动力学图象问题

动力学图象问题
动力学图象问题

0 t 1

t 2 t 3

F t

t 4

F 0

a

A ′

O F

a

F

O

丙 李林中学高一年级物理导学案

班级 姓名 使用时间 第 周

课 题

主 备

审 核

使用教师

编号 编写时间

动力学图象问题 王 雄

例题1.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所示,则

( )

A .物体将做往复运动

B .2 s 内的位移为零

C .2 s 末物体的速度最大

D .3 s 内,拉力做的功为零

针对练习 1.一电子在如图所示按正弦规律变化的外力作用下由静止释放,则物体将:( )

A 、作往复性运动

B 、t 1时刻动能最大

C 、一直朝某一方向运动

D 、t 1时刻加速度为负的最大。

例题2.地面上有一个质量为M 的重物,用力F 向上提它,力F 的变化将引起物体加速度的变化.已知物体的加速度a 随力F 变化的函数图像如图所示,则( ) A .当F 小于F 0时,物体的重力Mg 大于作用力F B .当F =F 0时,作用力F 与重力Mg 大小相等 C .物体向上运动的加速度与作用力F 成正比 D .a ′的绝对值等于该地的重力加速度g 的大小

针对联系2.物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A 、m B 、m C ,与水平

面的动摩擦因力F 的关系图线如图4所对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是( )

①μ A <μB m A =m B ②μ B >μC m B >m C ③μ B =μC m B >m C ④μ A <μC m A <m C A .①② B .②④ C .③④ D .①④

A

a B

F

O

小卷子

1.某同学在由静止开始向上运动的电梯里,将一测量加速度的小探头固定在质量为

1 kg

的手提包上,到达某一楼层

停止,采集数据并分析处理后列表如下:

运动规律 匀加速直线运动

匀速直线运动 匀减速直线运动 时间段/s 0~2.5 2.5~11.5

11.5~14.0 加速度/m ·s -2

0.40

0.40

某同学在计算机上绘出如下图象,设F 为手对提包的拉力.请你判断下图中正确的是 ( )

2.如图所示,A 、B 两条直线是在A 、B 两地分别用竖直向上的力F 拉质量分别为

m A 、m B 的物体得出的两个加速度a 与力F 的关系图线,由图线分析可

A .两地的重力加速度g A >g

B B .m A <m B

C .两地的重力加速度g A <g B

D .m A >m B

3.一个质量为kg 4的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数

1.0=μ。从0=t 开始,物体受到一个大小和方向呈周期性变化的水平力F 作用,力F 随时间的变化规律如图所示。求83秒内物体的位移大小. g 取2/10s m 。

动力学图象问题

0 t 1 t 2 t 3 F t t 4 F 0 a A ′ O F 甲 a F O 乙 丙 李林中学高一年级物理导学案 班级 姓名 使用时间 第 周 课 题 主 备 审 核 使用教师 编号 编写时间 动力学图象问题 王 雄 例题1.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所示,则 ( ) A .物体将做往复运动 B .2 s 内的位移为零 C .2 s 末物体的速度最大 D .3 s 内,拉力做的功为零 针对练习 1.一电子在如图所示按正弦规律变化的外力作用下由静止释放,则物体将:( ) A 、作往复性运动 B 、t 1时刻动能最大 C 、一直朝某一方向运动 D 、t 1时刻加速度为负的最大。 例题2.地面上有一个质量为M 的重物,用力F 向上提它,力F 的变化将引起物体加速度的变化.已知物体的加速度a 随力F 变化的函数图像如图所示,则( ) A .当F 小于F 0时,物体的重力Mg 大于作用力F B .当F =F 0时,作用力F 与重力Mg 大小相等 C .物体向上运动的加速度与作用力F 成正比 D .a ′的绝对值等于该地的重力加速度g 的大小 针对联系2.物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A 、m B 、m C ,与水平 面的动摩擦因力F 的关系图线如图4所对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是( ) ①μ A <μB m A =m B ②μ B >μC m B >m C ③μ B =μC m B >m C ④μ A <μC m A <m C A .①② B .②④ C .③④ D .①④

能力课2 动力学中的典型“模型”

