真核生物基因组

真核生物基因组
真核生物基因组

第二讲真核生物基因组

真核生物的基因组比较庞大,并且不同生物种间差异很大,例如人的单倍体基因组由3.16×109 bp组成。在人细胞的整个基因组中实际上只有很少一部份(约占2%~3%)的DNA序列用以编码蛋白质。

第一节真核生物基因组特点

真核生物体细胞内的基因组分细胞核基因组与细胞质基因组,细胞核基因组是双份的(二倍体,diploid),即有两份同源的基因组;细胞质基因组可有许多拷贝。真核细胞基因转录产物为单顺反子,一个结构基因经过转录和翻译生成一个mRNA分子和一条多肽链。细胞核基因组存在重复序列,重复次数可达百万次以上,大多为非编码序列;因此,基因组中不编码的区域多于编码区域。大部分基因含有内含子,因此,基因是不连续的。真核生物基因组远远大于原核生物的基因组,具有许多复制起点,但每个复制子的长度较小。

一、细胞核基因组与细胞质基因组

(一)细胞核基因组

细胞核基因组的DNA与蛋白质结合形成染色体(chromosome)。除配子细胞外,体细胞有两个同源染色体,因此基因组有两份同源的基因组。染色体储存于细胞核内,是基因组遗传信息的载体。

(二)线粒体基因组

线粒体基因组DNA(mitochondrial DNA,mtDNA)为双链环状超螺旋分子,类似

于质粒DNA,分子量小,大多在1~200×106之间,如人类mtDNA仅由16569bp组成。mtDNA的复制属于半保留复制,可以是θ型复制,或滚环复制,或D环复制,由线粒体DNA聚合酶催化完成。

线粒体基因组主要编码与生物氧化有关的一些蛋白质和酶,如:呼吸链中的细胞色素氧化酶有七个亚基,其中三个亚基由mtDNA编码,其余四个亚基由细胞核DNA编码;细胞色素还原酶有七个亚基,基中的一个亚基由mtDNA编码;ATP酶含有十个亚基,其中四个亚基由mtDNA编码。线粒体基因组可能还包括一些抗药性基因。此外,线粒体基因组有自己的rRNA,tRNA,核糖体等系统,因此线粒体本身的一些蛋白质基因也可以在线粒体内独立地进行表达。

近几年的研究发现,哺乳动物mtDNA的遗传密码与通用的遗传密码有以下区别:①UGA不是终止密码,而是编码色氨酸的密码;②多肽内部的甲硫氨酸由AUG和AUA 两个密码子编码,而起始甲硫氨酸由AUG、AUA、AUU和AUC四个密码子编码;③AGA、AGG不是精氨酸的密码子,而是终止密码子,因此,在线粒体密码翻译系统中有4个终止密码子(UAA、UAG、AGA、AGG)。

二、单顺反子结构

真核细胞结构基因为单顺反子(monocistron),一个结构基因经过转录生成一个单顺反子mRNA分子,翻译成一条多肽链,真核生物基本上没有操纵子结构。

三、断裂基因

真核细胞基因组的大部分序列属于非编码区,不编码具有生物活性的蛋白质或多肽。编码区通常为结构基因,结构基因不仅在两侧有非编码区,而且在基因内部也有许多不编码蛋白质的间隔序列(intervening sequences),因此,真核细胞的基因大多由不连续的几个编码序列所组成,称之为断裂基因(split gene)。

(一)内含子与外显子

内含子(intron)是结构基因中的非编码序列,往往与编码序列呈间隔排列。当基因转录后,在mRNA的成熟过程中被剪切(splicing)。

外显子(exon)是结构基因中的编码序列,当基因转录后,mRNA在成熟过程中切去内含子,外显子才被拼接成完整的序列,成为成熟的mRNA作为指导蛋白质合成的模板。

(二)间隔区DNA

真核生物基因之间存在编码空白区或转录的空白区,称之为间隔区DNA(spacer DNA),这些序列往往在单拷贝的结构基因之侧翼,并使结构基因彼此分开,间隔区DNA也可以存在于rDNA区。间隔区DNA大小与基因组的大小有关,一般来说,基因组愈大,间隔区DNA所占的比例也愈高。

四、重复序列

(一)高度重复序列

真核生物基因组中普遍存在着重复序列,其中重复频率高,可达百万(106)以上的重复序列,称之为高度重复序列。在人类基因组中约占20%。由于高度重复序列中碱基组成的复杂度很低,因此其复性速率很快。高度重复序列又按其结构特点分为三种:1.反向(倒位)重复序列这种重复序列复性速度极快,即使在极稀的DNA浓度下,也能很快复性,因此又称零时复性部分,人基因组中约占5%。倒位重复序列由两个相同顺序的互补拷贝在同一DNA链上反向排列而成。变性后再复性时,同一条链内的互补的拷贝可以形成链内碱基配对而形成发夹式或“+”字形结构。倒位重复(即两个互补拷贝)之间可有若干个核苷酸的间隔,也可以没有间隔。没有间隔的又称之为回文(palindrome)结构,回文结构约占所有倒位重复的三分之一。

2.卫星DNA(satellite DNA)重复序列的重复单位一般由2~10bp组成,且成串排列。由于这类序列的碱基组成不同于其他部份,可用等密度梯度离心法将其与主体DNA分开,因而称为卫星DNA或随体DNA。在人类基因组中卫星DNA约占5~6%。

3. 高度重复顺序的功能主要有:①参与复制水平的调节。反向序列常存在于DNA 复制起点区的附近;另外,许多反向重复序列是一些蛋白质(包括酶)和DNA的结合位点。②参与基因表达的调控。③参与转位作用。几乎所有转位因子的末端都包含反向重复序列,长度由几个bp到1400bp。④与进化有关。不同种属的高度重复序列的核苷酸序列不同,具有种属特异性,但相近种属又有相似性。⑤与个体特征有关。同一种属中不同个体的高度重复序列的重复次数不一样,这可以作为每个个体的特征,即DNA 指纹。⑥与染色体减数分裂时染色体配对有关。

(二)中度重复序列

中度重复序列是指在真核基因组中重复数十至数万次(<105)的重复序列。其复性

速度快于单拷贝顺序,但慢于高度重复序列。少数在基因组中成串排列在一个区域,大多数与单拷贝基因间隔排列。依据重复序列的长度,中度重复序列可分为两种类型。

1.短分散片段(short interspersed repeated segments,SINES)重复序列的平均长度为300bp(一般<500bp),与平均长度为1000bp左右的单拷贝序列间隔排列,拷贝数可达10万左右。如Alu家族、Hinf家族等属于这种类型的中度重复序列。

