] 衷克定数据统计分析与实践—SPSS for Windows[M].北京:高等教育出版社,2005.4:195— [2] 试验设计与SPSS应用[M].北京,化学工业出版社,王颉著,2006.10:141— 多元相关与偏相关 如何用SPSS求相关系数 1 用列联分析中,计算lamabda相关系数,在分析——描述分析——列联分析 2 首先看两个变量是否是正态分布,如果是,则在analyze-correlate-bivariate中选择 pearson相关系数,否则要选spearman相关系数或Kendall相关系数。如果显著相关,输出结果会有*号显示,只要sig的P值大于0.05就是显著相关。如果是负值则是负相关。 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:

附录相关系数r的计算公式的推导.doc

相 关 系 数 r AB 的 计 算 公 式 的 推 导 设 A i 、 B i 分别表示证券 A 、证券 B 历史上各年获得的收益率; A 、 B 分别表示证券 A 、证券 B 各 年获得的收益率的平均数; P i 表示证券 A 和证券 B 构成的投资组合各年获得的收益率,其他符号的含义 同上。 2 = 1A n 1 2 = 1B n 1 2 1 P = 1 n = 1 n 1 = 1 n 1 = 1 n 1 = 1 n 1 =A 2 A × =A 2 2 A A ( A i A) 2 (B i B) 2 (P i 1 P i ) 2 n 1 [( A A A i A B B i ) ( A A A i A B B i )]2 n [( A A A i A B B i ) (A A A A B B)] 2 [ A A ( A i A) A B (B i B)] 2 [ 2 ( A i ) 2 2 ( B i B ) 2 2 A A A B ( A i )( B )] A A A A B A B i ( A i A) 2 A B 2 × ( B i B) 2 2A A A B [( A i A)( B i B)] n 1 n 1 n 1 2 2 2A A A B [( A i A)( B i B)] A B B n 1 对照公式( 1)得: ( A i A) 2 (B i B) 2 = × n × r AB n 1 1 ∴ r AB = [( A i A)( B i B)] ( A i A)2 (B i B) 2 这就是相关系数 r AB 的计算公式。 投资组合风险分散化效应的内在特征 1. 两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式( 1)左右两端对 A A 求一阶导数,并注意到 A B =1—A A : 2 2 2 A B r AB ( P )′=2A A A -2(1 -A A ) B + 2 (1 - A A ) A B r AB -2A A 令 ( P 2 )′=0 并简化,得到使 P 2 取极小值的 A A : 2 B r AB A A = B A ( 3) 2 2 2 A B r AB A B 式中,0 ≤ A A ≤ 1, 否则公式( 3)无意义。

相关系数计算 理论简化

统计相关计算 互协方差矩阵描述两个随机信号()i x ξ和()j x ξ之间的相关程度。一般来说,互协方差函数越大,则两个随机信号的相关程度越强;反之,相关程度越弱。但是,这种使用互协方差的绝对大小度量两个随机向量的相关程度并不方便。 两个随机变量()x ξ和()y ξ之间的相关系数定义为: def xy xy x y c ρσσ= (1.1) 2x σ和2y σ分别是()x ξ和()y ξ的方差。对相关系数的定义公式,易知 01xy ρ≤≤ (1.2) 相关系数xy ρ给出了两个随机变量()x ξ和()y ξ之间的相似程度的度量:xy ρ越接近于零,随机变量()x ξ和()y ξ之间的相似程度越弱;反之,xy ρ越接近于1,则变量()x ξ和()y ξ之间的相似程度越大。特别地,相关系数的两个极端值0和1有重要的意义。 容易验证随机变量()x ξ和()y ξ之间只相差一个固定的幅值比例因子和一个固定的相位角,这两个随机变量完全相关(或相干)。 备注:在操作时一般选择无偏的情况 Matlab 编程 %% 统计的数据相关 clear ; %生成两组数据各50个 x=randint(1,50,[1 10]); y=randint(1,50,[1 10]); %% 做两个数据的统计相关性当n 很大的时候有偏估计和无偏估计是一致的