能力课2动力学中的典型“模型” 一、选择题(1~3题为单项选择题,4~5题为多项选择题) 1.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。 随后它们保持相对静止,行李随传送带一起前进。设传送带匀速前进的速度为0.25 m/s,把质量为5 kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6 m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下的摩擦痕迹约为() 图1 A.5 mm B.6 mm C.7 mm D.10 mm 解析木箱加速的时间为t=v/a,这段时间内木箱的位移为x1=v2 2a ,而传送带的位移为x2=v t,传送带上将留下的摩擦痕迹长为l=x2-x1,联立各式并代入数据,解得l=5.2 mm,选项A正确。 答案 A 2.(2019·山东日照模拟)如图2所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的() 图2 解析设在木板与物块未达到相同速度之前,木板的加速度为a1,物块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。对木板应用牛顿第二定律得: -μ1mg-μ2·2mg=ma1 a1=-(μ1+2μ2)g

设物块与木板达到相同速度之后,木板的加速度为a2,对整体有-μ2·2mg=2ma2 a2=-μ2g,可见|a1|>|a2| 由v-t图象的斜率表示加速度大小可知,图象A正确。 答案 A 3.(2019·山东潍坊质检)如图3所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ

高中物理:动力学中的图像问题

高中物理:动力学中的图像问题 1.常见的图像形式 在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹. 2.图像问题的分析方法 遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题. [典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求: (1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2. (2)m 与M 的质量之比. (3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移. [解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104 m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g =0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为 a 3=Δv 3Δt 3=0-48 m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得: -μ2(m +M )g =(m +M )a 3 所以μ2=a 3-g =0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2 =4-04 m /s 2=1 m/s 2

高考物理动力学的图像问题专题训练

专题1.7 动力学的图像问题 【专题诠释】 1.“两大类型” (1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v -t 图象与F -t 图象的桥梁. 3.解决图象问题的方法和关键 (1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等表示的物理意义. (3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点. (4)动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等. 【高考引领】 【2019·全国卷Ⅲ】如图a ,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图b 所示,木板的速度v 与时间t 的关系如图c 所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2 。由题给数据可以得出( ) A .木板的质量为1 kg B .2~4 s 内,力F 的大小为0.4 N C .0~2 s 内,力F 的大小保持不变 D .物块与木板之间的动摩擦因数为0.2 【答案】 AB 【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42 m/s 2=0.2 m/s 2 ,撤去外力F 后的加速

专题突破电磁感应中的动力学问题课后练习上课讲义

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框内有可随金属框同步移动的磁场,OO′CD区域内磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域内磁场如图(c)所示,AB恰在磁场边缘以内(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知()

第三章 动力学中三种典型物理模型

专题强化四动力学中三种典型物理模型 专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题. 2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力. 3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识. 1.两种模型(如图1) 图1 2.等时性的证明 设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=g sin α,位移为x=d sin α,所以运动时间为t0 =2x a= 2d sin α g sin α= 2d g. 即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关. 例1(2019·安徽芜湖市期末)如图2所示,PQ为圆的竖直直径,AQ、BQ、CQ为三个光滑斜面轨道,分别与圆相交于A、B、C三点.现让三个小球(可以看作质点)分别沿着AQ、BQ、CQ轨道自端点由静止滑到Q点,运动的平均速度分别为v1、v2和v3.则有:() 图2 A.v2>v1>v3 B.v1>v2>v3 C.v3>v1>v2

D.v1>v3>v2 答案 A 解析设任一斜面的倾角为θ,圆槽直径为d.根据牛顿第二定律得到:a=g sin θ,斜面的长 度为x=d sin θ,则由x=1 2at 2得t=2x a=2d sin θ g sin θ =2d g ,可见,物体下滑时间与斜面的 倾角无关,则有t1=t2=t3,根据v=x t ,因x2>x1>x3,可知v2>v1>v3,故选A. 变式1如图3所示,竖直半圆环中有多条起始于A点的光滑轨道,其中AB通过环心O 并保持竖直.一质点分别自A点沿各条轨道下滑,初速度均为零.那么,质点沿各轨道下滑的时间相比较() 图3 A.无论沿图中哪条轨道下滑,所用的时间均相同 B.质点沿着与AB夹角越大的轨道下滑,时间越短 C.质点沿着轨道AB下滑,时间最短 D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短 答案 A 1.水平传送带模型 项目图示滑块可能的运动情况 情景1 ①可能一直加速 ②可能先加速后匀速 情景2 ①v0>v,可能一直减速,也可能先减速再匀速 ②v0=v,一直匀速 ③v0v,返回时速度为v,若v0