Alu家族是哺乳动物基因组中含量最丰富的一种中度重复顺序家族,约占人类基因组的3%~6%。Alu家族每个成员的长度约300bp,每个单位长度中有一个限制性内切酶Alu的切点(AG↓CT),Alu可将其切成两段,130bp和170bp,因而定名为Alu 序列(或Alu家族)。Alu序列分散在基因组中,在间隔区DNA,内含子中都发现有Alu序列。Alu序列具有种特异性,以人的Alu序列制备的探针只能用于检测人的基因组中的Alu序列,由于在大多数的含有人的DNA的克隆中都含有Alu序列,因此,可用以人的Alu序列制备的探针与克隆杂交来进行筛选。

2.长分散片段(long interspersed repeated segments,LINES)重复序列的长度大于1000bp,平均长度为3500~5000bp,如KpnⅠ家族等。中度重复序列在基因组中所占比例在不同种属之间差异很大,在人类基因组中约为12%。中度重复序列大多不编码蛋白质。其功能可能类似于高度重复序列。有些中度重复序列则是编码蛋白质或rRNA的结构基因,如HLA基因、rRNA基因、tRNA基因、组蛋白基因、免疫球蛋白基因等。中度重复序列可存在于结构基因之间、基因簇之中,甚至存在于内含子内部等。中度重复序列一般具有种属特异性,因此在适当的情况下,可以应用它们作为探针以区分不同种属哺乳动物细胞来源的DNA。

KpnⅠ家族 是中度重复顺序中仅次于Alu家族的第二大家族,用限制性核酸内切酶KpnⅠ消化人类及其它灵长类动物的DNA,在电泳图谱上可以看到4个不同长度的片段,分别为1.2、1.5、1.8和1.9kb,在人类基因组中,KpnⅠ家族的拷贝数约为3000~4800个,约占基因组的1%。

(2)组蛋白基因在各种生物体内重复的次数不一样,组蛋白基因没有一定的排列方式,组蛋白基因不含内含子,组蛋白基因序列都很相似,从而编码的组蛋白在结构上和功能上也极为相似,具有高的保守性。

(三)低度重复序列(单拷贝序列)

低度重复序列在单倍体基因组中只出现一次或数次,因而复性速度很慢。人基因组中,大约有60%~65%的序列属于这一类。低度重复序列中储存了巨大的遗传信息,编码各种不同功能的蛋白质。目前尚不清楚单拷贝基因的确切数字,在低度重复序列中只有一小部份用来编码各种蛋白质,其他部份的功能尚不清楚。

五、多基因家族与假基因

(一)多基因家族

多基因家族(multigene family)是指由某一祖先基因经过重复和变异所产生的一组基因。多基因家族可分为两类:①基因家族成簇地分布在某一条染色体上,其可同时发挥作用,合成某些蛋白质(如:组蛋白基因家族就成簇地集中在第7 q 32 6);②一个基因家族的不同成员成簇地分布在不同的染色体上,这些不同成员编码一组功能上紧密相关的蛋白质(如珠蛋白基因家族)。

(二)假基因

在多基因家族中,某些成员并不产生有功能的基因产物,这些基因称为假基因(pseudo gene)。假基因与有功能的基因是同源的,原来可能也是有功能的基因,但由于缺失,倒位或点突变等,使这一基因失去活性,成为无功能的基因。

人们推测假基因的来源之一,可能是基因经过转录后生成的hnRNA通过剪接失去内含子形成mRNA,mRNA经逆转录产生cDNA,再整合到染色体DNA 中去,便有可能成为假基因,因此该假基因就没有内含子,在这个过程中,可能同时会发生缺失,倒位或点突变等变化,从而使假基因失去表达活性。

六、多态性

基因组中某个基因在同种生物的不同个体中,同时和经常存在的两种或两种以上的变异型或基因型的现象,称为基因多态性(gene polymorphism)。

真核生物基因组中基因多态性常常出现在限制性核酸内切酶的酶切位点序列中,因此,用某个限制性核酸内切酶来酶解基因组的某段序列时,在同种的不同个体之间该段序列可能被酶解成长短不等的几个DNA片段,即这段序列在该种生物的群体中形成多态性,这种多态性称为限制性核酸内切酶片段长度多态性(restriction fragment length polymorphism,RFLP)。

RFLP分为两种类型:一类是由于限制性内切酶位点上发生了单个碱基突变而使这

一限制性位点发生丢失或获得而产生的多态性,故称之为点多态性(point polymorphism)。这类多态性实际上是双态的,即有(+)或无(-)。另一类是由于DNA 分子内部发生较大的顺序变化所致。这一类多态性又可以分成两个亚类:第一亚类是DNA顺序上发生突变如缺失、重复、插入。第二亚类是近几年发现的所谓“高变区”。高变区(highly variable region),是由多个串联重复顺序组成的,不同的个体高变区内所串联重复的拷贝数相差悬殊,因而高变区的长度变化很大,从而使高变区两侧限制性内切酶识别位点的固定位置随高变区的大小而发生相对位移。所以这一类型的RFLP是由于高变区内串联重复顺序的拷贝数不同所产生的,其突出特征是限制性内切酶识别位点本身的碱基没有发生改变,改变的只是它在基因组中的相对位置。

第二节基因组结构与疾病

一、人类染色体的结构与疾病

(一)人体染色体数目、结构和形态

人类体细胞中有46条染色体,其中44条(22对)为常染色体,另两条为性染色体(女性为XX,男性为XY)。生殖细胞中卵细胞和精子各有23条染色体,卵细胞为22+X,精子为22+X或22+Y。为便于鉴别人类的每一条染色体,根据染色体的长度和着丝粒的位置将人类染色体顺次由1编到22号,并分为A、B、C、D、E、F、G等7个组。用荧光染料喹吖因氮芥(quinacrine mustard)体外处理染色体标本,在荧光显微镜下每条染色体可出现宽窄和亮度不同的纹(荧光带),称之为Q显带;若用热、碱、胰酶、尿素、去垢剂或某些盐溶液预先处理染色体标本,再经Giemsa染色,则染色体可显示出类似的带纹,称之为G显带。用其它方法还可以得到与G带明暗相反的R带(reverse bands)和专门显示着丝粒异染色质的C带,以及专一显示染色体的端粒(T 显带)或核仁组织区(N带)和各种带型。显带技术不仅解决了染色体的识别问题,而且,通过显带可以区别染色体上的许多区和带,为进一步深入研究染色体的异常和人类基因定位创造了条件。

(二)染色体的数目畸变与疾病

正常人的体细胞具有46条染色体(2n),配子细胞(精子和卵)具有23条染色体(n),前者称为二倍体,后者称为单位体。染色体偏离正常数目称为染色体数目异常或

数目畸变。

1.多倍体和多倍性体细胞染色体倍数超过二倍(2n)的细胞称为多倍体细胞,体细胞获得多倍体的性状称为多倍性(polyploidy)。

2.异倍性或非整倍性细胞的染色体数非23的整倍时,称为异倍体细胞,如细胞具有44,45,47,48,67条染色体时都是异倍体细胞,44和45略少于46,故可称为亚二倍体;47,48略多于46,称为超二倍体;67可称为亚三倍体等。异倍体细胞在肿瘤组织中十分常见。发生的原因是:①染色体的丢失;②染色体的核内复制(endoredplication);③染色体不分离。

