溶解性与沸点

溶解性与沸点
溶解性与沸点

一、相似相溶原理

1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);

2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等);

3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。

二、有机物的溶解性与官能团的溶解性

1.官能团的溶解性:

(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。

(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。

2.分子中亲水基团与憎水基团的比例影响物质的溶解性:

(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;

例如,溶解性:CH3OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。

(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大;

例如,溶解性:CH3CH2CH2OH

(3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于水;

例如,常见的微溶于水的物质有:苯酚C6H5—OH、苯胺

C6H5—NH2、苯甲酸C6H5—COOH、正戊醇

CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。

(4)由两种憎水基团组成的物质,一定难溶于水。

例如,卤代烃R-X、硝基化合物R-NO2 ,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。

三、液态有机物的密度

1.难溶于水,且密度小于水的有机物

例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(乙酸乙酯、硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……)

注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。

2.难溶于水,且密度大于水的有机物

例如:四氯化碳、氯仿、溴苯、二硫化碳

怎样理解有机物沸点变化的规律

有机物的沸点高低变化是有规律可循的。液体沸点的高低决定于分子间引力的大小,分子间引力越大,使之沸腾就必须提供更多的能量,因此沸点就越高。分子间的引力称范德华力,它包括取向力、诱导力和色散力。除此之外还有一种力叫氢键,它的存在也对有机物的沸点有重要影响。

分子间引力的大小取决于分子结构,所以归根到底,有机物沸点的高低取决于分子本身的结构,其变化规律可以归纳为以下几个方面。

1.结构相似看分子量

对结构相似的有机物,其沸点高低主要由他子量的大小来决定。因为分子量越大,分子间的范德华力越大,沸点就越高。例如正烷烃系列:

名称分子式状态沸点(℃)

甲烷 CH4 气—164

乙烷 C2H6 气—88.6

丙烷 C3H8 气—42.1

丁烷 C4H10 气—0.5

戊烷 C5H12 液 36.1

庚烷 C7H16 液 68.9

辛烷 C8H18 液 125.7

正烷烃是非极性分子,分子间主要存在色散力。正烷烃分子的分子量越大即含碳原子数越多,原子个数也就越多,色散力当然也就越大。因此,正烷烃的沸点随着碳原子数的增多而升高。

2.同类同分异构体看支链

在有机物的同分异构体中,分子中所含的支链越多,其沸点越低。如戊烷的三种同分异构体的沸点如下:

名称正戊烷异戊烷新戊烷

结构 CH3CH2CH2CH2CH3 (CH3)2CHCH2CH3 (CH3)4C

沸点 36.1 27.9 9.5

(℃)

分子中支链的增多,使分子间相互靠近受到阻碍,分子间接近程度或者说分子间接触面积减小。由于色散力只有近距离内方能有效地产生作用.因此随着分子中支链的增多,分子之间距离增大,必然表现出有机物沸点的降低。

3.分子量相同看分子极性

如果有机物分子是极性分子,由于极性分子具有偶极,而偶极是电性的。因此,极性分子之间除了具有色散力外,还具有偶极之间的静电引力。这样,极性分子之间的分子间力比非极性分子要大得多,所以使沸点升高。例如分子量相同的丁烷和丙酮:

分子量结构沸点(℃)

丙酮 5856.2

丁烷 58 CH3CH2CH2CH3 —0.5

丙酮分子中含有羰基,由于碳氧电负性不同,碳原子上带有部分正电荷,氧原子上带有部分负电荷。当这样的极性分子相互接近时,势必产生较大的分子间力,从而表现出沸点值较大程度地升高。

4.不要忘记看氢键

如果有机物分子间能形成氢键,在液态时,分子间就能通过氢键结合形成较大的缔合体。这样的液体沸腾气化时,不仅要破坏分子间的范德华力,而且还必须消耗较多的能量破坏分子间的氢键,因此,含有氢键的有机物较之分子量相近的其它有机物,应具有反常的高沸点。例如甲醇和乙烷:

分子量结构沸点(℃)