高一物理 动力学中的图象问题、临界问题牛顿运动定律的适用范围 典型例题解析

高一物理动力学中的图象问题、临界问题牛顿运动定律的 适用范围典型例题解析 【例1】如图25-1所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m.现施水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动.若改用水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过 [ ] A.2F B.F/2 C.3F D.F/3 解析:水平力F拉B时,A、B刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时的A、B间的摩擦力即为最大静摩擦力.先用整体法考虑,对A、B整体:F=(m+2m)a: 再将A隔离可得A、B间最大静摩擦力:f m=ma=F/3; 若将F′作用在A上,隔离B可得:B能与A一起运动,而A、B不发生相对滑动的最大加速度:a′=f m/2m;再用整体法考虑,对A、B整体:F′=(m+2m)a′=F/2因而正确选项为B. 点拨:“刚好不发生相对滑动”是摩擦力发生突变(由静摩擦力突变为滑动摩擦力)的临界状态.由此求得的最大静摩擦力正是求解此题的突破口. 【例2】在光滑的水平面上,一个质量为0.2kg的物体在1.0N的水平力作用下由静止开始做匀加速直线运动,2.0s后将此力换为方向相反、大小仍为1.0N的力,再过2.0s将力的方向再换过来……,这样,物体受到的力的大小虽然不变,方向却每过2.0s变换一次,求经过半分钟物体的位移及半分钟末的速度分别为多大? 解析:在最初2s内物体的加速度为a=F/m=1/0.2m/s2=5m/s2,物体做初速度为零的匀加速直线运动,这2s内的位移为s=at2/2=1/2×5×22m=10m 2s末物体的速度为v=at=5×2m/s=10m/s 2s末力的方向改变了,但大小没变,加速度大小仍是5m/s2,但方向也改变了,物体做匀减速直线运动.到4s末,物体的速度为v t=v0-at=10m/s-5×2m/s=0 故在第二个内的位移为==+·= 2s s vt(v v)/2t10m 20t 所以,物体在前4s内的位移为s1+s2=20m.

动力学的图象问题和连接体问题

重难强化训练(三) 动力学的图象问题和 连接体问题 (45分钟100分) 一、选择题(本题共10小题,每小题6分,共60分.1~6题为单选,7~10题为多选) 1.一物块静止在粗糙的水平桌面上,从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力,以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图象是() A B C D C[设物块所受滑动摩擦力为f,在水平拉力F作用下,物块做匀加速直线运动,由牛顿第二定律,F-f=ma,F=ma+f,所以能正确描述F与a之间关系的图象是C.] 2.如图1所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是() 【导学号:84082159】 图1 A.车厢的加速度大小为g tan θ B.绳对物体1的拉力为m1g cos θ C.底板对物体2的支持力为(m2-m1)g

D .物体2所受底板的摩擦力为0 A [以物体1为研究对象进行受力分析,如图甲所示, 物体1受到重力m 1g 和拉力T 作用,根据牛顿第二定律得 m 1g tan θ=m 1a ,解得a =g tan θ,则车厢的加速度也为g tan θ, 将T 分解,在竖直方向根据二力平衡得T =m 1g cos θ,故A 正确,B 错误;对物体2 进行受力分析如图乙所示,根据牛顿第二定律得N =m 2g -T =m 2g - m 1g cos θ ,f =m 2a =m 2g tan θ,故C 、D 错误.] 3.质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图2所示.则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为(g 取10 m/s 2)( ) 图2 A .0.2 6 N B .0.1 6 N C .0.2 8 N D .0.1 8 N A [本题的易错之处是忽略撤去F 前后摩擦力不变.由v -t 图象可知,物体 在6~10 s 内做匀减速直线运动,加速度大小a 2=|Δv Δt |=|0-84| m/s 2=2 m/s 2.设物 体的质量为m ,所受的摩擦力为f ,根据牛顿第二定律有f =ma 2,又因为f =μmg ,解得μ=0.2.由v -t 图象可知,物体在0~6 s 内做匀加速直线运动,加速度大小 a 1=Δv Δt =8-26 m/s 2=1 m/s 2,根据牛顿第二定律有F -f =ma 1,解得F =6 N ,故只有A 正确.] 4.滑块A 的质量为2 kg ,斜面体B 的质量为10 kg ,斜面倾角θ=30°,已知A 、B 间和B 与地面之间的动摩擦因数均为μ=0.27,将滑块A 放在斜面B 上

