仪器分析各个章节小结

仪器分析各个章节小结
仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结

1.基本概念

指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。

参比电极:在一定条件下,电极电位基本恒定的电极。

膜电位:跨越整个玻璃膜的电位差。

不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。

酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。

碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。

转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。

离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。

电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。

可逆电对:电极反应是可逆的电对。

此外还有相界电位、液接电位、原电池、残余液接电位。

2.基本理论

(1)pH玻璃电极:

①基本构造:玻璃膜、内参比溶液(H+与Cl-浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套;

②膜电位产生原理及表示式:;

③玻璃电极作为测溶液pH的理论依据。

(2)直接电位法测量溶液pH:

①测量原理。

②两次测量法。pHs要准,而且与pHx差值不大于3个pH单位,以消除液接电位。

(3)离子选择电极:

①基本构造:电极膜、电极管、内参比溶液、内参比电极;

②分类:原电极、敏化电极;

③响应机理及电位选择性系数;

④测量方法:两次测量法、校正曲线法、标准加入法。

(4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。

(5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。

第九章光谱分析法概论- 章节小结

1.基本概念

电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。

磁辐射性质:波动性、粒子性

电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。

光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。

非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。

原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。

分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级跃迁)所产生的分子光谱为基础的定性、定量和物质结构分析方法。为带状光谱。

吸收光谱法:物质吸收相应的辐射能而产生的光谱,其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量。利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。

发射光谱法:发射光谱是指构成物质的原子、离子或分子受到辐射能、热能、电能或化学能的激发跃迁到激发态后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。利用物质的发射光谱进行定性定量及结构分析的方法称为发射光谱法。

2.基本计算

(1)电磁辐射的频率:ν=C/λ σ=1/λ=ν/C

(2)电磁辐射的能量:E=hν=hC/λ=hCσ

3.光谱分析仪器组成:辐射源、分光系统、检测系统

第十章紫外-可见分光光度法- 章节小结

1.基本概念

透光率(T):透过样品的光与入射光强度之比。T=I t/I0

吸光度(A):透光率的负对数。A=-lgT=lg(I0/I t)

吸光系数(E):吸光物质在单位浓度及单位厚度时的吸光度。根据浓度单位的不同,常有摩尔吸光系数ε和百分吸光

系数之分。

电子跃迁类型:

(1)σ-σ*跃迁:处于σ成键轨道上的电子吸收光能后跃迁到σ*反键轨道。饱和烃中电子跃迁均为此种类型,吸收波长小于150nm。

(2)π-π*跃迁:处于π成键轨道上的电子吸收光能后跃迁到π*反键轨道上,所需的能量小于σ-σ*跃迁所需的能量。孤立的π-π*跃迁吸收波长一般在200nm左右,共轭的π-π*跃迁吸收波长

>200nm,强度大。

(3)n-π*跃迁:含有杂原子不饱和基团,其非键轨道中的孤对电子吸收能量后向π*反键轨道跃迁,这种吸收一般在近紫外区(200-400nm),强度小。

(4)n-σ*跃迁:含孤对电子的取代基,其杂原子中孤对电子吸收能量后向σ*反键轨道跃迁,吸收波长约在200nm。

以上四种类型跃迁所需能量σ-σ* > n-σ*≥ π-π* > n-π*

(5)电荷迁移跃迁和配位场跃迁

生色团:有机化合物分子结构中含有π-π*或n-π*跃迁的基团,能在紫外-可见光范围内产生吸收的原子团。

助色团:含有非键电子的杂原子饱和基团,与生色团或饱和烃连接时,能使该生色团或饱和烃的吸收峰向长波方向移动,并使吸收强度增加的基团。

红移(长移):由于化合物的结构改变,如发生共轭作用、引入助色团以及溶剂改变等,使吸收峰向长波方向移动。

蓝移(紫移或短移):当化合物的结构改变或受溶剂影响使吸收峰向短波方向移动。

增色效应:由于化合物结构改变或其他原因,使吸收强度增加。

减色效应:由于化合物结构改变或其他原因,使吸收强度减小。

强带:化合物的紫外可见吸收光谱中,摩尔吸光系数值大于104的吸收峰。

弱带:化合物的紫外可见吸收光谱中,摩尔吸光系数值小于102的吸收峰。

吸收带及其特点:

计算分光光度法:运用数学、统计学与计算机科学的方法,在传统分光光度法基础上,通过量测试验设计与数据的变换、解析和预测对物质进行定性定量的方法。

2.基本原理

(1)Lambert-Beer定律:当一束平行单色光通过均匀的非散射样品时,样品对光的吸收度与样品的浓度及厚度成正比。A=ECl

(2)吸光度的加和原理:溶液中存在多种无相互作用的吸光物质时,体系的总吸光度等于各物种吸光度之和。A总

=A a+A b+A c+……

(3)计算分光光度法:

①双波长分光光度法:等吸收双波长消去法和系数倍率法均利用使ΔA干扰=0,ΔA信号=ΔA被测原理消去干扰组分的吸光度值。

②导数光谱法:利用导数光谱的输出信号更多、更明显(可显示出结构相似的不同化合物的微小差别)及易于辨认等特点定性;利用导数光谱法能消除背景干扰及分离重叠谱带等优势定量。

③褶合光谱法:是一种信号处理技术,即通过褶合变换,显示原始光谱在构成上的局部细节特征,对结构相似的物质进行定性鉴别;同时减少了混合物中共存组分之间的数学相关性,因而可以测定共存组分的含量。

3.基本计算

(1)Lambert-Beer定律数学表达式:

A=-lgT=ECl 或 T=10-A=10-ECl

(2)摩尔吸光系数与百分吸光系数的关系:(3)单组分定量:

① 吸光系数法:C=A/El

② 对照法:

③ 校正曲线法

(4)多组分定量(a + b的混合物):

①解线性方程组:

② 等吸收双波长消去法:

③系数倍率法:ΔA=

第十二章红外吸收光谱法- 章节小结

1.基本概念

基频峰:当分子吸收一定频率的红外线,由振动基态(V=0)跃迁至第一激发态(V=1)时,所产生的吸收峰称为基频峰。

泛频峰:将倍频峰、合频峰及差频峰统称为泛频峰。

伸缩振动:化学键两端的原子沿着键轴方向作规律性的伸缩运动。

弯曲振动:键角发生规律性变化的振动,又称为变形振动。

振动自由度:分子基本振动的数目。

简并:振动形式不同但振动频率相同而合并的现象称为简并。

红外活性振动:能引起偶极矩变化而吸收红外线的振动。

红外非活性振动:不能引起偶极矩变化,不吸收红外线的振动。

特征峰:凡是能用于鉴别基团存在的吸收峰。

相关峰:由一个基团产生的一组相互具有依存关系的吸收峰。

特征区:4000~1300cm-1的区域称为特征区。

指纹区:1300~400cm-1区域称为指纹区。

2.基本原理

(1)振动自由度:非线型分子有3N-6个振动自由度;线型分子有3N-5个。

(2)红外吸收光谱产生的条件:①E L=ΔV·hγ 或γL=ΔV·γ;②Δμ≠0。

(3)基频峰的分布规律:①μ愈小,σ愈高。②μ相同,K愈大,σ愈高。③μ相同时,一般ν>β>γ。

(4)解析光谱的三大要素:第一是峰位,第二是峰强,第三是峰形。

(5)解析光谱的原则:遵循用一组相关峰确定一个基团。

(6)解析光谱的顺序:先特征区,再指纹区。

(7)掌握各类化合物的主要光谱特征。

3.基本计算

①②γL=ΔV·γ

第十六章色谱分析法概论- 章节小结

一、主要内容

1.基本概念

保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。

死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。

调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。

相对保留值r2,1:两组分的调整保留值之比。

分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。

保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。

分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。

分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。

吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。

离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。

分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。

涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。

纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。

传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。

保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats 指数。

保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。

调整保留体积V R':是由保留体积扣除死体积后的体积。

保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。

2.基本理论

(1)色谱分离的原理:组分在固定相和流动相间进行反复多次的“分配”,由于分配系数K(或容量因子k)的不同而实现分离。各种色谱法的分离机制不同。

(2)塔板理论:塔板理论描述组分在色谱柱中的分配和转移行为,由塔板理论导出的流出曲线方程为:

塔板理论有如下基本假设:①在色谱柱内一小段长度即一个塔板高度H内,组分可以在两相中瞬间达到分配平衡。②分配系数在各塔板上是常数。③试样和新鲜流动相都加在第0号塔板上。④流动相不是连续地而是间歇式地进入色谱柱,且每次只进入一个塔板体积。⑤试样在柱内的纵向扩散可以忽略。