甲醇 32 CH3OH 64.9

乙烷 30 CH3—CH3 —88.6

醇的沸点反常高就是由于其分子间有较强的氢键而发生缔合。除了醇之外,酚、羧酸和胺等也含有氢键,其沸点也相应较高。

有机溶剂分类

有机溶剂分类 一、烃类溶剂 1.烃 只含有碳氢两种元素的有机化合物叫烃。根据结构将烃类分为脂肪烃和芳香烃。脂肪烃包括脂肪链烃和脂环烃。开链结构的脂肪烃根据结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。芳香烃是含有苯环特殊结构的烃类。根据具体结构分为单环芳烃、多环芳烃和稠环芳烃。 烃类溶剂根据来源分为两类:由石油分馏得到的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制得到的成分单一烃类溶剂是烃的纯溶剂。纯溶剂价格较高,通常只用于一些特殊用途中。 2.溶剂油 石油是由多种烃类组成的混合物,经过分馏处理得到不同沸点范围的产品。根据沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。其中沸点范围在30~90℃以戊烷和己烷为主要成分的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。在工业生产中常做溶剂使用,称为溶剂油或溶剂汽油。近年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包含的烃类成分复杂。在一定情况下也可以做溶剂使用,如美国干洗业使用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。因此广义上溶剂油包括多种沸程范围的烃类混合物以及己烷、苯、甲苯、二甲苯纯烃类溶剂。为了叙述上的方便,本书介绍的溶剂油是指由石油分馏得到的烃类混合物溶剂。 (1)溶剂油按沸程分类根据分馏过程的沸程,溶剂油大致分为三类:把沸程在100℃凋以下的称为低沸点溶剂油,如工业上的6号抽提溶剂油,沸程为60~90℃;把沸程在100~150℃的称为中沸点溶剂油,如橡胶溶剂油,沸程在80~120℃;把沸程高于150℃的称为高调沸点溶剂油,如油漆溶剂油,沸程为140—200℃,油墨溶剂油干点达360℃都属于高沸点溶剂油。从沸程范围看,溶剂油大多数属于汽油馏分。 (2)溶剂油的化学成分溶剂油是各种烃类的混合物,主要成分有开链烷烃、烯烃、环烷烃和芳香烃。由于烯烃化学性质活泼、安定性差,不适合作溶剂使用,所以一般溶剂油中含烯烃很少,成分以其他三类烃为主。 低沸程溶剂油,如6号抽提溶剂油,120号橡胶溶剂油,200号油漆溶剂油中主要成分是烷烃和环烷烃。有时称为脂肪烃类溶剂,脂肪烃溶剂油成分有直链烷烃、支链烷烃、环烷烃。由于不同结构烷烃的溶解性能不同,所以又可以根据其主要成分进一步分类,如以支链烷烃为主要成分的溶剂油,称为异构烷烃溶剂油,它的溶解性能优于一般脂肪烃溶剂油而高沸程溶剂油中甲苯、二甲苯等芳烃含量较大称为芳烃类溶剂油,如近年兴起的高沸点芳烃溶剂油主要成分就是分子中含9个碳原子的芳烃。 溶剂油的性能与其化学成分有密切关系,由于烃类的溶解能力顺序为:芳烃>环烷烃>链烷烃。所以相同沸程的溶剂油中含链烷烃、环烷烃多的比含芳烃较多的溶剂油苯胺点高、贝壳松脂丁醇值低,溶解能力差。 纯芳香烃溶剂油虽然溶解能力强,但毒性也大,因此目前工业上出现用高芳香烃溶剂油和低芳香烃溶剂油来代替苯、甲苯、二甲苯等纯芳香烃溶剂使用的趋势。这样虽然溶解能力稍有降低,但降低了溶剂油的毒性,也降低了生产成本。而且为降低溶剂油的毒性,各国对溶剂油中的芳香烃含量都作出限制,如油漆溶剂油中芳香烃的含量要求在15%以下。

各种溶剂的沸点表

液氨-33、35℃特殊溶解性:能溶解碱金属与碱土金属剧毒性、腐蚀性 液态二氧化硫-10、08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱与烃不溶剧毒 甲胺-6、3 就是多数有机物与无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7、4 就是有机物与无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 乙醚34、6 微溶于水,易溶与盐酸、与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36、1 与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39、75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 二硫化碳46、23 微溶与水,与多种有机溶剂混溶麻醉性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其她石油系溶剂大 丙酮56、12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57、28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61、15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性 甲醇64、5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性, 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68、7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。麻醉性,刺激性 三氟代乙酸71、78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74、0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76、75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77、112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78、3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79、64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80、10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷80、72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用