动力学方法及应用

【巩固练习】 一、选择题 1、如图所示,一物块在光滑的水平面上受一恒力F 的作用而运动,其正前方固定一个足够 长的轻质弹簧,当物块与弹簧接触后,则( ) A.物块立即做减速运动 B.物块在开始的一段时间内仍做加速运动 C.当弹簧的弹力等于恒力F 时,物块静止 D.当弹簧处于最大压缩量时,物块的加速度不为零 2、如图(a )所示,质量m =1kg 的物体置于倾角θ=37°的固定粗糙斜面上。t =0时对物体 施以平行于斜面向上的拉力F ,t =1s 时撤去拉力,斜面足够长,物体运动的部分v t 图如 图(b )所示,则下列说法中正确的是( ) A .拉力的大小为20N B .t =3s 时物体运动到最高点 C .t =4s 时物体的速度大小为10m/s D .t =1s 时物体的机械能最大 3、如图所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做圆周运动。对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有相互作用力。下列说法中正确的是 ( ) A .半径R 越大,小球通过轨道最高点时的速度越大 B .半径R 越大,小球通过轨道最高点时的速度越小 C .半径R 越大,小球通过轨道最低点时的角速度越大 D .半径R 越大,小球通过轨道最低点时的角速度越小 4、如图所示,竖直平面内有一足够长的金属导轨,金属导体棒ab 可在导轨上无摩擦地上下滑动,且导体棒ab 与金属导轨接触良好,ab 电阻为R ,其它电阻不计。导体棒ab 由静止开始下落,过一段时间后闭合电键S ,发现导体棒ab 立刻作变速运动,则在以后导体棒ab 的运动过程中,下列说法中不正确的是 ( ) A .导体棒ab 作变速运动期间加速度一定减小 B .单位时间内克服安培力做的功全部转化为电能,电能又转化为电热 C .导体棒减少的机械能转化为闭合电路中的电能和电热之和,符合 能的转化和守恒定律

微专题20 动力学中的图像问题

1.两类问题,一类问题是从图像中挖掘信息,再结合题干信息解题;另一类是由题干信息判断出正确的图像. 2.两种方法,一是函数法:列出所求物理量的函数关系式,理解图像的意义,理解斜率和截距的物理意义;二是特殊值法:将一些特殊位置或特殊时刻或特殊情况的物理量值与图像对应点比较. 1.如图1甲所示,一质量m=1 kg的物块静置在倾角θ=37°的斜面上,从t=0时刻开始对物块施加一沿斜面方向的拉力F,取沿斜面向上为正方向,F随时间t变化的关系如图乙所示,已知物块与斜面间的动摩擦因数μ=0.8,取sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2,物块与斜面间的最大静摩擦力等于滑动摩擦力,则下列图像中正确反映物块的速率v随时间t变化的规律的是() 图1

2.(2020·湖北宜昌市调研)如图2所示,水平轻弹簧左端固定,右端连接一物块(可以看作质点),物块静止于粗糙的水平地面上,弹簧处于原长.现用一个水平向右的力F拉动物块,使其向右做匀加速直线运动(整个过程不超过弹簧的弹性限度).以x表示物块离开静止位置的位移,下列表示F和x之间关系的图像可能正确的是()