塔板理论在解释流出曲线的形状和位置、组分的分离及评价柱效等方面是成功的。

(3)速率理论:速率理论解释了影响塔板高度或使色谱峰展宽的各种因素,包括涡流扩散、纵向扩散、传质阻抗和流动相线速度。其表达式为:H=A+B/u+Cu

A为涡流扩散系数:A=2ldp

B为纵向扩散系数:B=2gDm

C为传质阻抗:包括固定相传质阻抗Cs和流动相传质阻抗Cm

3.基本计算

(1)保留值:t R'=t R-t0,V R'=V R-V0,r2,1=t R1'/t R2'=V R1'/V R2'

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

仪器分析考试必考知识点(全面)

仪器分析考试必考知识点 分子光谱法:UV-VIS 、IR 、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS 、NRS 1. 经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 3?简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足厶E=hv的关系时,将产生吸收光谱。M+hv T M* 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为v的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度Au D:由原子在空间作无规热运动所致。故又称热变宽。 Doppler 宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽Au L(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起外界压力愈大,浓度越高,谱线愈宽。 1引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度Au D:由原子在空间作无规热运动所致。故又称热变宽。 ⑶?压力变宽Au L (碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark 变宽(电场)和Zeeman 变宽(磁场) 2?火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

仪器分析课程学习心得

《仪器分析》学习心得 仪器分析是我们大学课程里的一门专业基础课,本着让我们在大学学习期间掌握有关仪器分析的一些常用方法的基础原理、特点和应用。通过老师的详细讲解,我认为这门课程对于我们将来参加科学研究或具体实际工作都是很有帮助的。通过学习,我也感触颇深,受益匪浅。 在老师讲的众多实验仪器中我对电感偶和等离子体(ICP)最为感兴趣,想法颇多。主要是因为,我现在跟随着唐老师做大学生创新实验——用吸附法处理含铬电镀废水,因此经常用到ICP,感觉ICP 对我们的科研具有很大的帮助,方便我们测量分析实验结果,快捷方便。 1.1我简单讲一下,ICP的CP光谱议中等离子体焰的形成过程及原理。 ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 样品气溶胶在ICP高温作用下经历了蒸发、原子化、电离、激发

等过程。在听完课后,我感觉对这个过程还不是很清楚,我就上网搜索了相关ICP的自学资料来进一步学习。在学习后,我明白了这4个过程的具体内容。以ICP测量CaCl2样品为例,先通过去溶剂成盐粒,盐粒在高温下蒸发成气态,在通过离解成原子态,激发发射特征谱线测量。 1.2下面我大概讲一下ICP的样品前处理,测试参数的选取,标准曲线的绘制。 1.2.1样品前处理:样品在放入ICP前,应该经过分解。可以是采用酸溶、碱溶、灰化后酸溶和微波消解等。消解液可以是王水、KOH /NaOH、氢氟酸高氯酸组成的混合酸、王水与硫酸和磷酸组成的混合酸等。具体的消解可以看下面:

(完整)仪器分析第四版期末复习知识点(比较全),推荐文档

GC特点 (1)分离效率高: 复杂混合物,有机同系物、异构体。 (2)灵敏度高: 可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。 (3)分析速度快: 一般在几分钟或几十分钟内可以完成一个试样的分析。 (4)应用范围广: 适用于沸点低于400℃的各种有机或无机试样的分析。 不足之处: 不适用于高沸点、难挥发、热不稳定物质的分析。 被分离组分的定性较为困难。 1. 载气系统:包括气源、净化干燥管和载气流速控制;(图中1-6) 2. 进样系统:进样器及气化室; 3. 色谱柱:填充柱(填充固定相)或毛细管柱(内壁涂有固定液); 4. 检测器:可连接各种检测器,以热导检测器或氢火焰检测器最为常见; 5. 记录系统:放大器、记录仪或数据处理仪; 6. 温度控制系统:柱室、气化室的温度控制。 常用的载气有:氢气、氮气、氦气 色谱柱:色谱仪的核心部件。 检测系统广普型专属型 色谱仪的眼睛。 通常由检测元件、放大器、显示记录三部分组成; 常用的检测器:热导检测器、氢火焰离子化检测器 基线 无试样通过检测器时,检测到的信号即为基线。 基线反映仪器及操作条件的稳定性 标准偏差 色谱高0.607处峰宽度 的一半; r21 = t R2 ′/ t R1 ′= V R2 ′/ V R1 ′ 相对保留值只与柱温和固定相性质有关,与其他色谱操作条件无关,它表示了固定相对这两种组分的选择性。 区域宽度 用来衡量色谱峰宽度的参数,有三种表示方法: (1)标准偏差(σ):即0.607倍峰高处色谱峰宽度的一半。 (2)半峰宽(Y1/2):色谱峰高一半处的宽度Y1/2 =2.354 σ (3)峰底宽(Y或W b):Y=4 σ 组分在固定相和流动相间发生的吸附、脱附,或溶解、挥发的过程叫做分配过程。 分配系数是色谱分离的依据Array 分配比k 容量因子或容量比