% 数据的互协方差 hxfcwp=cov(x,y,0); %数据的无偏协方差除以数据n-1 hxfcyp=cov(x,y,1); %数据的有偏协方差除以数据n % 数据的标准差 bzcwpx=var(x,0); %数据的无偏方差除以数据n-1 bzcwpy=var(y,0); %数据的无偏方差除以数据n-1 bzcypx=var(x,1); %数据的有偏方差除以数据n bzcypy=var(y,1); %数据的有偏方差除以数据n % 相关性计算 Awuxgx=hxfcwp/(sqrt(bzcwpx)*sqrt(bzcwpy));%无偏的相关性 Ayuxgx=hxfcyp/(sqrt(bzcypx)*sqrt(bzcypy));%有偏的相关性 % 无偏的相关性和有偏的相关性得到的是2*2矩阵非对角元素是他们的相关性%% 更简单的是直接matlab自带结果 Az=corrcoef(x,y); %matlab自带的求解器非对角元素是他们的相关性

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

如何控制锅炉过剩空气系数

如何控制锅炉过剩空气系数 ?通过燃烧调整确定最佳过剩空气系数根据经验当炉膛过剩空气系数1.3~1.5左右时,锅炉的热效率最高。省煤器(二 级省煤器)出口的最佳过剩空气系数控制在1.7以内,如 果α过高,一方面使烟气量增加,排烟热损失加大,另一 方面使炉内温度降低,燃烧恶化,造成机械不完全燃烧损 失和化学不燃烧损失增大。 ?根据负荷和煤种变化等情况,及时调整送、引风门开度。 如锅炉负荷降低时,燃料的需要量相应减少,燃烧所需的 空气量也相应减少,此时如不及时调节风量,就会使炉膛 过剩空气系数增大。 ?要及时堵住漏风,堵绝炉膛、省煤器等尾部设备的漏风。 ?装设二氧化碳或氧气分析仪,连续自动地检测烟气中二氧化碳或氧气含量,以便及时地对炉膛或出口处过剩空气系 数作必要的调整。 剩空气系数 过剩空气系数是燃料燃烧时实际空气需要量与理论空气需要量之比值,用“α”表示。 计算公式:α=20.9%/(20.9%-O2实测值) 其中:20.9%为O2在环境空气中的含量,O2实测值为仪器测量烟道中的O2值 举例:锅炉测试时O2实测值为13%,计算出的过剩空气系数α=20.9%/(20.9%-13%) =2.6

国标规定过剩空气系数应按α=1.8(燃煤锅炉),α=1.2(燃油燃 气锅炉)进行折算。 举例:燃煤锅炉,锅炉测试时O2实测值为13%,SO2排放值500ppm, 计算出的过剩空气系数α=2.6,那么根据国标规定,折算后的SO2排放浓 度=SO2实测值×(α实际值/α国标值)=500ppm×(2.6/1.8 )=722ppm 举例:燃油燃气锅炉,锅炉测试时O2实测值为13%,SO2排放值500ppm,计算出的过剩空气系数α=2.6,那么根据国标规定,折算后的SO2排放浓 度=SO2实测值×(α实际值/α国标值)=500ppm×(2.6/1.2 )=1083ppm 在ecom产品中,J2KN、PLC具备测量过剩空气系数的功能。 摘要: 大庆油田有多套原油稳定装置,均采用立式圆筒加热炉为原油加热,该种加热炉在运行过程中普遍存在过剩空气系数偏大,能耗较高、热效率偏低又不易解决的难题。但通过控制炉膛烟道档板开度将炉膛负压调节在一定范围,就可提高加热炉运行效率,经济效益非常显著。对于新型加热炉可选用测量烟气中的含氧量装置,直接计算出过剩空气系数来自动控制烟道档板,从而控制空气的进入量,使过剩空气系数始终在标准规定的规范内,排烟温度得以有效地降低,提高加热炉的热效率。 根据《安全工程大辞典》(1995年11月化学工业出版社出版),一般认为,层燃炉和沸腾炉最佳的a值为1.3~1.6;固态排渣煤粉炉为1.2~1.25;液态排渣煤粉炉为1.15~1.2;旋风炉和燃油