图2 3.(2019·湖北荆州市质检)如图3所示,一劲度系数为k 的轻质弹簧,上端固定,下端连一质量为m 的物块A ,A 放在质量也为m 的托盘B 上,以N 表示B 对A 的作用力,x 表示弹簧的伸长量.初始时,在竖直向上的力F 作用下系统静止,且弹簧处于竖直自然状态(x =0).现 改变力F 的大小,使B 以g 2 的加速度匀加速向下运动(g 为重力加速度,空气阻力不计),此过程中N 、F 随x 变化的图像正确的是( )

动力学分析方法

1 动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: +P M (2) u I - = 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义: + = (3) I Ku C u 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有 (4) + M= + u P Ku C u

动力学的两类基本问题

动力学的两类基本问题文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

4.6用牛顿运动定律解决问题(一)【学习目标】 知识与技能 1.知道应用牛顿运动定律解决的两类主要问题。 2.掌握应用牛顿运动定律解决问题的基本思路和方法。 过程与方法 1.通过实例感受研究力和运动关系的重要性。 2.帮助学生学会运用实例总结归纳一般问题的解题规律的能力。情感态度与价值观 1.初步认识牛顿运动定律对社会发展的影响。 2.初步建立应用科学知识的意识。 【学习重点】应用牛顿运动定律解决问题的基本思路和方法。 【学习难点】物体的受力分析及运动状态分析,解题方法的灵活选择和运用。正交分解法的应用。 【学习过程】 一、自主学习 1、理解牛顿第一定律的含义 揭示了力与运动的关系,力不是维持物体运动的原因,而 是。 对于牛顿第一定律,你还有哪一些理解? 2、理解牛顿第二定律是力与运动联系的桥梁 牛顿第二定律确定了_______________的关系,使我们能够把物体的___________情况和_________情况联系起来。

类型一:从受力确定运动情况 如果已知物体的受力情况,可以由牛顿第二定律求出物体的___________,再通过__________就可以确定物体的运动情况。 类型二:从运动情况确定受力 如果已知物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的___________。 3、能运用牛顿第三定律分析物体之间的相互作用 物体之间的作用力和反作用力总是 当一个物体的受力不容易分析的时候,我们能不能分析对它施加力的物体? 分析的时候应该注意什么问题? 跟踪练习 1.一个静止在水平面上的木箱,质量为2 kg,在水平拉力F=6 N的作用下从静止开始运动,已知木箱与水平面间滑动摩擦力是4N,求物体2 s末的速度及2 s内的位移。(g取10 m/s2) 2.如图所示,是电梯上升的v~t图象,若电梯的质量为100kg,则钢绳对电梯的拉力在0~2s之间、2~6s之间、6~9s之间分别为多大?(g取10m/s2) 二、课内探究 引言:牛顿第二定律确定了_______________的关系,使我们能够把物体的 ___________情况和_________情况联系起来。 类型一:从受力确定运动情况 如果已知物体的受力情况,可以由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。 例题1:一个静止在水平地面上的物体,质量是 2 kg,在6.4 N的水平拉力作

专题2 动力学中的典型“模型”

专题2动力学中的典型“模型” 模型一等时圆模型 1.模型特征 (1)质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图1甲所示。 (2)质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。 (3)两个竖直圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。 图1 2.思维模板 【例1】如图2所示,ab、cd是竖直平面内两根固定的光滑细杆,a、b、c、d 位于同一圆周上,b点为圆周的最低点,c点为圆周的最高点,若每根杆上都套着一个小滑环(图中未画出),将两滑环同时从a、c处由静止释放,用t1、t2分别表示滑环从a到b、从c到d所用的时间,则()

图2 A.t1=t2 B.t1>t2 C.t1<t2 D.无法确定 解析设光滑细杆与竖直方向的夹角为α,圆周的直径为D,根据牛顿第二定律 得滑环的加速度为a=mg cos α m =g cos α,光滑细杆的长度为x=D cos α,则根据x =1 2at 2得,t=2x a=2D cos α g cos α =2D g ,可见时间t与α无关,故有t1=t2,因 此A项正确。 答案 A 1.如图3所示,位于竖直平面内的圆周与水平面相切于M点,与竖直墙相切于A 点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心。已知在同一时刻,甲、乙两球分别从A、B两点由静止开始沿光滑倾斜直轨道运动到M点。丙球由C点自由下落到M点。则() 图3 A.甲球最先到达M点 B.乙球最先到达M点 C.丙球最先到达M点 D.三个球同时到达M点 解析设圆轨道的半径为R,根据等时圆模型有t乙>t甲,t甲=2R g ;丙球做自 由落体运动,有t丙=2R g ,所以有t乙>t甲>t丙,选项C正确。 答案 C 2.(2020·合肥质检)如图4所示,有一半圆,其直径水平且与另一圆的底部相切于