仪器分析知识点分享

《第二章原子光谱》 2.原子发射光谱:根据待测物质的气态原子或离子被激发时,所发射特征谱线的波长和其强度来测定物质元素组成和含量的一种分析方法 3.共振线:最低激发态向基态跃迁所发射的谱线。 4.自吸和自食:原子获得一定能量后被激发,发射某一波长谱线,被处于同一基态的同类原子吸收的现象。 5.激发光源:提供样品蒸发和激发所需的能量,使其发射光谱。 6.特征谱线:(百度)一种物质高温时发射的光谱亮线跟它在低温时吸收光谱的暗线位置一一对应,所以元素的明线光谱和吸收光谱是元素的特征,称为特征谱线。 7.棱镜光谱仪:(自己写的)能将不同波长的辐射光分解为按波长顺序排列的单色光,并能进行测定记录的仪器叫光谱仪。棱镜光谱仪是其中一种,利用棱镜完成目的。分为照明系统、准光系统、色散系统和记录系统。(图见课件) 8.光栅光谱仪:(自己写的)能将不同波长的辐射光分解为按波长顺序排列的单色光,并能进行测定记录的仪器叫光谱仪。光栅光谱仪是其中一种。利用狭缝衍射原理。(图见课件) 9.灵敏线:激发电位低,跃迁概率大的谱线,一般为共振线。 10.最后线:样品中含量逐渐减少时而最后消失的线,多数情况下:灵敏线=最后线。 11.分析线:(百度)灵敏线、共振线和最后线的通称。在测定某元素的含量或浓度时,所指定的某一特征波长的谱线,一般是从第一激发态状态下跃迁到基态时,所发射的谱 线。该谱线的灵敏度高,选择性强。 12.原子吸收:原子吸收光谱又称原子吸收分光光度法,是通过测量气态基态原子对其特征谱线的吸收,在一定的条件下,吸收度与元素含量有一定的关系。 13.锐线光源:能发射出谱线半宽度很窄的发射线的光源,一般只有吸收线半宽度的1/5,峰值吸收系数(K0)与基态原子数N0成正比。 14.吸光度(A):(百度)是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数(即lg(Iin/Iout)),影响它的因素有溶剂、浓度、温度等等。 15.化学计量型火焰:燃气与助燃气比为化学计量关系。温度高,稳定性好,干扰少,背景值低,适用于大多元素。 16.富燃型火焰:燃气>助燃气。火燃具有还原性。不稳定,干扰较多,背景值高,适于难解高氧化物的元素(铍、钽、铅等)。 17.贫燃型火焰:燃气<助燃气。火燃具有氧化性。燃烧完全,温度低,适用于易解离电离的元素(碱金属)。 18.通带宽度:指通过单色器射出狭缝后的波长区间宽度(nm)。 19.光栅倒线色散率:两条谱线间的距离与波长差的比值ΔX/Δλ(nm/mm)。实际工作中常用其倒数 20.狭缝:(百度)光谱仪的主要部件之一。狭缝是一条宽度可调、狭窄细长的缝孔。有固定狭缝,单边可调的非对称式狭缝和双边可调的对称狭缝 21.原子荧光光谱法:通过测量原子在辐射激发下发射的荧光强度来定量分析的方法。 22.共振原子荧光:气态原子吸收共振线被激发后,激发态原子再发射出与共振线波长相同的荧光。 23非共振原子荧光:指气态基态原子吸收激光后,在发射与激发光波长不同荧光。24.敏化荧光:受光激发的原子与另一种原子碰撞时,把激发能传递到另一个原子使其

(完整版)仪器分析知识点整理..

