基于java的进程通信

基于java的进程通信
基于java的进程通信

1

仲恺农业工程学院实验报告纸

计算机科学与工程 (院、系) 网络工程 专业 083 班 组 《操作系统》 实验二 进程通信

一.实验目的:

1、 理解进程消息通信的概念,如何实现两个创建进程之间的数据传递。。

2、 理解进程共享变量的进程通信。

二.实验内容:

1、 选择Window 或Linux ,并选择该操作系统中一种进程通信的方式。

2、 查找该进程通信的API 使用方式,设计出一个合适的应用程序。

3、 采用高级程序语言实现该应用程序。

4、 测试进程通信程序,能够满足微机操作系统中进程之间的通信。

三.实验步骤和过程

1、 进程通信的知识点:

(1)、进程通信的概念:进程之间互相交换信息的工作称为进程通信IPC

(2)、进程通信的方式:信号(signal )通信机制; 共享存储区

(sharedmemory)通信机制;共享文件(shared file)通信机制;消息传递(message passing)通信机制。

(3)、进程通信机制:管道通信机制,共享主存通信机制,消息传递通信机制。

2、程序设计环境

(1)、Widows7操作系统,eclipse 平台!

(2)、套接字(socket )通信

套接字通信,其中一个运行在客户端,称之为ClientSocket ,另一个运行于服务器端面,称为ServerSocket 。根据连接启动的方式以及本地要连接的目标,套接字之间的连接过程可以分为三个步骤:服务器监听、

2 客户端请求、连接确认。

服务器监听是指服务端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态。

客户端请求是由客户端的套接字提出连接请求,要连接的目标是服务器端套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器套接字的地址和端口号,然后再向服务器端套接字提出连接请求。

连接确认是当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,它就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的信息发送给客户端,一旦客户端确认了此连接,连接即可建立。而服务器端继续处于监听状态,继续接收其他客户端的连接请求。

使用套接字进行数据处理有两种基本模式:同步和异步。

同步模式:

同步模式的特点是在通过Socket 进行连接、接收、发送数据时,客户机和服务器在接收到对方响应前会出于阻塞状态,即一直等到收到对方请求进才继续执行下面的语句。可见,同步模式只适用于数据处理不太多的场合。当程序执行的任务很多时,长时间的等待可能会让用户无法忍受。 异步模式:

异步模式的特点是在通过Socket 进行连接、接收、发送操作时,客户机或服务器不会处于阻塞方式,而是利用callback 机制进行连接、接收、发送处理,这样就可以在调用发送或接收的方法后直接返回,并继续执行下面的程序。可见,异步套接字特别适用于进行大量数据处理的场合。

使用同步套接字进行编程比较简单,而异步套接字编程则比较复杂。

Socker的通信过程

(3)、套接字进程通信用到的类如下:

InetAddress, Socket, 和 ServerSocket。 InetAddress对象描绘

了32位或128位IP地址,Socket对象代表了客户程序流套接字,

ServerSocket代表了服务程序流套接字,所有这三个类均位于包https://www.360docs.net/doc/0f19259145.html,

中。

InetAddress类

InetAddress类在网络API套接字编程中扮演了一个重要角色。参数传

递给流套接字类和自寻址套接字类构造器或非构造器方法。InetAddress描

述了32位或64位IP地址,要完成这个功能,InetAddress类主要依靠两个

支持类Inet4Address 和 Inet6Address,这三个类是继承关系,InetAddrress

是父类,Inet4Address 和 Inet6Address是子类。

getByName(String host)方法返回一个InetAddress对象,该对象包含了

4

一个与host 参数指定的主机相对应的IP 地址,对于指定的主机如果没有IP 地址存在,那么方法将抛出一个UnknownHostException 异常对象。

如下:

public void actionPerformed(ActionEvent e)//事件处理程序

{

b yte buffer[]=input .getText().trim().getBytes();

String s=input .getText();

try { InetAddress address=InetAddress.getByName ("127.0.0.1"); //获取本机地址

DatagramPacket data_pack=new

DatagramPacket(buffer,buffer.length , address,666);

DatagramSocket mail_data=new DatagramSocket();

out .append("进程1 说:\n"+" "+s+"\n");

mail_data.send(data_pack);

input .setText("");

}

catch (Exception e1){}

}

创建了一个Socket 对象,那么它可能通过调用Socket 的 getInputStream()方法从服务程序获得输入流读传送来的信息,也可能通过调用Socket 的 getOutputStream()方法获得输出流来发送消息。在读写活动完成之后,客户程序调用close()方法关闭流和流套接字。如本程序:

ServerSocket server ; //服务端

Socket Client ;//客户端

InputStream DataIn ;//

OutputStream DataOut ;

Thread thread ;

DatagramPacket 类

在使用自寻址包之前,你需要首先熟悉DatagramPacket 类,地址信息和自寻址包以字节数组的方式同时压缩入这个类创建的对象中

DatagramPacket 有数个构造函数,即使这些构造函数的形式不同,但通常情况下他们都有两个共同的参数:byte [] buffer 和 int length ,

5

buffer 参数包含了一个对保存自寻址数据包信息的字节数组的引用,length 表示字节数组的长度

最简单的构造函数是DatagramPacket(byte [] buffer, int length),这个构造函数确定了自寻址数据包数组和数组的长度,但没有任何自寻址数据包的地址和端口信息,这些信息可以后面通过调用方法setAddress(InetAddress addr)和setPort(int port)添加上。构造函数的时候同时包括地址和端口号,可以使用DatagramPacket(byte [] buffer, int length, InetAddress addr, int port)函数如本程序:

public void actionPerformed(ActionEvent e)//事件处理程序

{

S tring s=input .getText();

byte buffer[]=input .getText().trim().getBytes();

try { InetAddress address=InetAddress.getByName ("127.0.0.1"); DatagramPacket data_pack=new DatagramPacket(buffer,buffer.length, address,888);

DatagramSocket mail_data=new DatagramSocket();

out .append("进程2 说:\n"+" "+s+"\n");

mail_data.send(data_pack);

input .setText("");

}

(4)、本程序运行的主窗口结果截图如下:

服务端

6

public JC2( )

{ super ("Lizhidong2");

Container c=getContentPane();

c.setLayout(null );

thread =new Thread(this );

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE );

JPanel panel=new JPanel();

JPanel panel2=new JPanel();

JScrollPane js=new JScrollPane(out );

js.setBounds(10,10,380,200);

panel.setBounds(0,220,400,50);

out .setBackground(Color.yellow );

out .setLineWrap(true );

panel.add(label );

panel.add(input );

input .addActionListener(this );

c.add(js);

c.add(panel);

setBounds(400,150,400,280);

setVisible(true );

setResizable(false );

Thread thread=new Thread(this );

thread.start();

}

客户端

7

public JC1( )

{ super ("lizhidong1");

Container c=getContentPane();

c.setLayout(null );

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE );

JPanel panel=new JPanel();

JPanel panel2=new JPanel();

JScrollPane js=new JScrollPane(out );

js.setBounds(10,10,380,200);

panel.setBounds(0,220,400,50);

out .setBackground(Color.cyan );

out .setLineWrap(true );

panel.add(label );

panel.add(input );

input .addActionListener(this );

c.add(js);

c.add(panel);

setBounds(600,150,400,280);

setVisible(true );

setResizable(false );

Thread thread=new Thread(this );

thread.start();//线程负责接收数据包

}

(5)、进行通信测试

本程序我主要在一台pc 机模拟两台pc 机通信(两台pc 机也可以进行通信,已经实验过),首先,把电脑的防火墙关闭,否则有些电脑是进行不了通信的。先输入要输的信息,按enter 键即可。测试如下截图:

四.实验总结与心得

本次实验中,主要是用java来实现进程通信,其中用到socket套接字来

进行信息的传递。在实验中,我更加了解了进程之间是如何进行消息的传递的,

对进程通信的机制和各种方式更加明白和有了深刻的理解!

参考文献

[1] 孙钟秀,费翔林,骆斌. 操作系统教程[M]. 北京: 高等教育出版社, 2008.

9

[2] 耿祥义、张跃平Java面向对象程序设计[M] 清华大学出版社2010.

java串口编程,java串口通信,监听者模式解析

java调用coms端口串口通信的方法。 首先需要下到串口驱动。javacomm20-win32.zip 去sun的主页应该有下的。 在这个驱动中有comm.jar,https://www.360docs.net/doc/0f19259145.html,m.properties,win32com.dll 这么3个重要的文件。 1、首先配置驱动,把https://www.360docs.net/doc/0f19259145.html,m.properties,win32com.dll拷贝到你的jdk 中 具体位置为C:\Program Files\Java\jdk1.6.0_06\bin 然后配置windows系统环境变量,在path中加入C:\Program Files\Java\jdk1.6.0_06\bin; 打开你的java工程,配置user library,并导入comm.jar包。 2、现在就可以开始写代码了。串口读写代码如下 CommPortIdentifier portID = CommPortIdentifier.getPortIdentifier(com);//1,先拿到Identifier //其中com是String类型的,传入的是串口名com="COM1"; SerialPort port = (SerialPort)portID.open("MyComm", 100000000);//2,打开串口 //"MyComm"是串口名,100000000是串口过期时间(ms)。 port.setSerialPortParams(rate, databits,stopbit, parity);//3,设置串口属性 //rate 波特率(默认9600),databits载波位(默认8),stopbit停止位(默认1),parity校验位(默认0无校验) port.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);//4(可选)设置数据流控制模式,默认为无 port.close();//关闭串口 3、串口读入写出流。