高一【动力学中的典型“模型” 】专题训练(带解析)

高一【动力学中的典型“模型” 】专题训练 一、选择题(1~3题为单项选择题,4~5题为多项选择题) 1.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。随后它们保持相对静止,行李随传送带一起前进。设传送带匀速前进的速度为0.25 m/s,把质量为5 kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6 m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下的摩擦痕迹约为( ) 图1 A.5 mm B.6 mm C.7 mm D.10 mm 解析木箱加速的时间为t=v/a,这段时间内木箱的位移为x1=v2 2a ,而传送 带的位移为x2=vt,传送带上将留下的摩擦痕迹长为l=x2-x1,联立各式并代入数据,解得l=5.2 mm,选项A正确。 答案 A 2.如图2所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的( ) 图2 解析设在木板与物块未达到相同速度之前,木板的加速度为a1,物块与木

板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。对木板应用牛顿第二定律得: -μ1mg-μ2·2mg=ma1 a =-(μ1+2μ2)g 1 设物块与木板达到相同速度之后,木板的加速度为a2,对整体有-μ2·2mg =2ma2 a =-μ2g,可见|a1|>|a2| 2 由v-t图象的斜率表示加速度大小可知,图象A正确。 答案 A 3.如图3所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ

知识讲解 动力学方法及应用

高考冲刺:动力学方法及应用 编稿:xx 审稿:xx 【高考展望】 本专题主要讨论利用动力学方法分析解决物理问题的方法。动力学问题是高中物理的主干和重点知识,动力学方法是高中物理中处理物理问题的常用方法和重要方法,也是历年高考热点。历年高考试卷中的综合问题往往与动力学知识有关,并且往往把动力学知识与非匀变速直线运动、圆周运动、平抛运动、电场、磁场、电磁感应等知识点综合起来,这类问题过程多样复杂,信息容量大,综合程度高,难度大。 牛顿运动定律、运动学知识是本专题知识的重点。在对本专题知识的复习中,应在物理过程和物理情景分析的基础上,分析清楚物体的受力情况、运动情况,恰当地选取研究对象和研究过程,准确地选用适用的物理规律。 【知识升华】 “动力学方法”简介:从“力与运动的关系”角度来研究运动状态和运动过程的学习研究方法。物体所受的合外力决定物体运动的性质。物体所受的合外力是否为零,决定物体的运动是匀速运动(或静止)还是变速运动;物体所受的合外力是否恒定,决定物体的运动是匀变速运动还是非匀变速运动;物体所受合外力的方向与物体运动方向的关系决定物体的运动轨迹是直线还是曲线。 解决动力学问题,要对物体进行受力分析,进行力的分解和合成;要对物体运动过程进行分析,然后根据牛顿第二定律,把物体受的力和运动联系起来,列方程求解。 【方法点拨】 常用的解题方法:整体法和隔离法;正交分解法;合成法。 考点一、整体法和隔离法 整体法和隔离法通常用于处理连接体问题。 要点诠释:作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。处理连接体问题的关键是整体法与隔离法的配合使用。隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。 考点二、正交分解法 当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。 要点诠释:多数情况下是把力正交分解在加速度方向和垂直加速度方向上,x F ma =(沿加速度方向)0y F =(垂直于加速度方向),特别要注意在垂直于加速度方向根据合力为零的特点正确求出支持力。特殊情况下也可以分解加速度。 考点三、合成法(也叫平行四边形定则、三角形定则) 要点诠释:若物体只受两个力作用而产生加速度时,这时二力不平衡,根据牛顿第二定律可知,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。特别是两个力相互垂直或相等时,应用力的合成法比较简单(匀速圆周运动都属于这类问题)。 【典型例题】 类型一、匀变速直线运动 用动力学方法解决匀变速直线运动问题时,主要根据牛顿运动定律,往往结合运动学知识和动能定理(动能定理是根据牛顿第二定律推导出来的,导出的公式、定理等很多时候用起来要简单得多)