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

仪器分析-光谱法总结

原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。原子发射一般是线状光谱。 原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s,外层电子就从高能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。 光谱选择定律:①主量子数的变化△n为包括零的整数,②△±1,即跃迁只能在S项与P项间,P与S或者D间,D到P和F。 ③△0,即不同多重性状间的迁移是不可能的。 ③△0,±1。但在0时,0的跃迁是允许的。N21 影响谱线强度的主要因素:1激发电位2跃迁概率3 统计权重4激发温度(激发温度↑离子↑原子光谱↓离子光谱↑)5原子密度 原子发射光谱仪组成:激发光源,色散系统,检测系统, 激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱土金属。 ②直流电弧:4000到7000K,优点:分析的灵敏度高,背景小,适合定量分析和低含量的测定。缺点:不宜用于定量分析及低熔点元素的分析。 ③交流电弧:温度比直流高,离子线相对多,稳定性比直流高,操作安全,但灵敏度差

④火花:一万K,稳定性好,定量分析以及难测元素。每次放电时间间隔长,电极头温度低。 适合分析熔点低。缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤辉光激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检出限低,稳定性好,准确度高(设备复杂,进样不方便)⑥电感耦合等离子体10000K 基体效应小,检出限低,限行范围宽⑦激光一万K,适合珍贵样品 分光系统:单色器:入射狭缝,准直装置,色散装置,聚焦透镜,出射狭缝。 棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。 光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。 分辨率: 原子发射检测法:①目视法,②光电法, ③摄谱法:用感光板来记录光谱,感光板:载片(光学玻璃)和感光乳剂(精致卤化银精致明胶)。曝光量 E感光层接受的照度、 黑度:1为没有谱线的光强,i通过谱线的光强度i ,透过率T 定性分析:铁光谱比较法,标样光谱比较法,波长测定法。

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法; 光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。 光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不 涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。 光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理; 2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。 原子发射光谱分析法的特点: (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低(5)准确度较高10?0.1 g x g-1(—般光源);ng x g-1(ICP ) 5%?10% (一般光源) ; <1% (ICP) ; (6)ICP-AES性能优越线性范围4?6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。 3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。 特点: (1)检出限低,10-10 ?10-14 g; (2)准确度高,1%?5%; (3)选择性高,一般情况下共存元素不干扰; (4)应用广,可测定70多个元素(各种样品中) ; 局限性:难熔元素、非金属元素测定困难、不能同时多元素测量 4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器)则在观察者看来,其频率较静止原子所发的频率低,反之,高。 5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s 后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90 度的方向上,测定荧光强度进行定量分析的方法。 6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 特点: (1)灵敏度高 比紫外-可见分光光度法高2? 4 个数量级;为什么? 检测下限:0.1?0.1 g/cm -3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱; (3)试样量少 缺点:应用范围小。 7、分子磷光分析法:处于第一最低单重激发态分子以无辐射弛豫方式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。 8、X射线荧光分析法:原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射

仪器分析总结习题

第一章 气象色谱法 1.死时间tM 2.保留时间tR 3.调整保留时间t ’R 4.死体积VM 5.保留体积VR 6.调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度Y1/210.峰底宽度Y 1、若一个溶质的分配比为0.2,计算它在色谱柱流动相中的质量分数(83.3%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为2.5和5.5min ,死时间为1min ,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍?(3,3) 3、某色谱条件下,组分A 的分配比为4,死时间为30s ,求组分A 的保留时间(150s ) 4、下列哪些参数改变会引起相对保留值变化? A 、柱长 B 、相比 C 、柱温 D 、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A 、改变载气流速 B 、改变固定液化学性质 C 、增加柱温 D 、增加柱长 E 、增加固定液的量 例1已知某组分峰Y =40s ,tR=400s 。计算理论塔板数n 。 例2已知一根1米长的色谱柱,neff =1600块,组份A 在柱上的调整保留时间为100s ,试求A 峰的半峰宽和Heff 。 例3在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R=1.5。计算需要多少块有效塔板。若填充柱的塔板高度为0.1cm ,柱长是多少? 1600)40 400(16)(1622===Y t n R 理'21/25.54() R t L n H Y n ==有效有效有效