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

Windows进程间各种通信方式浅谈

Windows进程间各种通信方式浅谈 1、Windows进程间通信的各种方法 进程是装入内存并准备执行的程序,每个进程都有私有的虚拟地址空间,由代码、数据以及它可利用的系统资源(如文件、管道等)组成。 多进程/多线程是Windows操作系统的一个基本特征。Microsoft Win32应用编程接口(Application Programming Interface, API) 提供了大量支持应用程序间数据共享和交换的机制,这些机制行使的活动称为进程间通信(InterProcess Communication, IPC),进程通信就是指不同进程间进行数据共享和数据交换。 正因为使用Win32 API进行进程通信方式有多种,如何选择恰当的通信方式就成为应用开发中的一个重要问题, 下面本文将对Win32中进程通信的几种方法加以分析和比较。 2、进程通信方法 2.1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、

java串口通信程序(程序及注释)-13页word资料

Java的串口通信程序 首先需要到到sun主页下载串口通信的包,因为一般的jrd中不含有这个包的,有点补丁的意思。(CSDN上也有)。解压缩,为了使Java Communications API能够正确的与Windows系统交互,需要几个小的技巧。下面是三个很重要的文件,你可以从Sun的网站上下载得到 comm.jar win32com.dll javaxm.properties 对于JVM来说,要正确的识别串口,将这几个文件放在系统中合适的位置使很重要的。 comm..jar应该放在以下目录中 %JAVA_HOME%/lib %JAVA_HOME%/jre/lib/ext win32com.dll应该放在以下目录中 %windir%system32 javax.properties应该放在以下目录中 %JAVA_HOME%/lib

%JAVA_HOME%/jre/lib 你可以通过编译和运行Sun的例程来验证串口是否可以使用了。 JBuilder中安装安装Java Communication API (以下在JBuilder 2006中测试通过) 如果你使用JBuilder,那么还需要为JBuilder配置API。 一般来说,根据你的JBuilder配置,你也许需要将win32com.dll和javax.properties安装到相应的目录中,可以参照上述的目录。例如,如果你使用JBuilder附带的JVM的话,你也许需要将win32com.dll和javax.properties放到C:\Borland\JBuilder2006\jdk1.5的相应位置。 我使用的是JCreator,在打开Configure,然后点击option,选中jdk profile然后双击选中的jdk文件,选择edit,在弹出的窗口中选择串口通信包所在的文件(.jar文件),这样配置就算完成了。 以下分别是接收和发送程序,CSDN上搜的,省的自己写了:发送程序: import java.awt.*; import java.awt.event.*; import java.io.*; import java.util.*;