3.三体性和单体性体细胞的某号染色体增多一条,称为三体性(trisomy);体细胞的某号染色体减少一条,称为单体性(monosomy)。导致三体性或单体性的原因可能是在减数分裂时发生了染色体不分离(nondisjunction),如在细胞分裂时,某一染色体的两条单体在分裂后期不能正常地分开而同时进入某一子细胞,则必然导致该子细胞增多一条染色体而另一子细胞缺少一条染色体。Down综合征(47,+21)、Patau综合征(47,+13)、Edward综合征(47,+18)等均为典型的常染色体三体综合征,临床上多表现为智力损害和发育畸形。常染色体的单体性由于严重破坏基因平衡,因而是致死的。

(三)染色体的结构异常与疾病

1.染色体结构异常的类型

染色体断裂(breakage)、或染色体断裂端的非正常重连均可导致染色体结构异常。常见的染色体结构异常有:①缺失(deletion)②形成环状染色体(ring chromosome),当一条染色体的两臂各有一次断裂,有着丝粒节段的两个断裂端如彼此重新连接,可形成环状染色体。③等臂染色体(isochromosome),染色体断裂如果发生在着丝粒区,使着丝粒横断,则两个臂的姐妹染色单体可分别互相连接,导致长臂与长臂重连,短臂与短臂重连,形成等臂染色体。④倒位(inversion)⑤易位(translocation)⑦插入(insertion),⑧重复(duplication)染色体的相互易位、插入等都是导致重复的主要原因。

2.染色体结构异常与疾病

例如,猫叫综合征患者80%为5P15缺失,10%为不平衡易位,个别为环状染色体或嵌合体。脆性X染色体综合征是由于X染色体长臂2区7带(Xq27)具有随体和细丝

状次缢痕,称为脆性部位(fragile site), 在Xq27处有脆性部位的X染色体称为脆性X染色体(fragile X)。Down综合征主要是由于患者体内多了一条21号染色体(47,+21),此外,21号染色体长臂与另一条D组或G组染色体通过着丝粒融合(罗氏易位),也可导致Down综合征。Turner综合征主要是由于患者体内少了一条X染色体(45,X),此外,还有各种嵌合型(46,XX/45,X和46,X,i(Xq))和X染色体结构异常的核型。如Xp缺失、X长臂缺失、X染色体长臂等臂染色体等等。

二、基因结构与疾病

(一)基因组结构及异常

所谓基因组结构,就是指基因组DNA中不同的功能片段在整个基因组中的分布。真核生物基因组DNA是有序的分布在染色体上,因此,基因组结构与染色体数目、结构和形态有关,染色体数目的畸变、染色体结构的异常都将影响基因组的结构。然而,基因组结构的改变并非一定导致基因结构的改变,基因结构的改变也不一定导致基因功能的异常。只有当缺失、倒位、易位、插入等引起基因突变,而且这种突变又改变了基因的编码序列或影响了基因的调控序列时,基因的结构及其功能才发生异常,这种异常又常常会导致基因病(genic disease)的发生。

(二)基因结构异常与疾病

基因结构异常,从广义上包括染色体畸变(chromosome aberration)和基因突变(gene mutation)。狭义上基因结构异常一般指基因突变。基因突变即基因的核苷酸序列或数目发生改变,DNA分子中只出现单个碱基改变者称为点突变(dot mutation),涉及多个碱基改变的有缺失、重复、插入等。

基因结构异常是引起基因病的主要原因,基因病常分为单基因病(monogenetic disease)和多基因病(multigene disorder),有报道,全球新生儿中至少有2%有明显的先天异常,其中大约有一半为单基因病。

1.单基因病

(1)血红蛋白病由于珠蛋白基因突变导致珠蛋白分子结构或合成量异常所引起的疾病,称为血红蛋白病(hemoglobinopathy,Hb)。Hb由四种珠蛋白肽链组成,它们分别是α、β、δ和γ肽链,其不同的组合形成各种血红蛋白。如:编码β链第6位谷氨

酸的密码是GAA,当颠换成GUA时,编码的氨基酸改为缬氨酸,即导致血红蛋白结构和功能异常,引起镰刀状红细胞贫血。又如:在中国人中发现的β珠蛋白基因转录的密码子17由AAG→UAG的突变,或β珠蛋白基因转录的密码子41~42产生缺失,均导致转录的mRNA在翻译时过早终止,造成β珠蛋白链过短而失活;引起β珠蛋白生成障碍性贫血。

(2)苯丙酮尿症苯丙酮尿症(PKU)的病因是患者肝细胞缺乏苯丙氨酸羟化酶,使体内的苯丙氨酸不能正常代谢为酪氨酸,导致血清中苯丙酮酸浓度升高。现已知苯丙氨酸羟化酶基因定位于12q24.1,此基因全长约90kb,含13个外显子,在中国人中已发现10余种点突变,这是造成酶活性缺乏的原因。

2.多基因病

(1)原发性高血压

原发性高血压的致病基因及相关基因尚不明确。高血压候选基因有150多个,血管紧张素转换酶(angiotensin-converting enzyme,ACE)、血管紧张素原、内皮素、β2肾上腺素受体(β2-adrenergic receptor)、G蛋白鸟嘌呤核苷结合蛋白β3亚基基因最有可能成为高血压相关基因。ACE基因定位于染色体17q23,有26个外显子和25个内含子,全长约21kb,在16号内含子内存在插入(I)和缺失(D)两种变异体。人类ACE基因型与血清ACE的活性有关:DD>DI>II,ACE基因的插入/缺失多态性与动脉粥样硬化性心血管疾病、心肌肥厚和再狭窄有一定的相关性。

(2)糖尿病

糖尿病是一种具有明显遗传倾向的多基因疾病,根据发病机制,可分为Ⅰ型、Ⅱ型、和妊娠型糖尿病。

Ⅰ型糖尿病(Ⅰ-DM)遗传背景研究早期主要集中在人类白细胞抗原(HLA)和易感性和抗性位点上。在Ⅰ-DM 患者中,HLA-Ⅰ类抗原中B15、B8、B18出现频率明显增加,而B7出现频率显著下降。HLA-Ⅱ类抗原中DQα52位精氨酸为Ⅰ-DM的易感受性位点,而DQβ57天冬氨酸为Ⅰ-DM的抗性位点。近年来采用微卫星荧光标记半自动全基因组扫描技术,陆续发现许多位点与1-DM相关,如IDDM1:6p21;IDDM2:11p15;IDDM3:15q26;IDDM4:11p13;IDDM5:6q25;等等。