高考冲刺动力学方法及应用

高考冲刺:动力学方法及应用 编稿:李传安 审稿:张金虎 【高考展望】 本专题主要讨论利用动力学方法分析解决物理问题的方法。动力学问题是高中物理的主干和重点知识,动力学方法是高中物理中处理物理问题的常用方法和重要方法,也是历年高考热点。历年高考试卷中的综合问题往往与动力学知识有关,并且往往把动力学知识与非匀变速直线运动、圆周运动、平抛运动、电场、磁场、电磁感应等知识点综合起来,这类问题过程多样复杂,信息容量大,综合程度高,难度大。 牛顿运动定律、运动学知识是本专题知识的重点。在对本专题知识的复习中,应在物理过程和物理情景分析的基础上,分析清楚物体的受力情况、运动情况,恰当地选取研究对象和研究过程,准确地选用适用的物理规律。 【知识升华】 “动力学方法”简介:从“力与运动的关系”角度来研究运动状态和运动过程的学习研究方法。物体所受的合外力决定物体运动的性质。物体所受的合外力是否为零,决定物体的运动是匀速运动(或静止)还是变速运动;物体所受的合外力是否恒定,决定物体的运动是匀变速运动还是非匀变速运动;物体所受合外力的方向与物体运动方向的关系决定物体的运动轨迹是直线还是曲线。 解决动力学问题,要对物体进行受力分析,进行力的分解和合成;要对物体运动过程进行分析,然后根据牛顿第二定律,把物体受的力和运动联系起来,列方程求解。 【方法点拨】 常用的解题方法:整体法和隔离法;正交分解法;合成法。 考点一、整体法和隔离法 整体法和隔离法通常用于处理连接体问题。 要点诠释:作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。处理连接体问题的关键是整体法与隔离法的配合使用。隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。 考点二、正交分解法 当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。 要点诠释:多数情况下是把力正交分解在加速度方向和垂直加速度方向上,x F ma =(沿加速度方向)0y F =(垂直于加速度方向),特别要注意在垂直于加速度方向根据合力为零的特点正确求出支持力。特殊情况下也可以分解加速度。 考点三、合成法(也叫平行四边形定则、三角形定则) 要点诠释:若物体只受两个力作用而产生加速度时,这时二力不平衡,根据牛顿第二定律可知,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。特别是两个力相互垂直或相等时,应用力的合成法比较简单(匀速圆周运动都属于这类问题)。 【典型例题】 类型一、匀变速直线运动 用动力学方法解决匀变速直线运动问题时,主要根据牛顿运动定律,往往结合运动学知识和动能定理(动能定理是根据牛顿第二定律推导出来的,导出的公式、定理等很多时候用起来要简单得多)

第三章 微专题20 动力学中的图象问题

1.两类问题,一类问题是从图象中挖掘信息,再结合题干信息解题;另一类是由题干信息判断出正确的图象. 2.两种方法,一是函数法:列出所求物理量的函数关系式,理解图象的意义,理解斜率和截距的物理意义;二是特殊值法:将一些特殊位置或特殊时刻或特殊情况的物理量值与图象对应点比较. 1.如图1甲所示,一质量m=1 kg的物块静置在倾角θ=37°的斜面上,从t=0时刻开始对物块施加一沿斜面方向的拉力F,取沿斜面向上为正方向,F随时间t变化的关系如图乙所示,已知物块与斜面间的动摩擦因数μ=0.8,取sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2,物块与斜面间的最大静摩擦力等于滑动摩擦力,则下列图象中正确反映物块的速率v随时间t变化的规律的是() 图1 2.(2020·湖北宜昌市调研)如图2所示,水平轻弹簧左端固定,右端连接一物块(可以看作质点),物块静止于粗糙的水平地面上,弹簧处于原长.现用一个水平向右的力F拉动物块,使其向右做匀加速直线运动(整个过程不超过弹簧的弹性限度).以x表示物块离开静止位置的位移,下列表示F和x之间关系的图象可能正确的是() 图2