常用溶剂极性顺序表

化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220 Toluene(甲苯) 2.4 0.59 111 285 p-xylene(对二甲苯) 2.5 0.65 138 290 Chlorobenzene(氯苯) 2.7 0.8 132 - o-dichlorobenzene(邻二氯苯) 2.7 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.9 0.23 35 220 Benzene(苯) 3 0.65 80 280 Isobutyl alcohol(异丁醇) 3 4.7 108 220 Methylene chloride(二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride(二氯化乙烯) 3.5 0.78 84 228 n-butanol(正丁醇) 3.7 2.95 117 210 n-butyl acetate(醋酸丁酯;乙酸丁酯) 4 - 126 254 n-propanol(丙醇) 4 2.27 98 210 Methyl isobutyl ketone(甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran(四氢呋喃) 4.2 0.55 66 220 Ethyl acetate(乙酸乙酯) 4.30 0.45 77 260 i-propanol(异丙醇) 4.3 2.37 82 210 Chloroform(氯仿) 4.4 0.57 61 245 Methyl ethyl ketone(甲基乙基酮) 4.5 0.43 80 330 Dioxane(二恶烷; 二氧六环; 二氧杂环己烷) 4.8 1.54 102 220 Pyridine(吡啶) 5.3 0.97 115 305 Acetone(丙酮) 5.4 0.32 57 330 Nitromethane(硝基甲烷) 6 0.67 101 330 Acetic acid(乙酸) 6.2 1.28 118 230 Acetonitrile(乙腈) 6.2 0.37 82 210 Aniline(苯胺) 6.3 4.4 184 - Dimethyl formamide(二甲基甲酰胺) 6.4 0.92 153 270 Methanol(甲醇) 6.6 0.6 65 210

常用有机溶剂分类48901

常用有机溶剂分类及干燥 第一类溶剂 是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如: 苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。 第二类溶剂 是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下: 2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。第三类溶剂 是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的

情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括: 戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。 除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。 一些溶剂因为种种原因总是含有杂质,这些杂质如果对溶剂的使用目的没有什么影响的话,可直接使用。可是在进行化学实验和进行一些特殊的化学反应时,必须将杂质除去。虽然除去全部杂质是有困难的,但至少应该将杂质减少到对使用目的没有妨碍的限度。除去杂质的操作称为溶剂的精制,故溶剂的精制几乎都要进行脱水,其次再除去其他的杂质。 1.溶剂的脱水干燥: 溶剂中水的混入往往是由于在溶剂制造,处理或者由于副反应时作为副产物带入的,其次在保存的过程中吸潮也会混入水分。水的存

常见有机溶剂的性质大全

溶剂的定义 溶剂(solvent)这个词广义指在均匀的混合物中含有的一种过量存在的组分。狭义地说,在化学组成上不发生任何变化并能溶解其他物质(一般指固体)的液体,或者与固体发生化学反应并将固体溶解的液体。溶解生成的均匀混合物体系称为溶液。在溶液中过量的成分叫溶剂;量少的成分叫溶质。 溶剂也称为溶媒,即含有溶解溶质的媒质之意。但是在工业上所说的溶剂一般是指能够溶解油脂、蜡、树脂(这一类物质多数在水中不溶解)而形成均匀溶液的单一化合物或者两种以上组成的混合物。这类除水之外的溶剂称为非水溶剂或有机溶剂,水、液氨、液态金属、无机气体等则称为无机溶剂。 溶解现象 溶解本来表示固体或气体物质与液体物质相混合,同时以分子状态均匀分散的一种过程。事实上在多数情况下是描述液体状态的一些物质之间的混合,金与铜、铜与镍等许多金属以原子状态相混合的所谓合金也应看成是一种溶解现象。所以严格地说,只要是两种以上的物质相混合组成一个相的过程就可以称为溶解,生成的相称为溶液。一般在一个相中应呈均匀状态,其构成成分的物质可以以分子状态或原子状态相互混合。 溶解过程比较复杂,有的物质在溶剂中可以以任何比例进行溶解,有的部分溶解,有的则不溶。这些现象是怎样发生的,其影响的因素很多,一般认为与溶解过程有关的因素大致有以下几个方面: ⑴相同分子或原子间的引力与不同分子或原子间的引力的相互关系(主要是范德华引力); ⑵分子的极性引起的分子缔合程度; ⑶分子复合物的生成; ⑷溶剂化作用; ⑸溶剂、溶质的相对分子质量; ⑹溶解活性基团的种类和数目。 化学组成类似的物质相互容易溶解,极性溶剂容易溶解极性物质,非极性溶剂容易溶解非极性物质。例如,水、甲醇和乙醇彼此之间可以互溶;苯、甲苯和乙醚之间也容易互溶,但水与苯,甲醇与苯则不能自由混溶。而且在水或甲醇中易溶的物质难溶于苯或乙醚;反之在苯或乙醚中易溶的却难溶于水或甲醇。这些现象可以用分子的极性或者分子缔合程度大小进行判断。纤维素衍生物易溶于酮、有机酸、酯、醚类等溶剂,这是由于分子中的活性基团与这类溶剂中氧原子相互作用的结果。有的纤维素衍生物在纯溶剂中不溶,但可溶于混合溶剂。例如硝化纤维素能溶于醇、醚混合溶剂;三乙酸纤维素溶于二氯乙烷、甲醇混合溶剂。这可能是由于在溶剂之间,溶质与溶剂之间生成分子复合物,或者发生溶剂化作用的结果。总之,溶解过程能够发生,其物质分子间的内聚力应低于物质分子与溶剂分子之间的吸引力才有可能实现。 溶液浓度的表示方法 溶质在溶剂中溶解的多少,彼此间存在着相对量的关系,通常用以下几种方法表示:⑴质量分数 即混合物中某一物质的质量与混合物的质量之比,符号为ω。 物质B的质量分数(ωB)=物质B的质量(mB)/溶液的质量(m) 例如:氯化钠的质量分数ω(NaCl)=15%,即表示100g该溶液中含有NaCl 15g。 ⑵体积分数 通常用于表示溶质为液体的溶液浓度(略) ⑶物质的量的浓度