Ⅱ型糖尿病(Ⅱ-DM)的遗传缺陷包括:胰岛素基因点突变、胰岛素受体前缺陷、胰岛素受体缺陷、胰岛素受体后及信号传导系统缺陷、胰岛素作用的靶组织的遗传缺陷,等等。现已知的2-DM易感基因位点有:D2S125(位于2q37)、D12S1349(位于12号染色体)、D20S197(位于20q),等等。

三、端粒与端粒酶

1930’,著名的遗传学家B.Mcclintock 和HJ.Müller发现,真核细胞的染色体末端存在着一种由DNA片段和蛋白组成的独特的结构,这种结构对维持染色体的稳定性具有重要的作用,失去了这些片段,染色体就会互相粘连到一块,发生结构及功能上的改变,从而影响到细胞的分裂与生长,这一结构定义为端粒(telomere)。

人及其它脊椎动物中是以5’TTAGGG 3’为单位进行重复,其它物种可有5~8bp 的长度。重复的次数(n)也因物种而异,由几十到数千不等。

端粒的主要作用是:维持染色体的稳定性,防止染色体的重组及末端被降解。最近的一些研究表明,端粒还能保证细胞在有丝分裂时染色体准确地分离,在减数分裂时保证染色体的成对及运动。端粒的另一个重要作用是它在细胞生长中的作用。

端粒酶是一种核糖蛋白酶,具有逆转录酶活性。人端粒酶分子有三个主要的组分,人端粒酶RNA(human telomerase RNA,hTR)、人端粒酶相关蛋白(telomerase-associated protein,TP1/TLP1)和人端粒酶催化蛋白亚单位(the catalytic protein subunit of telomerase,hTERT)。

细胞内端粒酶活性的缺失导致端粒缩短,端粒随细胞分裂每次丢失50~200个碱基,端粒一旦缩短到短于某个“关键长度”时,就很有可能导致染色体双链断裂,并激活细胞自身的检验系统,使细胞进入M1期死亡状态;随着端粒的进一步丢失,发生染色体重排,结果导致了无着丝粒染色体和非整倍体染色体的形成等,使细胞进入M2期死亡状态。因此,细胞要维持其正常分裂,就必须激活端粒酶,阻止端粒的进一步丢失,否则,细胞不能进行染色体的正常复制,所以只有重新获得端粒酶活性的细胞,才能继续生存下去。对于那些无法激活端粒酶活性的细胞,即无法阻止端粒的进一步丢失,细胞只能面临趋向衰老。

第二节人类基因组与人类基因组计划

一、人类基因组

人类基因组包括细胞核内的核基因组和细胞质内的线粒体基因组。核基因组由3.16×10 9 bp 组成,线粒体基因组由16569bp组成。正常体细胞(二倍体)基因组包括二个核基因组和多个线粒体基因组。核基因组包含在22条常染色体和X、Y性染色体内,每条染色体大小不等。

人类基因组的组织特点为:①功能相似或相关的基因常常散在分布于不同的染色体上(尔偶聚集在一起);②基因组中各个基因的大小和内部组织的差异极大;③各个基因的大小差异很大,从数百个bp、几个kb到数百个kb不等;④基因组含重复序列,重复序列大多为非编码的,与编码序列相间排列,以此来分散结构基因;⑤每个结构基因都有单独的调控序列。

人类基因组中,存在着大量的非编码序列,如前述的高度重复顺序、内含子、间隔区DNA等。这些序列中,只有很小一部份具有重要的调节功能,绝大部分都没有什么特殊功用。在这些DNA序列中虽然积累了大量缺失,重复或其他突变,但对生物并没有什么影响,它们的功能似乎只是自身复制,因此将这类DNA称为自私DNA(selfish DNA)或寄生DNA(parasite DNA)。自私DNA也许有重要的功能,只是目前我们对其功能还未了解而已。

二、人类基因组计划

HGP的基本任务可用4张图谱来概括,即遗传图谱、物理图谱、序列图谱和基因图谱。

1.遗传图谱

遗传图又称连锁图。即在基因组中寻找可以表明基因之间位置关系的遗传标记。

第一代标记是经典的遗传标记,最初主要是利用蛋白质和免疫学的标记,如ABO 血型位点标记、HLA位点标记。70年代中后期建立起来的限制性片段长度多态性(RFLP)方法在整个基因组中确定的位点数目达到105以上,该系统一经建立就广泛应用到基因组的研究中。RFLP最成功的运用是在Hungtington舞蹈症的基因定位。然而,RFLP可提供的信息量很有限,并且有时还需用放射性同位素标记的DNA片段为

探针检测RFLP,因而又存在着工作环境和费用等问题。

第二代标记称“小卫星中心”(minisatellite core)和“微卫星标记”(microsatellite marker),这一系统是目前在基因定位的研究中应用最多的标记系统。

STR的遗传学图距是以cM(厘摩尔根)为单位的,反映基因遗传效应的基因组图。STR作为遗传标记使人类基因组的遗传制图与连锁分析发生了革命性的变化。

第三代标记是称作单核苷酸多态性标记(single nucleotide polymorphism,SNP)的遗传标记系统。人类群体有很大的遗传多样性,由这种方式产生的单碱基变异就形成许多双等位型标记。这种标记在人类基因组中可达到300万个,平均每1000个碱基对就有一个。因此,3~4个相邻的这种标记构成的单倍型(haplotype)就可以有8~16种,相当于一个微卫星标记形成的多态性。

2.物理图谱

完整的物理图应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段(探针)或一段特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征性序列等的标记图,人类基因组的细胞遗传学图,最终在分子水平上与序列图的统一。

以STS位路标的物理图与已建的遗传图进行对比,可以把遗传学信息和物理信息进行互相转换(如某一区域1cM的遗传间距可以粗略的“折算”成某一区域1cM的物理间距)。片段重叠群则为研究该区域提供了可以操作的基因组材料,及相互重叠、覆盖这一区域的DNA片段,可以在这一区域寻找某一基因或进行这一区域基因组的研究。而作为人类基因组物理图的组成部分的最基本层次的“细胞遗传图”是统一物理图与遗传图的根本之图。

3.序列图谱

人类基因组计划最初的目标是要在15年内完成测定总长度由30亿个核苷酸组成的人类基因组的序列图。目前的策略是把庞大的基因组分成若干有路标的区域后,进行测序分析。

4.基因图谱

在人类基因组中鉴别出占据2%~5%长度的全部基因的位置、结构与功能。涉及办法很多,但最主要的是通过基因的表达产物mRNA反追到染色体的位置,其原理是:

所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由RNA聚合酶指导合成的带有多聚A尾巴的mRNA编码的,这样就可以把mRNA通过反转录酶合成cDNA或称作EST的部分cDNA片段,然后,再用这种较稳定的cDNA 或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。

(三)人类基因组计划的延伸——后基因组计划

功能基因组学延伸的内容有:人类基因组多样性计划、环境基因组学、肿瘤基因组解剖学计划及药物基因组学等。其核心问题一般包括:基因组多样性、遗传疾病产生的起因、基因的表达调控的协调作用以及蛋白质产物的功能等。模式生物体在研究功能基因组学中将起到重要的工具作用。此外,HGP及其延伸内容决定性的成功取决于生物信息学和计算机生物学的发展和应用,主要体现在数据库对数据的储存能力和分析工具的开发。这些都将成为人类基因组计划延伸篇中的主要内容。

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别: 1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。 原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。 2、原核生物的染色体分子量较小,基因组含有大量单一顺序 (unique-sequences),DNA仅有少量的重复顺序和基因。 真核生物基因组存在大量的非编码序列。包括: .内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。 3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。 真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。 4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。 真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。 5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成的生物。包括原生生物界、真菌界、植物界和动物界。真核细胞与原核细胞的主要区别是:

【从细胞结构】 1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核 2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。 真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。 3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。 真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。 4.原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷 酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。 【从基因组结构】 1.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 2.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 3.真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链

真核细胞的基因结构

真核细胞的基因结构 在遗传学上通常将能编码蛋白质的基因称为结构基因。真核生物的结构基因是断裂的基因。一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,有人称其为侧翼序列。在侧翼序列上有一系列调控序列(图1)。 调控序列主要有以下几种:①在5′端转录起始点上游约20~30个核苷酸的地方,有TA TA框(TATA box)。TA TA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TA TA 框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。②在5′端转录起始点上游约70~80个核苷酸的地方,有CAAT框(CAAT box)。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAATCT。CAAT框是RNA 聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。③在5′端转录起始点上游约100个核苷酸以远的位置,有些顺序可以起到增强转录活性的作用,它能使转录活性增强上百倍,因此被称为增强子。当这些顺序不存在时,可大大降低转录水平。研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对不同组织、器官的基因表达有不同的调控作用。例如,人类胰岛素基因5′末端上游约250个核苷酸处有一组织特异性增强子,在胰岛素β细胞中有一种特异性蛋白因子,可以作用于这个区域以增强胰岛素基因的转录。在其他组织细胞中没有这种蛋白因子,所以也就没有此作用。这就是为什么胰岛素基因只有在胰岛素β细胞中才能很好表达的重要原因。④在3′端终止密码的下游有一个核苷酸顺序为AA TAAA,这一顺序可能对mRNA的加尾(mRNA尾部添加多聚A)有重要作用。这个顺序的下游是一个反向重复顺序。这个顺序经转录后可形成一个发卡结构(图2)。发卡结构阻碍了RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来,同时,RNA聚合酶也从DNA上解离下来,转录终止。AA TAAA顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。

真核生物基因组

第二讲真核生物基因组 真核生物的基因组比较庞大,并且不同生物种间差异很大,例如人的单倍体基因组由3.16×109 bp组成。在人细胞的整个基因组中实际上只有很少一部份(约占2%~3%)的DNA序列用以编码蛋白质。 第一节真核生物基因组特点 真核生物体细胞内的基因组分细胞核基因组与细胞质基因组,细胞核基因组是双份的(二倍体,diploid),即有两份同源的基因组;细胞质基因组可有许多拷贝。真核细胞基因转录产物为单顺反子,一个结构基因经过转录和翻译生成一个mRNA分子和一条多肽链。细胞核基因组存在重复序列,重复次数可达百万次以上,大多为非编码序列;因此,基因组中不编码的区域多于编码区域。大部分基因含有内含子,因此,基因是不连续的。真核生物基因组远远大于原核生物的基因组,具有许多复制起点,但每个复制子的长度较小。 一、细胞核基因组与细胞质基因组 (一)细胞核基因组 细胞核基因组的DNA与蛋白质结合形成染色体(chromosome)。除配子细胞外,体细胞有两个同源染色体,因此基因组有两份同源的基因组。染色体储存于细胞核内,是基因组遗传信息的载体。 (二)线粒体基因组 线粒体基因组DNA(mitochondrial DNA,mtDNA)为双链环状超螺旋分子,类似

于质粒DNA,分子量小,大多在1~200×106之间,如人类mtDNA仅由16569bp组成。mtDNA的复制属于半保留复制,可以是θ型复制,或滚环复制,或D环复制,由线粒体DNA聚合酶催化完成。 线粒体基因组主要编码与生物氧化有关的一些蛋白质和酶,如:呼吸链中的细胞色素氧化酶有七个亚基,其中三个亚基由mtDNA编码,其余四个亚基由细胞核DNA编码;细胞色素还原酶有七个亚基,基中的一个亚基由mtDNA编码;ATP酶含有十个亚基,其中四个亚基由mtDNA编码。线粒体基因组可能还包括一些抗药性基因。此外,线粒体基因组有自己的rRNA,tRNA,核糖体等系统,因此线粒体本身的一些蛋白质基因也可以在线粒体内独立地进行表达。 近几年的研究发现,哺乳动物mtDNA的遗传密码与通用的遗传密码有以下区别:①UGA不是终止密码,而是编码色氨酸的密码;②多肽内部的甲硫氨酸由AUG和AUA 两个密码子编码,而起始甲硫氨酸由AUG、AUA、AUU和AUC四个密码子编码;③AGA、AGG不是精氨酸的密码子,而是终止密码子,因此,在线粒体密码翻译系统中有4个终止密码子(UAA、UAG、AGA、AGG)。 二、单顺反子结构 真核细胞结构基因为单顺反子(monocistron),一个结构基因经过转录生成一个单顺反子mRNA分子,翻译成一条多肽链,真核生物基本上没有操纵子结构。 三、断裂基因 真核细胞基因组的大部分序列属于非编码区,不编码具有生物活性的蛋白质或多肽。编码区通常为结构基因,结构基因不仅在两侧有非编码区,而且在基因内部也有许多不编码蛋白质的间隔序列(intervening sequences),因此,真核细胞的基因大多由不连续的几个编码序列所组成,称之为断裂基因(split gene)。 (一)内含子与外显子 内含子(intron)是结构基因中的非编码序列,往往与编码序列呈间隔排列。当基因转录后,在mRNA的成熟过程中被剪切(splicing)。 外显子(exon)是结构基因中的编码序列,当基因转录后,mRNA在成熟过程中切去内含子,外显子才被拼接成完整的序列,成为成熟的mRNA作为指导蛋白质合成的模板。