3.(2019·湖北荆州市质检)如图3所示,一劲度系数为k 的轻质弹簧,上端固定,下端连一质量为m 的物块A ,A 放在质量也为m 的托盘B 上,以F N 表示B 对A 的作用力,x 表示弹簧的伸长量.初始时,在竖直向上的力F 作用下系统静止,且弹簧处于竖直自然状态(x =0).现 改变力F 的大小,使B 以g 2 的加速度匀加速向下运动(g 为重力加速度,空气阻力不计),此过程中F N 、F 随x 变化的图象正确的是( ) 图3 4.(2019·天津市河北区名校联考)如图4所示,一根轻弹簧竖直直立在水平地面上,下端固定.在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O 处,将弹簧压缩了x 0时,物块的速度变为零.在下列图象中,能正确反映物块从与弹簧接触开始,至运动到最低点加速度的大小随下降的位移x (弹簧原长为位移的零点)变化的图象是( ) 图4

动力学分析方法

1动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程.在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法 所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构 (系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程 (如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统black box SyStem) 或不完全了解(称灰箱系统 ----------------------------- g rey box SyStem)的情况,它必须对系统进行动 力学实验,利用系统的输入(载荷)和输出(响应—- response数据,然后根 据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: Mu T -P=O (2) 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现.可以定义: I=KU Cu (3) 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有

动力学的两类基本问题专题训

动力学的两类基本问题 专题训 This model paper was revised by LINDA on December 15, 2012.

动力学的两类基本问题 【基础导学】两类动力学问题的解题思路图解 【典例剖析】已知受力求运动 例题1:如图,质量为m=2kg 的物体静 止在水平地面上,物体与水平面间的动摩擦 因数u=0.5。现对物体施加大小F=10N 、与水平方向夹角θ=37°的斜向上的拉力, 经5s 撤去拉力。求物体通过的总位移。(g 取10m/s 2)) 针对训练1-2:质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数μ=0.2,力F 作用了5s ,求物块在5s 内的位移及它在5s 末 的速度。(g =10m/s 2,sin37°=0.6,cos37°=0.8) 针对训练1-3:如图所示,楼梯口一倾斜的天花板与水平面成θ=37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F =10N ,刷子的质量为m =0.5kg ,刷子可视为质点,刷子与天 花板间的动摩擦因数μ=0.5,天花板长为L = 4m .sin37°=0.6,cos37°=0.8,g 取10m/s2.试求:工人把刷子从天花板底端推到顶端所用的时间. 已知运动求受力 牛顿第二定 运动学公式 第一类问题 另一类问题 牛顿第二定 运动学公式 F θ

F 例2:如图所示,质量为0.5kg 的物体在与水平面成300角的拉力F 作用下,沿水平桌面向右做直线运动,经过0.5m 的距离速度由0.6m/s 变为0.4m/s ,已知物体与桌面间的动摩擦因数μ=0.1,求作用力 F 的大小。(g =10m/s 2) 针对训练2-2:一位滑雪者如果以v 0=30m/s 的初速度沿直线冲上一倾角为300的山坡,从冲坡开始计时,至4s 末,雪橇速度变为零。如果雪橇与人的质量为m =80kg ,求滑雪人受到的阻力是多少。(g 取10m/s 2) 针对训练2-3:在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m =80kg ,他从静止开始匀加速下滑,在时间t =5s 内沿斜面滑下的位移x =50m.(不计空气阻力,取g =10m/s 2,结果保留2位有效数字)问: (1)游客连同滑草装置在下滑过程中受到的摩擦力F 为多大? (2)滑草装置与草皮之间的动摩擦因数μ为多大? 多段运动 例3:静止在水平地面上的物体的质量为2kg ,在水平恒力F 推动下开始运动,4s 末它的速度达到4m/s ,此时将F 撤去,又经6s 物体停下来,如果物体与地面的动摩擦因数不变,求F 的大小和动摩擦因数. 针对训练3-1:如图所示,一个人用与水平方向成θ=30°角的斜向下的推力F 推一个质量为20kg 的箱子匀速前进,如图(a)所示,箱子与水平地面间的动摩擦因数为μ=0.40.求:

相关文档
最新文档