解:γ2,1=100/85=1.18 n有效=16R2[γ2,1/(γ2,1-1)]2 =16×1.52×(1.18/0.18)2 =1547(块) L有效=n有效·H有效=1547×0.1=155cm 即柱长为1.55米时,两组分可以得到完全分离。 例2有一根1m长的柱子,分离组分1和2得到如图的色谱图。图中横坐标l 为记录笔走纸距离。若欲得到R=1.2的分离 度,有效塔板数应为多少?色谱柱要加到多长? 解:先求出组分2对组分1的相对保留值r2,1 (1)从图中可以看出,tR2=17min,Y2=1min, 所以;n=16(tR2/Y2)2=4624 (2)t’R1=tR1-tM=14-1=13mint’R2=tR2–tM=17-1=16min (3)相对保留值α=t’R2/t’R1=16/13 neff=16(t’R2/Y)2=4096 Heff=L/neff=3/4096 根据公式:L=16R2Heff=16(1.5)2[(16/13)/(16/13-1)]2×(3/4096)=0.75m另

仪器分析知识点复习

第一章绪论 1.解释名词:(1)灵敏度(2)检出限 (1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。 2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。 A.1倍 B.2倍 C.3倍 D.4倍 3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。 y=5.7554x+0.1267 R2=0.9716 第二章光学分析法导论 1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱; (1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。 分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。 (2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。 发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,

产生电磁辐射。 (3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。 线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。其谱线的宽度约为10-3nm,称为自然宽度。 2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。 第三章紫外-可见吸收光谱法 1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么? 2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B) A.吸收池厚度 B.入射光波长 C.吸收池材料 D.有色配合物的浓度 3. 物质的紫外-可见吸收光谱的产生是由于(B) A.分子的振动 B. 原子核外层电子的跃迁 C.分子的转动 D. 原子核内层电子的跃迁 4. 以下跃迁中那种跃迁所需能量最大(A) A. σ→σ* B. π→π* C. n→σ* D. n→π* 5. 何谓生色团和助色团?试举例说明。 从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团,人们通常将能吸收紫外,可见光的原子团或结构系统定义为生色团。此类基团为具有不

仪器分析个人总结

1、气相色谱 1、分离原理: 是混合物中各组分在两相间进行分配,其中一相是不动的,称为固定相,另一相是携带混合物流过此固定相的流体,称为流动相。当流动相中所含混合物经过固定相时,就会与固定相发生作用。由于各组分在性质和结构上的差异,与固定相发生作用的大小,强弱也有差异,因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后不同的次序从固定相中流出。 2、几个重要的值 ( 1 )死时间: tM ( 2)保留时间: tR ( 3)调整保留时间: tR ' =tR-tM ( 4)相对保留值: r12=tR1 ' tR2' (5)标准偏差:(T (6)半峰宽度:Y12=2.35b (7)峰底宽度:Y=4c ( 8)分配系数:K=cScM ( 9)分配比(容量因子) :k=mSmM K=k xp (相比) ( 10)滞留因子:RS=tMtR= (uSu) ( 11 )塔板理论n=LH H 有效作为柱效能指标H 有效=Ln 有效 n 有效=5.54 (tR ' Y1)22=16 (tR ')Y2 (12)分离度:R=tR2‘-tR1' 12(Y1+Y2)分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。 ( 13)选择性系数: 3、固定液的要求 ( 1 )挥发性小; ( 2)热稳定性好; ( 3)对试样各组分有适当的溶解度; ( 4)具有较高的选择性; ( 5)化学稳定性好。 4、检测器 ( 1 )热导池(所有的物质,质量型) ( 2)氢火焰离子化(所有的有机物,浓度性) ( 3)电子俘获(电负性强)

(4)火焰光度(硫和磷) (5)要求:响应快,灵敏度高,稳定性好,线性范围宽,通用范围好。 5、保留指数 I=100(logXi-logXZlogXZ+1-l ogXZ+Z) 6 、定量 (1)归一化法: wi=fiAifiAi (2)内标法 wi=AiA 内标?m 内标m?fi x 100% 7、相似相溶 极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂,难溶于极性分子组成的溶剂。 2、液相色谱 1、特点 (1)三高一广一快:高压、高效、高灵敏度,高速,可以测定75-80% 的有机物。 2、六大分离原理 (1)液-液分配色谱:可以分离各种有机无机物 (2)液-固色谱:可以分离中等相对分子质量的油溶性物质 (3)离子对色谱:可以分离碱 (4)离子交换色谱:可以分离无机化合物、有机化合物和生物分子 (5)离子色谱: 可以分离无机化合物、有机化合物和生物分子 (6)空间排阻色谱: 可以分离高分子 2、选择流动相时应注意的因素(1)流动相纯度要高(2)应避免使用会引起柱效损失或保留 特性变化的溶剂 (3)对试样要有适宜的溶解度 (4)溶剂的粘度小些为好 (5)应与检测其相匹配 3、梯度洗提流动相中含有两种或两种以上不同极性的溶剂,在分离过程中按一定的程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的容量因子k 和选择性因子,以提高分离效果。