原核生物基因组和真核生物基因组比较区别

、真核生物基因组指一个物种地单倍体染色体组()所含有地一整套基因.还包括叶绿体、线粒体地基因组. 原核生物一般只有一个环状地分子,其上所含有地基因为一个基因组. 、原核生物地染色体分子量较小,基因组含有大量单一顺序(),仅有少量地重复顺序和基因.个人收集整理勿做商业用途 真核生物基因组存在大量地非编码序列.包括:.内含子和外显子、.基因家族和假基因、重复序列.真核生物地基因组地重复顺序不但大量,而且存在复杂谱系.个人收集整理勿做商业用途 、原核生物地细胞中除了主染色体以外,还含有各种质粒和转座因子.质粒常为双链环状,可独立复制,有地既可以游离于细胞质中,也可以整合到染色体上.转座因子一般都是整合在基因组中.个人收集整理勿做商业用途 真核生物除了核染色体以外,还存在细胞器,如线粒体和叶绿体地,为双链环状,可自主复制.有地真核细胞中也存在质粒,如酵母和植物.个人收集整理勿做商业用途 、原核生物地位于细胞地中央,称为类核(). 真核生物有细胞核,序列压缩为染色体存在于细胞核中. 、真核基因组都是由序列组成,原核基因组还有可能由组成,如病毒. 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成地生物.包括原生生物界、真菌界、植物界和动物界.真核细胞与原核细胞地主要区别是: 【从细胞结构】 .真核细胞具有由染色体、核仁、核液、双层核膜等构成地细胞核;原核细胞无核膜、核仁,故无真正地细胞核,仅有由核酸集中组成地拟核个人收集整理勿做商业用途 .真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有. 真核细胞有发达地微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否. .真核细胞有由肌动、肌球蛋白等构成地微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用.个人收集整理勿做商业用途 真核细胞地核糖体为型,原核生物地为型,两者在化学组成和形态结构上都有明显地区别. .原核细胞功能上与线粒体相当地结构是质膜和由质膜内褶形成地结构,但后者既没有自己特有地基因组,也没有自己特有地合成系统真核生物地植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有地基因组和合成系统.与光合磷酸化相关地电子传递系统位于由叶绿体地内膜内褶形成地片层上.原核生物中地蓝细菌和光合细菌,虽然也具有进行光合作用地膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体.个人收集整理勿做商业用途 【从基因组结构】 .真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途 .真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途 .真核细胞含有地线粒体,为双层被膜所包裹,有自己特有地基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关地电子传递链个人收集整理勿做商业用途 【从遗传过程】 .真核细胞地转录在细胞核中进行,蛋白质地合成在细胞质中进行,而原核细胞地转录与蛋

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

真核生物转录特点

真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27)。 ⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。 ⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链。 ⒊真核生物RNA聚合酶较多在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。三种RNA聚合酶都是由10个以上亚基组成的复合酶。RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA 以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA 聚合酶Ⅲ催化tRNA和小核RNA的合成。 ⒋真核生物RNA聚合酶不能独立转录RNA 。原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。如果该序列缺失会极大地降低生物的活体转录水平。第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。它虽不直接与转录复合体结合,但可以显著提高转录效率。

真核生物染色体基因组的结构和功能

真核生物染色体基因组的结构和功能 ?真核生物基因组特点 ?高度重复序列 o反向重复序列 o卫星DNA o较复杂的重复单位组成的重复顺序 o高度重复序列的功能 ?中度重复顺序 o Alu家族 o KpnⅠ家族 o Hinf家族 o rRNA基因 o多聚dT-dG家族 o组蛋白基因 ?单拷贝顺序(低度重复顺序) ?多基因家族与假基因 ?自私DNA(selfish DNA) 真核生物的基因组一般比较庞大,例如人的单倍体基因组由3×106 bp硷基组成,按1000个碱基编码一种蛋白质计,理论上可有300万个基因。但实际上,人细胞中所含基因总数大概会超过10万个。这就说明在人细胞基因组中有许多DNA序列并不转录成mRNA用于指导蛋白质的合成。DNA的复性动力学研究发现这些非编码区往往都是一些大量的重复序列,这些重复序列或集中成簇,或分散在基因之间。在基因内部也有许多能转录但不翻译的间隔序列(内含子)。因此,在人细胞的整个基因组当中只有很少一部份(约占2-3%)的DNA 序列用以编码蛋白质。 真核生物基因组有以下特点。 1.真核生物基因组DNA与蛋白质结合形成染色体,储存于细胞核内,除配子细胞外,体细胞内的基因的基因组是双份的(即双倍体,diploid),即有两份同源的基因组。 2.真核细胞基因转录产物为单顺反子。一个结构基因经过转录和翻译生成一个mRNA 分子和一条多肽链。 3.存在重复序列,重复次数可达百万次以上。

4.基因组中不编码的区域多于编码区域。 5.大部分基因含有内含子,因此,基因是不连续的。 6.基因组远远大于原核生物的基因组,具有许多复制起点,而每个复制子的长度较小。高度重复序列: 高度重复序列在基因组中重复频率高,可达百万(106)以上,因此复性速度很快。在基因组中所占比例随种属而异,约占10-60%,在人基因组中约占20%。高度重复顺序又按其结构特点分为三种。 (1)倒位(反向)重复序列 这种重复顺序复性速度极快,即使在极稀的DNA浓度下,也 能很快复性,因此又称零时复性部分,约占人基因组的5%。反向 重复序列由两个相同顺序的互补拷贝在同一DNA链上反向排列而 成。变性后再复性时,同一条链内的互补的拷贝可以形成链内碱基 配对,形成发夹式或“+”字形结构。倒位重复(即两个互补拷贝) 间可有一到几个核苷酸的间隔,也可以没有间隔。没有间隔的又称 回文(palimdr-ome),这种结构约占所有倒位重复的三分之一。若以两个互补拷贝组成的倒位重复为一个单位,则倒位重复的单位约长300bp或略少。两个单位之间有一平均1.6kb 的片段相隔,两对倒位重复单位之间的平均距离约12kb,亦即它们多数散布非群集于基因组中。 (2)卫星DNA 卫星DNA(satelliteDNA)是另一类高度重复序列,这类重复顺序的重复单位一般由 2-10bp组成,成串排列。由于这类序列的碱基组成不同于其他部份,可用等密度梯度离心法将其与主体DNA分开,因而称为卫星DNA或随体DNA。在人细胞组中卫星DNA约占5-6%。按照它们的浮力密度不同,人的卫星DNA可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四种。果蝇的卫星DNA顺序已经搞清楚,可分为三类,这三类卫星DNA都是由7bp组成的高度重复顺序:卫星Ⅰ为5'ACAACT3',卫星Ⅱ为5'ACAAATT3'。而蟹的卫星DNA为只有AT两个碱基的重复顺序组成。 (3)较复杂的重复单位组成的重复顺序 这种重复顺序为灵长类所独有。用限制性内切酶HindⅢ消化非洲绿猴DNA,可以得到重复单位为172bp的高度重复顺序,这种顺序大部份由交替变化的嘌呤和嘧啶组成。有人把这类称为α卫星DNA。而人的α卫星DNA更为复杂,含有多顺序家族。 (4)高度重复顺序的功能 a.参与复制水平的调节反向序列常存在于DNA复制起点区的附近。另外,许多反向重复序列是一些蛋白质(包括酶)和DNA的结合位点。