各种溶剂的沸点表

液氨 -33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 乙醚微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 二硫化碳微溶与水,与多种有机溶剂混溶麻醉性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性 甲醇与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性, 四氢呋喃 66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。麻醉性,刺激性 三氟代乙酸与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮苯难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用 乙睛与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒

常用有机溶剂沸点

常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性猋??瓌 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性?!- 2埬q 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒4Z扖趹敍蠁 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃?|€gi懩 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性?_錣毬悭 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似腦吨 乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性聮鬿杰廸竐 戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性员婷疋 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强抒潣鞦 ? 二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉性,强刺激性乽O 琳盬L 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大採 7麓 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大@?& 適赽K 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性e?糕€69C' 氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性uo蓞乑棒 甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性,笒彠M 若烊 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒-? `q=8v 己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。麻醉性,刺激性狸僪 J> 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物鎓橌 蠿滗 1,1,1-三氯乙烷74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂淥曌瀕檙 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强圤覇?_H 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性陻t 5W= 乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 崌鶫駱 皜 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮刣 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 眈踂鼀 环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用秿?-+訑

常用溶剂极性表

常用溶剂极性表

二:常用溶剂的沸点、溶解性和毒性 溶剂名称沸点℃(101.3kPa) 溶解性毒性 液氨-33.35 特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,

麻醉性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉,强刺激性 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性 甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒,麻醉性,刺激性 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶, 能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇、乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品 三乙胺89.6 水:18.7以下混溶,以上微溶, 易溶于氯仿、丙酮,溶于乙醇、乙醚易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高毒性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、麻醉性 水100 略略

各种溶剂的沸点表

液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 乙醚34.6微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36.1与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39.75与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 二硫化碳46.23微溶与水,与多种有机溶剂混溶麻醉性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮56.12与水、醇、醚、烃混溶低毒,类乙醇,但较大

1,1-二氯乙烷57.28与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性 甲醇64.5与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性, 四氢呋喃66优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68.7甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。麻醉性,刺激性 三氟代乙酸71.78与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76.75与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78.3与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79.64与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮

常见的共沸混合物的组成及共沸点

常见的共沸混合物的组成及共沸点 共沸物,又称恒沸物,是指两组分或多组分的液体混合物,在恒定压力下沸腾时,其组分与沸点均保持不变。这实际是表明,此时沸腾产生的蒸汽与液体本身有着完全相同的组成。共沸物是不可能通过常规的蒸馏或分馏手段加以分离的。并非所有的二元液体混合物都可形成共沸物,科学堂在下列表格列出了一些常用的共沸物组成及其共沸点。这类混合物的温度-组分相图有着显著的特征,即,其气相线(气液混合物和气态的交界)与液相线(液态和气液混合物的交界)有着 共同的最高点或最低点。如此点为最高点,则称为正共沸物;如此点为最低点,则称为负共沸物。大多数共沸物都是负共沸物,即有最低沸点。值得注意的是:任一共沸物都是针对某一特定外压而言。对于不同压力,其共沸组分和沸点都将有所不同;实践证明,沸点相差大于30K的两个组分很难形成共(恒)沸物(如水与丙酮就不会形成共沸物)。 (a)与水形成的二元共沸物(水沸点100℃) 溶剂沸点/℃共沸点/℃含水量/% 溶剂沸点/℃共沸点/℃含水量/% 氯仿61.2 56.1 2.5 甲苯110.5 85.0 20 四氯化碳77.0 66.0 4.0 正丙醇97.2 87.7 28.8 苯80.4 69.2 8.8 异丁醇108.4 89.9 88.2 丙稀腈78.0 70.0 13.0 二甲苯137-40.5 92.0 37.5 二氯乙烷83.7 72.0 19.5 正丁醇117.7 92.2 37.5 乙睛82.0 76.0 16.0 吡啶115.5 94.0 42 乙醇78.3 78.1 4.4 异戊醇131.0 95.1 49.6 乙酸乙酯77.1 70.4 8.0 正戊醇138.3 95.4 44.7 异丙醇82.4 80.4 12.1 氯乙醇129.0 97.8 59.0 乙醚35 34 1.0 二硫化碳46 44 2.0 甲酸101 107 26 (b)常见有机溶剂间的共沸混合物 共沸混合物组分的沸点/℃共沸物的组成(质量)/% 共沸物的沸点/℃ 乙醇-乙酸乙酯78.3,78.0 30:70 72.0 乙醇-苯78.3,80.6 32:68 68.2 乙醇-氯仿78.3,61.2 7:93 59.4 乙醇-四氯化碳78.3,77.0 16:84 64.9 乙酸乙酯-四氯化碳78.0,77.0 43:57 75.0 甲醇-四氯化碳64.7,77.0 21:79 55.7 甲醇-苯64.7,80.4 39:61 48.3 氯仿-丙酮61.2,56.4 80:20 64.7 甲苯-乙酸101.5,118.5 72:28 105.4 乙醇-苯-水78.3,80.6,100 19:74:7 64.9

常用有机溶剂纯化处理

沸点56.2℃,折光率1.358 8,相对密度0.789 9。 普通丙酮常含有少量的水及甲醇、乙醛等还原性杂质。其纯化方法有: ⑴于250mL丙酮中加入2.5g高锰酸钾回流,若高锰酸钾紫色很快消失,再加入少量高锰酸钾继续回流,至紫色不褪为止。然后将丙酮蒸出,用无水碳酸钾或无水硫酸钙干燥,过滤后蒸馏,收集55~56.5℃的馏分。用此法纯化丙酮时,须注意丙酮中含还原性物质不能太多,否则会过多消耗高锰酸钾和丙酮,使处理时间增长。 ⑵将100mL丙酮装入分液漏斗中,先加入4mL10%硝酸银溶液,再加入3.6mL1mol/L氢氧化钠溶液,振摇10min,分出丙酮层,再加入无水硫酸钾或无水硫酸钙进行干燥。最后蒸馏收集55~56.5℃馏分。此法比方法⑴要快,但硝酸银较贵,只宜做小量纯化用。 二氧六环 沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。 二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏,压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。 吡啶 沸点115.5℃,折光率1.509 5,相对密度0.981 9。 分析纯的吡啶含有少量水分,供一般实验用。如要制得无水吡啶,可将吡啶与粒氢氧化钾(钠)一同回流,然后隔绝潮气蒸出备用。干燥的吡啶吸水性很强,保存时应将容器口用石蜡封好。 石油醚 石油醚为轻质石油产品,是低相对分子质量烷烃类的混合物。其沸程为30~150℃,收集的温度区间一般为30℃左右。有30~60℃,60~90℃,90~120℃等沸程规格的石油醚。其中含有少量不饱和烃,沸点与烷烃相近,用蒸馏法无法分离。 石油醚的精制通常将石油醚用其体积的浓硫酸洗涤2~3次,再用10%硫酸加入高锰酸钾配成的饱和溶液洗涤,直至水层中的紫色不再消失为止。然后再用水洗,经无水氯化钙干燥后蒸馏。若需绝对干燥的石油醚,可加入钠丝(与纯化无水乙醚相同)。 甲醇 沸点64.96℃,折光率1.328 8,相对密度0.791 4。 普通未精制的甲醇含有0.02%丙酮和0.1%水。而工业甲醇中这些杂质的含量达0.5%~1%。为了制得纯度达99.9%以上的甲醇,可将甲醇用分馏柱分馏。收集64℃的馏分,再用镁去水(与制备无水乙醇相同)。甲醇有毒,处理时应防止吸入其蒸气。 乙酸乙酯 沸点77.06℃,折光率1.372 3,相对密度0.900 3。 乙酸乙酯一般含量为95%~98%, 含有少量水、乙醇和乙酸。可用下法纯化:于1000mL乙酸乙酯中加入100mL乙酸酐,10滴浓硫酸,加热回流4h,除去乙醇和水等杂质,然后进行蒸馏。馏液用20~30g无水碳酸钾振荡,再蒸馏。产物沸点为77℃,纯度可达以上99%。