仪器分析全知识点

分子光谱的分类 分子吸收光谱 转动光谱(远红外光谱) 振动光谱(红外光谱) 电子光谱(紫外-可见光谱) 分子发射光谱 电子光谱(分子荧光、磷光) 原子光谱的分类 原子吸收光谱 原子发射光谱 光、电、色 1 色谱法分类 气相色谱法 高效液相色谱法 电化学分析法分类 电位分析法 电位滴定法 伏安法 3 紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。 紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分 (360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光围的光谱行为。 第2章紫外-可见分光光度法 4 §2-1 分子光谱概述 1.分子光谱产生 M+hν==M* 基态激发态 E1 E2 分子吸收能量后,电子从一个能级跃迁到另一个能级 分子部电子能级的跃迁而产生的光谱:紫外-可见光谱 5 吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。 纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。 2.吸收光谱特征 6 3.光吸收定律:朗伯-比尔(Lambert-Beer)定律 当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则 I0 = Ia + It + Ir

光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则: I0 = Ia + It 散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。 单色光: 单一频率(波长)的光 7 透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0 吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数: 注:A 、T 无单位 方便起见, 透过光强度 It 用 I 表示 8 人们对光吸收定律认识,经历了较长历史过程。 1760年,Lambert 提出光吸收程度与溶液厚度b 成正比: b k I I A 'lg == 1852年,Beer 提出光吸收程度与吸光物质微粒数目(浓度)成正比: c k I I A ''lg == 9 两个定律合并起来叫Lambert-Beer 定律: abc I I A == lg 若b 的单位是cm ;c 的单位是g ·L-1时,a 为吸光系数,单位是: 若b 的单位是cm ;c 的单位是mol ·L-1时: 10 e 与a 的关系 :e =M a , M 为物质摩尔质量。 注: Lambert-Beer 定律不仅适用于溶液,也适用于均匀的气体和固体状态的吸光物质,是各类吸收光谱法,如红外光谱法和原子吸收光谱法等的定量分析依据。 11 光吸收基本定律: 朗伯-比尔定律 意义: 当一束平行单色光通过均匀、非散射溶液时,其吸光度与溶液浓度和液层厚度乘积成正比. A=lg(I0/It)=kbc 12 T -透光率(透射比)(Transmittance ) A = lg (I0/It) = lg(1/T) = -lgT = kbc 13 吸光度A 、透光率T 与浓度c 的关系 14 当吸光物质浓度为1mol ·L-1, 液池厚1cm 时,一定波长的单色光通过溶液时的吸光度值。

仪器分析各章知识点

各章知识要点 第2章气相色谱分析 1.色谱法的分类(按两相状态) 2.何为GC法,GC定性定量的依据、定量方法及优缺点 3.GC分离原理(包括GSC法和GLC法) 4.气相色谱仪的构造 5.色谱流出曲线及其作用、色谱术语及换算关系 6.分配系数K和分配比k的定义、二者的异同点及相关计算 7.塔板理论的作用(包括H的n计算) 8.速率理论方程的作用(包括U最佳、Hmin的计算) 9.R的含义、作用 10.检测器的性能指标、四种检测器的适用特点及英文缩写 11.归一化法的使用条件、原理 12.内标法及内标物具备的条件 13.外标法的具体操作 第4章电位分析法 1.电化学分析法、电位分析法、电位滴定法的定义。 2.电位分析法的测定依据。 3.电位测定法如何测定溶液的pH值(包括计算)。 4.指示电极、参比电极。 5.电位滴定法的原理及终点确定方法(重点掌握E/V曲线法和ΔE/ΔV—V 法及相关计算)。 6.电位滴定法的优点。 第5章伏安分析法 1.极谱分析法及其特殊条件 2.极谱图及作用、极谱图上的各参数的定义及意义和作用 3.极谱分析定性定量的依据,半波电位的特性 4.极谱分析中的干扰及其消除方法 5.迁移电流 6、极谱分析的底液及其组成,各种物质的作用 7、极谱分析定量方法及其相关计算 8、单扫描极谱图的特征,单扫描极谱法定性、定量的依据(包括定性定量参数)