原核细胞与真核细胞相比最主要特点

. 原核细胞与真核细胞相比最主要特点:没有核膜包围的典型细胞核。 2. 细胞分裂间期最主要变化:DNA的复制和有关蛋白质的合成。 3. 构成蛋白质的氨基酸的主要特点是:(a-氨基酸)都至少含一个氨基和一个羧基,并且都有一氨基酸和一个羧基连在同一碳原子上。 4. 核酸的主要功能:一切生物的遗传物质,对生物的遗传、变异及蛋白质的生物合成有重要意义。 5. 细胞膜的主要成分是蛋白质分子和磷脂分子。 6. 选择透过性膜主要特点是水分子可自由通过,被选择吸收的小分子、离子可以通过,而其他小分子、离子、大分子却不能通过。 7. 线粒体功能:细胞进行有氧呼吸的主要场所。 8. 叶绿体色素的功能:吸收、传递和转化光能。 9. 细胞核的主要功能:遗传物质的储存和复制场所,是细胞遗传性和代谢活动的控制中心。 10. 新陈代谢主要场所:细胞质基质。 11. 细胞有丝分裂的意义:使亲代和子代细胞之间保持遗传性状的稳定性。 12. A TP的功能:生物体生命活动所需能量的直接来源。 13. 与分泌蛋白形成有关的细胞器:核糖体、内质网、高尔基体、线粒体。 14. 能产生ATP的细胞器(结构):线粒体、叶绿体、(细胞质基质(结构))。能产生水的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构))。能碱基互补配对的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构))。 15. 渗透作用必备的条件是:一是半透膜;二是半透膜两侧要有浓度差。 16. 内环境稳态的生理意义:机体进行正常生命活动的必要条件。 17. 呼吸作用的意义是:(1)提供生命活动所需能量;(2)为体内其他化合物的合成提供原料。 18. 减数分裂和受精作用的意义是:对维持生物体前后代体细胞染色体数目的恒定性,对生物的遗传和变异有重要意义。 19. DNA是主要遗传物质的理由是:绝大多数生物的遗传物质是DNA,仅少数病毒遗传物质是RNA。 20. DNA规则双螺旋结构的主要特点是:(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。(3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。 21. DNA结构的特点是:稳定性——DNA两单链有氢键等作用力;多样性——DNA碱基对的排列顺序千变万化;特异性——特定的DNA分子有特定的碱基排列顺序。 22. 遗传信息:DNA(基因)的脱氧核苷酸排列顺序。遗传密码或密码子:mRNA上决定一个氨基酸的三个相邻的碱基。 23. DNA复制的意义:使遗传信息从亲代传给子代,从而保持了遗传信息的连续性。DNA 复制的特点:半保留复制,边解旋边复制。 24. 基因是指控制生物性状的遗传物质的基本单位,是有遗传效应的DNA片段。 25. 基因的表达是指基因使遗传信息以一定的方式反映到蛋白质的分子结构上,从而使后代表现出与亲代相同的性状。包括转录和翻译两阶段。 26. 遗传信息的传递过程:中心法则。 27. 基因自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时,非

基因组的特点

基因组的特点 真核生物基因组的特点: 1.基因组较大。真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点; 2.不存在操纵子结构。真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上; 3.存在大量的重复序列。真核生物的基因组里存在大量重复序列,通过其重复程度可将其分成高度重复序列、中度重复序列、低度重复序列和单一序列; 4.有断裂基因。大多数真核生物为蛋白质编码的基因都含有“居间序列”,即不为多肽编码,其转录产物在mRNA前体的加工过程中被切除的成分; 5.真核生物基因转录产物为单顺反子; 6.功能相关基因构成各种基因家族。 原核生物基因组的特点: 1.基因组较小,通常只有一个环形或线形的DNA分子; 2.通常只有一个DNA复制起点; 3.非编码区主要是调控序列; 4.存在可移动的DNA序列; 5.基因密度非常高,基因组中编码区大于非编码区; 6.结构基因没有内含子,多为单拷贝,结构基因无重叠现象; 7.重复序列很少,重复片段为转座子; 8.有编码同工酶的等基因; 9.基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;

10.功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子。 病毒基因组的特点: 1.不同病毒基因组大小相差较大; 2.不同病毒基因组可以是不同结构的核酸; 3.除逆转录病毒外,通常为单倍体基因组; 4.有的病毒基因组是连续的,有的病毒基因组分节段; 5.有的基因有内含子; 6.病毒基因组大部分为编码序列; 7.基因重叠,即同一段DNA片段能够编码两种或两种以上的蛋白质分子,这种现象在其他生物细胞中仅见于线粒体和质粒DNA。

真核生物基因组DNA的提取和含量测定

实验报告 课程名称: 生物化学实验 实验名称: 真核生物基因组DNA 的提取和含量测定 指导老师: 同组学生: 廖杰 成绩:__________________ 真核生物基因组DNA 的提取和含量测定 【实验原理】 制备具有生物活性的大分子核酸,必需采取温和的制备条件,避免过酸、过碱 的反应环境和剧烈的搅拌,防止核酸酶的作用,并要求在低温下进行操作 。 一、 真核生物基因组DNA 的提取 本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法破碎组织细胞。 DNP 在0.14mol/L NaCl 中不溶解,而RNP 可溶解。 用无菌水溶解沉淀,加入蛋白酶消化液(含有蛋白酶K 和SDS )。 1温和方法的破碎细胞而不产生机械剪切以致破坏DNA 的完整性, 2可以变性Dnase , 3还可以去除部分的蛋白。 4使核蛋白体从DNA 上解离。 然后加RNase 以去除RNA ,再用苯酚:氯仿抽提法反复抽提提取DNA 苯酚:氯仿抽提法: 酚、氯仿是有机溶剂,能有效地使蛋白质变性。纯酚在与水混合时处于下层。然而有机相和水相会难于分开。 专业: 药学 姓名: 阿卜杜合力力 学号: 3100105256 日期: 2012.5.10 地点: 生化实验室 装 订 线