常见有机溶剂的性质

常见有机溶剂的性质 一、溶剂的定义 溶剂(solvent)这个词广义指在均匀的混合物中含有的一种过量存在的组分。狭义地说,在化学组成上不发生任何变化并能溶解其他物质(一般指固体)的液体,或者与固体发生化学反应并将固体溶解的液体。溶解生成的均匀混合物体系称为溶液。在溶液中过量的成分叫溶剂;量少的成分叫溶质。 溶剂也称为溶媒,即含有溶解溶质的媒质之意。但是在工业上所说的溶剂一般是指能够溶解油脂、蜡、树脂(这一类物质多数在水中不溶解)而形成均匀溶液的单一化合物或者两种以上组成的混合物。这类除水之外的溶剂称为非水溶剂或有机溶剂,水、液氨、液态金属、无机气体等则称为无机溶剂。 二、溶解现象 溶解本来表示固体或气体物质与液体物质相混合,同时以分子状态均匀分散的一种过程。事实上在多数情况下是描述液体状态的。一些物质之间的混合,金与铜、铜与镍等许多金属以原子状态相混合的所谓合金也应看成是一种溶解现象。所以严格地说,只要是两种以上的物质相混合组成一个相的过程就可以称为溶解,生成的相称为溶液。一般在一个相中应呈均匀状态,其构成成分的物质可以以分子状态或原子状态相互混合。 溶解过程比较复杂,有的物质在溶剂中可以以任何比例进行溶解,有的部分溶解,有的则不溶。这些现象是怎样发生的,其影响的因素很多,一般认为与溶解过程有关的因素大致有以下几个方面: ⑴相同分子或原子间的引力与不同分子或原子间的引力的相互关系(主要是范德华引力); ⑵分子的极性引起的分子缔合程度; ⑶分子复合物的生成; ⑷溶剂化作用; ⑸溶剂、溶质的相对分子质量; ⑹溶解活性基团的种类和数目。 化学组成类似的物质相互容易溶解,极性溶剂容易溶解极性物质,非极性溶剂容易溶解非极性物质。例如,水、甲醇和乙醇彼此之间可以互溶;苯、甲苯和乙醚之间也容易互溶,但水与苯,甲醇与苯则不能自由混溶。而且在水或甲醇中易溶的物质难溶于苯或乙醚;反之在苯或乙醚中易溶的却难溶于水或甲醇。这些现象可以用分子的极性或者分子缔合程度大小进行判断。纤维素衍生物易溶于酮、有机酸、酯、醚类等溶剂,这是由于分子中的活性基团与这类溶剂中氧原子相互作用的结果。有的纤维素衍生物在纯溶剂中不溶,但可溶于混合溶剂。例如硝化纤维素能溶于醇、醚混合溶剂;三乙酸纤维素溶于二氯乙烷、甲醇混合溶剂。这可能是由于在溶剂之间,溶质与溶剂之间生成分子复合物,或者发生溶剂化作用的结果。总之,溶解过程的发生,其物质分子间的内聚力应低于物质分子与溶剂分子之间的吸引力才有可能实现。 三、溶液浓度的表示方法 溶质在溶剂中溶解的多少,彼此间存在着相对量的关系,通常用以下几种方法表示:

常用溶剂极性表

常用溶剂极性表 化合物名称 英文名 极性 沸点 正戊烷 n-pentane 0 36 石油醚 Petroleum ether 0.01 30~60 正己烷 He_ane 0.06 69 环己烷 Cyclohe_ane 0.1 81 三氯乙烯 Trichloroethylene 1.0 87 四氯化碳 Carbon tetrachloride 1.6 77 丙醚 i-propyl ether 2.4 68 甲苯Toluene 2.4 111 对二甲苯 p-_ylene 2.5 138 氯苯Chlorobenzene 2.7 132 邻二氯苯 o-dichlorobenzene 2.7 180 二乙醚 Ethyl ether 2.9 35 苯 Benzene 3.0 80 异丁醇Isobutyl alcohol 3.0 108 二氯甲烷 Methylene chloride 3.4 40 二氯乙烯 Ethylene dichloride 3.5 84 正丁醇 n-butanol 3.7 117 醋酸丁酯 n-butyl acetate 4.0 126 四氢呋喃Tetrahydrofuran 4.2 66 乙酸乙酯 Ethyl acetat 4.3 77 异丙醇 i-propanol 4.3 82 氯仿 Chloroform 4.4 61 二氧六环 Dio_ane 4.8 102 吡啶Pyridine 5.3 115 丙酮 Acetone 5.4 57 硝基甲烷Nitromethane 6.0 乙酸 Acetic acid 6.2 118 乙腈Acetonitrile 6.2 82 苯胺 Aniline 6.3 184 DMF Dimethyl