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r

Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2 ) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.360docs.net/doc/0f10744884.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

废气产生量计算方法

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80 千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算:

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

过剩空气系数的计算方法

过剩空气系数的计算方法 引言 在燃气燃烧产物(烟气)的计算工作中,过剩空气系数的计算就是经常遇到的。一般用于以下两方面: 一为在控制燃烧过程中,需要检测燃烧过程中的过剩空气系数,防止过剩空气变化而引起的热效率的降低,以及燃烧工况的恶化。 一为在检测燃气燃烧设备的烟气中的有害物质时,需要根据烟气样中氧含量或二氧化碳含量确定过剩空气系数,从而折算成过剩空气系数为1时的有害物含量。 为了简化计算,通常就是采用近似的计算公式。但就是这些近似公式都有一定的设定条件。不考虑设定条件,盲目地使用近似公式,往往会引起较大的偏差,甚至于出现错误。这也就是在检测工作中经常发现数字矛盾的原因之一。为了减少读者的查阅资料的时间,本文适当地重复过去推导的公式,强调的就是近似公式的使用条件以及应用时应该考虑的问题。最后提出两个比较精确的过剩空气计算公式,供有关人士参考。 For personal use only in study and research; not for commercial use 一、根据燃烧产物的成分计算过剩空气系数 本文讨论的主要就是完全燃烧情况下的过剩空气系数。 这里的完全燃烧就是指燃烧产物中未完全燃烧成分很低,例如CO与NO X含量属于ppm级。在计算燃烧产物成分时可以不计入这些未完全燃烧成分。 For personal use only in study and research; not for commercial use 1、过剩空气的来源 在完全燃烧条件下,燃烧产物中有过剩空气,来源于两个情况。一为在燃烧过程中混入过多空气,使燃烧后燃烧产物中有过剩的空气;另一为根据分析燃烧产物成分的需要抽取烟气样时,混入了周围的空气。 在燃烧以前混入过多的空气,会增加热损失,降低热效率;混入的空气过少(过剩空气系数小于1)也会恶化燃烧,造成污染环境与能源浪费。为此在运行过程中需要根据烟气样中的成分计算过剩空气系数。从而做出调整燃烧工况的措施。 For personal use only in study and research; not for commercial use 在燃烧以后混入周围的空气大多数就是在抽取烟气样时发生的。为了消除多余空气对烟气样中成分的影响,需要折算到没有多余空气时(过剩空气系数=1)烟气样的成分。这也需要计算过剩空气系数。 虽然在燃烧前混入过多空气会影响燃烧工况,而燃烧后混入空气对燃烧工况没有关系。但就是它们对烟气样的成分的影响就是相同的。都可以用烟气样中的氧或二氧化碳含量计算过剩空气系数。当然这个结论都就是在本文的先提条件,完全燃烧的情况下才能成立。

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----=n i i n i i n i i i XY Y y X x Y y X x r 12121 )()())(((2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑=(2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差除,使之成为没有实际单位的标准分数,然后再求其协方差。即: Y X Z Z n ∑?=1(2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式(2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即:

在线监测折算值和过量空气系数

关于CEMS 中折算值和过量空气系数的说明 1、什么是折算值 按照GB13271 《锅炉大气污染物排放标准》的规定,实测的锅炉烟尘、二氧化硫、氮氧化物的排放浓度,必须执行国标GB/T16157规定,按下式进行折算: s C C αα?=' 式中: C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,mg/m 3; C ’ —标准状态下干烟气中颗粒物或气态污染物浓度,mg/m 3; α—在测点实测的过量空气系数; αs —有关排放标准中规定的过量空气系数。 实测过量空气系数按下式计算: 2 2121 O X -=α 式中:2O X —烟气中氧的体积百分数。 比如对于某锅炉,CEMS 仪表测得的SO2浓度为500mg/m3(C ’=500),O2浓度为8%(2 O X =8),则实测的过量空气系数α=21/(21-8)=1.6, 如果排放标准中规定了该锅炉的理论过量空气系数αs =1.4,则SO2折算后的排放浓度(折算值)为:500*1.6/1.4=571.4 mg/m3。