若使用酚:氯仿混合物抽提,由于氯仿的比重较大(1.47),可在很大程度上解决这个问题,促进两相的分离。 异戊醇则可减少操作过程中产生的气泡。 变性蛋白一般集中在两相之间的界面层,而脂类则有效地分配在有机相中,核酸则被留于上层水相。 该法其具有操作条件比较温和,能迅速使蛋白质变性并同时抑制核酸酶的活性,可得到具有生物活性的高聚合度的核酸等优点。 但其操作步骤较为繁琐,去除蛋白质需要反复进行多次。 砷盐、氟化物、柠檬酸、EDTA等可抑制DNase的活性;皂土等可抑制RNase 的活性。 收集上清液后用乙醇沉淀DNA,最后用TE缓冲液溶解DNA,并用紫外吸收法测定DNA的含量及纯度。 二、紫外吸收法测定基因组DNA的含量及纯度 1.紫外分光光度法测定核酸含量: 由于DNA在260nm处有最大的吸收峰,因此,可以用260nm波长进行分光测定DNA浓度,吸光度A值为1相当于大约50μg /ml双链DNA。 2.紫外分光光度法测定DNA纯度: 由于DNA在260nm处有最大的吸收峰,而蛋白质在280nm处有最大的吸收峰,DNA纯品的算A260/ A280为1.8(1.7~1.9),故根据算A260/ A280的值可以估计DNA的纯度。 若比值较高说明含有RNA,比值较低说明有残余蛋白质存在。

原核生物基因组的特点

一、原核生物基因组结构的特征: 1、原核生物的染色体是由一个核酸分子(DNA或RNA)组成的,DNA(RNA)呈环状或线性,而且它的染色体分子量较小。 2、功能相关的基因大多以操纵子形式出现。如大肠杆菌的乳糖操纵子等。操纵子是细菌的基因表达和调控的一个完整单位,包括结构基因、调控基因和被调控基因产物所识别的DNA 调控原件(启动子等)。 3、蛋白质基因通常以单拷贝的形式存在。一般而言,为蛋白编码的核苷酸顺序是连续的,中间不被非编码顺序所打断。 4、基因组较小,只含有一个染色体,呈环状,只有一个复制起点,一个基因组就是一个复制子。 6、重复序列和不编码序列很少。越简单的生物,其基因数目越接近用DNA 分子量所估计的基因数。如MS 2 和λ噬菌体,它们每一个基因的平均碱基对数目大约是1300 。如果扣除基因中的不编码功能区,如附着点attP ,复制起点、黏着末端、启动区、操纵基因等,几乎就没有不编码的序列了。这点与真核生物明显不同,据估算,真核生物不编码序列可占基因组的90 %以上。这些不编码序列,其中大部分是重复序列。在原核生物中只有嗜盐细菌、甲烷细菌和一些嗜热细菌、有柄细菌的基因组中有较多的重复序列,在一般细菌中只有rRNA 基因等少数基因有较大的重复。 9、功能密切相关的基因常高度集中,越简单的生物,集中程度越高。例如,除已知的操纵子外,λ噬菌体7 个头部基因和11 个尾部基因都各自相互邻接。头部和尾部基因又相邻接,又如,有关DNA 复制基因O 、P ;整合和切离基因int ,xis ;重组基因red α、red β;调控基因N 、c Ⅰ、c Ⅱ、c Ⅲ、cro 也集中在一个区域,而且和有关的结构基因又相邻近。 10 DNA绝大部分用于编码蛋白质,结构基因多为单拷贝 11、结构基因中无重叠现象(一段DNA序列编码几种蛋白质多肽链) 12、基因组中存在可移动的DNA序列,如转座子和质粒等 二、原核生物基因组功能的特点: 1、染色体不与组蛋白结合。 2、不同生活习性下原核生物基因组大小与GC含量的关系 基因组GC含量( G与C 所占的百分比) 是基因组组成的标志性指标。有两种观点来解释不同生物之间GC含量的差异: 中性说和选择说。中性说主要强调不同生物之间GC含量的差异是由碱基的随机突变和漂移造成, 而选择说则认为GC 含量的差异是环境及生物的生活习性等因素综合作用的结果。 原核生物基因组大小与GC含量的总体相关性 实验证明,当所分析的原核生物基因组大小大部分都在1~6Mb范围内, 而GC 含量则一般在20%~ 75%之间,回归分析显示, 基因组大小与GC 含量总体上存在着具统计学意义的正相关.寄生生活习性对维持或增强基因组大小与基因组GC 含量的相关性有较大的作用。 3、原核生物中有些基因不是从第一个ATG 起始的(如大肠杆菌和枯草杆菌基因)原因: 首先,原核生物( 包括病毒) 的mRNA 可以是多顺反子, 即可以有几个基因同时被转录成一个mRNA, 共同使用一个启动调控区; 真核生物的mRNA 都是单顺反子, 一个mRNA 只携带一个基因. 真核生物的核糖体从mRNA 的5’末端向3’端滑动时, 把所碰到的第一个AUG 作为蛋白质合成的起始. 而原核生物的核糖体从mRNA 的5’末端向3’端滑动时, 碰到第一个AU G 能

真核生物细胞器基因组概述

真核细胞器基因组概述 真核生物细胞器基因组概述 中文摘要 真核生物的基因组分为细胞核基因组和细胞器基因组。细胞核基因组,占绝大多数的基因都由核基因组控制;细胞器基因组,与该细胞器功能相关的少数 基因由该细胞器自身控制。它们的基因结构、转录和翻译不一样,核基因组是真核 的系统,细胞器基因组类似原核生物的系统。核基因组占控制地位,它调控细胞器 基因组,但后者也可以调节核基因组基因的表达。本文主要对真核生物细胞器基因 组进行描述。 关键字:真核生物基因组细胞器基因组 Overview of eukaryotic organelle genomes Abstract Eukaryotic genome into the nucleus genome and organelle genomes. Nuclear genome, the majority of genes controlled by the nuclear genome; organelle genomes, cells, functions associated with the small number of genes controlled by the organelle itself. Their gene structure, transcription and translation is not the same, eukaryotic nuclear genome is a system, organelle genomes like prokaryotes system. Total control of the nuclear genome position, which regulate organelle genome, but the latter can also adjust the nuclear genome gene expression. In this paper, the genome of eukaryotic organelles are described. Keywords:Eukaryotes genomes organelle genomes 前言 基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。 真核生物细胞内具有两种基因组: 独立自主的细胞核基因组和具有半自主性的细胞器基因组。细胞器基因组主要是动植物共有的线粒体和植物所特有的质体的基因组。绝大多数遗传信息位于细胞核, 而线粒体和质体仅包含为数有限的与细胞器功能相关的基因。在起源上, 对于线粒体和质体有两种推测: (1) 细胞器是由细胞核分离出的部分基因组成[1]。(2) 细胞器来源于内共生的自养微生物[2]。现在人们普遍接受内共生学说,该学说认为线粒体起源于变形菌

相关文档
最新文档