常用有机溶剂的纯化-甲醇常用有机溶剂的纯化-乙醇常用有机试剂

常用有机溶剂的纯化-甲醇 沸点 64.96℃,折光率 1.328 8,相对密度 0.791 4。 而工业甲醇中这些杂质的含量达0.5%~1%。 普通未精制的甲醇含有0.02%丙酮和0.1%水。 为了制得纯度达 99.9%以上的甲醇,可将甲醇用分馏柱分馏。收集 64℃的馏分,再用镁 去水(与制备无水乙醇相同)。甲醇有毒,处理时应防止吸入其蒸汽。 常用有机溶剂的纯化-乙醇 沸点 78.5℃,折光率1.361 6,相对密度 0.789 3。 制备无水乙醇的方法很多,根据对无水乙醇质量的要求不同而选择不同的方法。 若要求 98%~99%的乙醇,可采用下列方法: ⑴利用苯、水和乙醇形成低共沸混合物的性质,将苯加入乙醇中,进行分馏,在64.9℃ 时蒸出苯、水、乙醇的三元恒沸混合物,多余的苯在68.3 与乙醇形成二元恒沸混合物被蒸 出,最后蒸出乙醇。工业多采用此法。 ⑵用生石灰脱水。于100mL95%乙醇中加入新鲜的块状生石灰 20g,回流 3~5h,然后进 行蒸馏。 若要 99%以上的乙醇,可采用下列方法: ⑴在 100mL99%乙醇中,加入 7g金属钠,待反应完毕,再加入 27.5g 邻苯二甲酸二乙酯 或 25g 草酸二乙酯,回流 2~3h,然后进行蒸馏。 金属钠虽能与乙醇中的水作用, 产生氢气和氢氧化钠,但所生成的氢氧化钠又与乙醇发 生平衡反应,因此单独使用金属钠不能完全除去乙醇中的水,须加入过量的高沸点酯,如邻 苯二甲酸二乙酯与生成的氢氧化钠作用,抑制上述反应,从而达到进一步脱水的目的。 ⑵在 60mL99%乙醇中,加入 5g镁和 0.5g 碘,待镁溶解生成醇镁后,再加入 900mL99% 乙醇,回流 5h 后,蒸馏,可得到 99.9%乙醇。 由于乙醇具有非常强的吸湿性,所以在操作时,动作要迅速,尽量减少转移次数以防止 空气中的水分进入,同时所用仪器必须事前干燥好。 常用有机试剂的纯化-丙酮 沸点 56.2℃,折光率1.358 8,相对密度 0.789 9。 普通丙酮常含有少量的水及甲醇、乙醛等还原性杂质。其纯化方法有: ⑴于 250mL丙酮中加入 2.5g 高锰酸钾回流,若高锰酸钾紫色很快消失,再加入少量高 锰酸钾继续回流,至紫色不褪为止。然后将丙酮蒸出,用无水碳酸钾或无水硫酸钙干燥,过 滤后蒸馏,收集 55~56.5℃的馏分。用此法纯化丙酮时,须注意丙酮中含还原性物质不能太 多,否则会过多消耗高锰酸钾和丙酮,使处理时间增长。 ⑵将 100mL丙酮装入分液漏斗中,先加入 4mL10%硝酸银溶液,再加入 3.6mL1mol/L氢 氧化钠溶液,振摇 10min,分出丙酮层,再加入无水硫酸钾或无水硫酸钙进行干燥。最后蒸 馏收集 55~56.5℃馏分。此法比方法⑴要快,但硝酸银较贵,只宜做小量纯化用。