第8章原子吸收光谱分析 1.AAS及基本原理 2.与其它光谱分析法相比,AAS的干扰少,具有相对高选择性。为什么? 3.何为共振线?在AAS中,是否一定以共振线为分析线?选择分析线的原则是什么? 4.在AAS中,被测物质是何微粒形式? 5.原子吸收分光光度计的基本组成部件有哪些?各部件的作用,常用何种光源? 6.何为光电倍增管的疲劳现象?如何防止或消除? 7.影响空心阴极灯发射特性的因素有哪些?关系如何? 8.在火焰原子化中,影响火焰温度的因素、火焰温度与原子化效率的关系? 9.AAS法定量的基础、定量方法及相关计算 10.AAS法适宜于常量分析还是微量分析? 11.AAS分析中,需控制哪些测定条件? 12.AAS分析中,常见的干扰有哪些? 13.何为化学干扰?有哪些具体形式?如何消除? 14.何为释放剂、保护剂、消电离剂? 15.何为原子分析中的灵敏度、特征浓度、检出限?它们与仪器的检测性能有何关系? 16.干扰形式的判断 a.在进行原子吸收分析,若在试样前处理时使用了硫酸或磷酸,从而导致其对测定元素的干扰,此干扰属 于何种干扰形式? b.待测元素与试样中共存元素的分析线重叠,引起什么干扰? c.分析试液的粘度太大,使试液喷入火焰的速度不稳或降低,造成什么干扰? 第9章紫外吸收光谱分析 1.UV法的概念 2.UV吸收光谱是怎样产生的?在UV光谱分析中,物质处于何种微粒状态? 3.按物质微粒形式,紫外光谱属何种光谱?若按产生机理,紫外光谱又称何种光谱? 4.分子内价电子及其跃迁类型;哪些跃迁产生的吸收光谱在紫外可见光区?紫外可见光区的波长范围? 5.助色团、生色团、红移、蓝移 6.K吸收带、R吸收带及它们的跃迁类型、强度。 7.紫外吸收光谱法的作用及其定性、定量的依据。 8.利用紫外吸收光谱推断物质的结构,其主要信息依据有哪些? 9.顺反异构体的UV光谱有何不同? 10.溶剂效应、影响该效应的因素及其关系。 11.紫外可见分光光度计的组成部件。 12.能够根据物质结构特征指出跃迁类型;由吸收光谱特征推断物质分子中的特征官能团。

仪器分析总结习题 1

第一章气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t'R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度 Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3) )150sA的保留时间(4,死时间为30s,求组分3、某色谱条件下,组分A的分配比为4、下列哪些参数改变会引起相对保留值变化? A、柱长 B、相比 C、柱温 D、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A、改变载气流速 B、改变固定液化学性质 C、增加柱温 D、增加柱长 E、增加固定液的量 例1 已知某组分峰Y=40s,tR=400s。计算理论塔板数n。 t40022R n?16()?16()?1600例2 已知一根1米长的色谱柱,neff=1600块,组份A在柱上的调整保留时间为100s,理40Y'Lt Heff峰的半峰宽和。试求A2R?n)H?5.54(有效有效nY21/有效要达到完全分离,100秒,在一定条件下,例3 两个组分的调整保留时间分别为85秒和,

柱长是多少?R= 即。计算需要多少块有效塔板。若填充柱的塔板高度为 cm2,1= 100 / 85 = γ解: 2,1 -1) ]2 2,1 / (γγ n有效 = 16R2 [ = 16×× / ) 2 (块) = 1547 = 155 cm × = 1547有效H有效· = n有效 L. 即柱长为米时,两组分可以得到完全分离。为记录得到如图的色谱图。图中横坐标l1和2 例2 有一根1m长的柱子,分离组 分 度,的分离笔走纸距离。若欲得到 R= 有效塔板数应为多少?色谱 柱要加到多长?1 的相对保留值r2,解:先求出组分2对组分 1tR2=17min, Y2=1min, (1)从图中可以看出, n = 16(tR2/Y2)2 =4624 所以; tM = 17-1 = 16min R2=tR2 –) t'R1= tR1- tM =14-1=13min t'(2R1=16/13 'α = t'R2/t (3)相对保留值neff=16(t'R2/Y)2=4096 Heff=L/neff=3/4096 ×(3/4096)[(16/13)/(16/13-1)]2 式据公:L=16R2 Heff

仪器分析知识点整理

仪器分析知识点整理 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M*

2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。 ②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。 ③富燃火焰:指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。 ④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。 ⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰? 一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸

相关文档
最新文档