2、为什么要采用折算值 同样的锅炉,如果人为控制的进风量不同或烟道存在漏风口,则测得的污染物排放浓度将不同,同时氧气含量也是不同的。为避免因进风不同造成的测量值差异,对同种锅炉执行统一的标准,做到客观、公平地评判排污状况,排放浓度使用了折算值,通过过量空气系数对测量浓度进行修正。 比如上面举的例子,虽然仪表测得的SO2浓度为500mg/m3,但该锅炉的氧气超标了,存在漏风或空气过量的问题,浓度不能真实反映锅炉的状况,采用折算后,修正为571.4 mg/m3,漏风或空气过量的影响被消除了。 3、排放标准中规定的过量空气系数 所谓过量空气系数,即燃料燃烧时,实际空气供给量与理论空气需求量的比值。锅炉排放标准中规定的过量空气系数与锅炉类型和功率相关,具体规定为: 对于燃煤锅炉,功率小于等于45.5MW的,过量空气系数采用1.8,功率大于45.5MW的,过量空气系数采用1.4,对于燃气或燃油锅炉,过量空气系数采用1.2。 在实际描述中,有些锅炉的功率以t/h计,它与MW的换算关系为:0.7MW=1t/h,比如45.5MW的锅炉相当于65t/h的锅炉。 锅炉的过量空气系数越高,表明该锅炉的燃烧效率越低,因此燃煤锅炉的系数比燃油燃气锅炉要高,而小的燃煤锅炉的系数

第5讲 相关分析与相关系数

第五讲 相关分析 一、 “相关”的意义 (一)相关现象 教育工作者常发觉,许多教育现象之间或教育行为之间存在着一定的相互联系。例如,在学习行为上,隐约地表现出这么一些特点:学生的数学成绩和物理成绩之间关系密切,似乎许多数学成绩优秀的学生在物理科目上的成绩大多也是优秀的,许多数学水平中等的学生在物理科目上的学习水平大多数也是中等的,许多数学成绩较差的学生物理科目上的学习成绩大多也是较差的。这说明数学成绩和物理成绩之间存在一种“ 水涨船高、水落船低 ”的互相关联的趋势。当然,并不是所有事物之间都有这么一种相同的明显的关联趋势。比如,数学成绩与语文成绩之间或语文成绩与化学成绩之间,其相互关联的趋势就不是那么明显可察。而另外一些教育现象,例如对学习材料的复习次数与遗忘量之间的关系,其遗忘量在一定范围内随着复习次数的增加而减小。可见,行为变量或现象之间存在着种种不同模式不同程度的联系。 (二)、相关的直观意义——散点图分析 正相关与负相关—— 如果相互关联着的两变量,一个增大另一个也随之增大,一个减小另一个也随之减小,变化方向一致,就称两变量之间有正相关。如果相互关联着的两变量,一个增大另一个反而减小,变化方向相反,就称叫两变量之间有负相关。 直线性相关与曲线相关——直线性相关是所有关联模式中最简单的一种,有关联的两个变量各自以大体均等的速度变化着。若以平面坐标散点图来理解,直线性相关意指:两个变量的成对观测数据在平面直角坐标系上描点构成的散点图分布的教点会环绕在某一条直线附近。 直线性相关的含义,是以平面坐标散点图来理解,我们还可以从相关散点图的几何分布形态来认识相关的强度与方向,如果散点图形杂乱无章,没有显示出向某个方向延伸的情形,则说明相关程度很低;如果散点图分布形成一个边界不规则的椭圆,则说明两个变量存在中等程度的相关;若这里的椭圆越扁长,则相关程度越高。至于相关的方向,则可以通过散点椭圆图形的长轴所在直线的斜率来判断。从左下方往右上方延伸的情形是正相关;从左上方往右下方延伸的情形是负相关。这样,我们可以从散点图的分布情况,初步判断两个变量之间的相关情况。 二、相关的计算及分析 (一)、(积差)相关系数r 定义,设两个现象有如下两组观测值 1212:,,,:,,,n n X x x x Y y y y

相关文档
最新文档