实验室常见有机溶剂间的共沸混合物

昂常见有机溶剂间的共沸混合物 来源:有机化学网作者:chemfei 共沸物的沸点/℃共沸混合物组分的沸点/℃共沸物的组成(质 量)/% 乙醇-乙酸乙酯78.3,78.030:7072.0乙醇-苯78.3,80.632:6868.2 乙醇-氯仿78.3,61.27:9359.4 乙醇-四氯化碳78.3,77.016:8464.9 乙酸乙酯-四氯化碳78.0,77.043:5775.0 甲醇-四氯化碳64.7,77.021:7955.7甲醇-苯64.7,80.439:6148.3 氯仿-丙酮61.2,56.480:2064.7 甲苯-乙酸101.5,118.572:28105.4 乙醇-苯-水78.3,80.6,10019:74:764.9

实验室常用酸、碱的浓度 来源:有机化学网作者:chemfei 试剂名称密度(20℃)g/ml浓度mol/L质量分数浓硫酸 1.8418.00.960浓盐酸 1.1912.10.372浓硝酸 1.4215.90.704磷酸 1.7014.80.855冰醋酸 1.0517.450.998浓氨水0.9014.530.566浓氢氧化钠 1.5419.40.505

一些溶剂与水形成的二元共沸物来源:有机化学网作者:chemfei

各种显色剂及其配制方法 来源:有机化学网作者:admin 碘: 不饱和或者芳香族化合物 配制方法 在100ml广口瓶中,放入一张滤纸,少许碘粒。 或者在瓶中,加入10g碘粒,30g硅胶 紫外灯 含共厄基团的化合物,芳香化合物 硫酸铈: 生物碱 配制方法 10%硫酸铈(IV)+15%硫酸的水溶液 氯化铁 苯酚类化合物 配制方法 1% FeCl3 + 50% 乙醇水溶液. 桑色素(羟基黄酮) 广谱, 有荧光活性 配制方法 0.1% 桑色素+甲醇 茚三酮 氨基酸 配制方法 1.5g 茚三酮+ 100mL of 正丁醇+ 3.0mL 醋酸 二硝基苯肼(DNP) 醛和酮 配制方法 12g二硝基苯肼+ 60mL 浓硫酸+ 80mL 水+ 200mL 乙醇 香草醛(香兰素) 广谱 配制方法

DBE溶剂

高沸点环保型强溶剂 ■产品优异特点 1.极强溶解力、相溶性。 2. 增加烤漆之平坦性、密着性、可解决常见漆膜缺陷。 3. 改善流平性、增加光泽。 4. 沸点宽、馏程长、可调节溶剂挥发速率。 5. 无毒低味、使用安全。 ■应用范围 卷钢涂料、木器涂料、容器/罐头涂料、汽车涂料、漆包线涂料、烤漆工业、油墨工业、树脂工业、清洗剂等。 ■技术指标: ■应用领域:

本品作为溶剂,可用于制造油漆、粘合剂和除漆剂等。可全部或部分替代环己酮、异佛尔酮、乙二醇乙醚醋酸酯(CAC)、丙二醇甲醚醋酸酯(PMA)、乙二醇单丁醚(BCS)等高沸点溶剂,具有改善流平、调节漆膜干燥速度的特点。 本产品主要用于烤漆,硝基喷漆,硝基漆,印刷油墨,卷材卷钢涂料,纤维素酯,荧光涂料。能溶解松香、醋酸纤维酯、硝化纤维素、醇酸树脂、丙烯酸树脂、聚酯树酯等。 ■包装规格:220kg/铁桶 高沸点溶剂混合二元酸酯(杜邦称DBE)为二元酸酯混合物,亦称二价酸酯。是一种低毒、低味,能生物降解的环保型高沸点溶剂(涂料万能溶剂),目前已广泛应用于油漆、涂料、油墨工业及其它领域中。 产品包括丁二酸二甲酯、戊二酸二甲酯、己二酸二甲酯以及它们不同比例的混合物。生产时,先由甲醇同混合的二元酸反应,然后水洗精馏分离提取产品。特殊的工艺,合理的操作控制,严格的酯化过程和分离过程使混合二元酸酯中的水份含量、甲醇含量、色度和酸值都极低 高沸点溶剂 DBE 高沸点溶剂混合二元酸酯(杜邦称DBE)为二元酸酯混合物。是一种低毒、低味,能生物降解的环保型高沸点溶剂(涂料万能溶剂),目前已广泛应用于油漆、涂料、油墨工业及其它领域中。产品包括丁二酸二甲酯、戊二酸二甲酯、己二酸二甲酯以及它们不同比例的混合物。 一﹑优点: 1﹑极好的溶解力,与聚氨酯树脂、丙烯酸树脂、聚酯树脂、醇酸树脂、环氧树脂等相溶性良好。

相关文档
最新文档