进程间通信的四种方式

一、剪贴板 1、基础知识 剪贴板实际上是系统维护管理的一块内存区域,当在一个进程中复制数据时,是将这个数据放到该块内存区域中,当在另一个进程中粘贴数据时,是从该内存区域中取出数据。 2、函数说明: (1)、BOOL OpenClipboard( ) CWnd类的OpenClipboard函数用于打开剪贴板。若打开剪贴板成功,则返回非0值。若其他程序或当前窗口已经打开了剪贴板,则该函数返回0值,表示打开失败。若某个程序已经打开了剪贴板,则其他应用程序将不能修改剪贴板,直到前者调用了CloseClipboard函数。 (2)、BOOL EmptyClipboard(void) EmptyClipboard函数将清空剪贴板,并释放剪贴板中数据的句柄,然后将剪贴板的所有权分配给当前打开剪贴板的窗口。 (3)、HANDLE SetClipboardData(UINT uFormat, HANDLE hMem) SetClipboardData函数是以指定的剪贴板格式向剪贴板上放置数据。uFormat指定剪贴板格式,这个格式可以是已注册的格式,或是任一种标准的剪贴板格式。CF_TEXT表示文本格式,表示每行数据以回车换行(0x0a0x0d)终止,空字符作为数据的结尾。hMem指定具有指定格式的数据的句柄。hMem参数可以是NULL,指示采用延迟提交技术,则该程序必须处理WM_RENDERFORMA T和WM_RENDERALLFORMATS消息。应用程序在调用SetClipboardData函数之后,就拥有了hMem参数所标识的数据对象,该应用程序可以读取该数据对象,但在应用程序调用CloseClipboard函数之前,它不能释放该对象的句柄,或者锁定这个句柄。若hMem标识了一个内存对象,那么这个对象必须是利用GMEM_MOVEABLE标志调用GlobalAlloc函数为其分配内存。 注意:调用SetClipboardData函数的程序必须是剪贴板的拥有者,且在这之前已经打开了剪贴板。 延迟提交技术:当一个提供数据的进程创建了剪贴板数据之后,直到其他进程获取剪贴板数据之前,这些数据都要占据内存空间。若在剪贴板上放置的数据过大,就会浪费内存空间,降低对资源的利用率。为了避免这种浪费,就可以采用延迟提交计数,也就是由数据提供进程先提供一个指定格式的空剪贴板数据块,即把SetClipboardData函数的hMem参数设置为NULL。当需要获取数据的进程想要从剪贴板上得到数据时,操作系统会向数据提供进程发送WM_RENDERFORMA T消息,而数据提供进程可以响应这个消息,并在此消息的响应函数中,再一次调用SetClipboardData函数,将实际的数据放到剪贴板上。当再次调用SetClipboardData函数时,就不再需要调用OpenClipboard函数,也不再需要调用EmptyClipboard函数。也就是说,为了提高资源利用率,避免浪费内存空间,可以采用延迟提交技术。第一次调用SetClipboardData函数时,将其hMem参数设置为NULL,在剪贴板上以指定的剪贴板格式放置一个空剪贴板数据块。然后直到有其他进程需要数据或自身进程需要终止运行时再次调用SetClipboardData函数,这时才真正提交数据。 (4)、HGLOBAL GlobalAlloc( UINT uFlags,SIZE_T dwBytes); GlobalAlloc函数从堆上分配指定数目的字节。uFlags是一个标记,用来指定分配内存的方式,uFlags为0,则该标记就是默认的GMEM_FIXED。dwBytes指定分配的字节数。

java串口通讯程序

java串口通讯程序 1、下载java Communications api开发包。| 是Sun公司提供的,用于开发平台独立的通讯应用程序的扩展API。 2、将拷贝入C:\j2sdk1.4.2_04\bin 3、将拷贝入C:\j2sdk1.4.2_04\jre\lib\ext 4、将拷贝入C:\j2sdk1.4.2_04\jre\lib 5、编译文件 import .*; import .*; import .*; public class CommTest{ public static void main(String[] args){ SerialPort serialPort=null; DataOutputStream doutput=null; InputStream inputStream; CommPortIdentifier portId=null; String messageString="hello \n"; try{ portId=("COM1"); }catch(NoSuchPortException ne) { "ne"); (); } try{ serialPort=(SerialPort) ("TestComm", 5); OutputStream output = (); doutput=new DataOutputStream(output); inputStream = (); }catch(PortInUseException ex) { "ex"); (); }catch(IOException ie) { "ie"); (); //(); } try { (9600, , , ; } catch (UnsupportedCommOperationException e) {} } try { ()); } catch (IOException e) {}

进程间通信方式比较

进程间的通信方式: 1.管道(pipe)及有名管道(named pipe): 管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 2.信号(signal): 信号是在软件层次上对中断机制的一种模拟,它是比较复杂的通信方式,用于通知进程有某事件发生,一个进程收到一个信号与处理器收到一个中断请求效果上可以说是一致得。 3.消息队列(message queue): 消息队列是消息的链接表,它克服了上两种通信方式中信号量有限的缺点,具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息。 消息缓冲通信技术是由Hansen首先提出的,其基本思想是:根据”生产者-消费者”原理,利用内存中公用消息缓冲区实现进程之间的信息交换. 内存中开辟了若干消息缓冲区,用以存放消息.每当一个进程向另一个进程发送消息时,便申请一个消息缓冲区,并把已准备好的消息送到缓冲区,然后把该消息缓冲区插入到接收进程的消息队列中,最后通知接收进程.接收进程收到发送里程发来的通知后,从本进程的消息队列中摘下一消息缓冲区,取出所需的信息,然后把消息缓冲区不定期给系统.系统负责管理公用消息缓冲区以及消息的传递. 一个进程可以给若干个进程发送消息,反之,一个进程可以接收不同进程发来的消息.显然,进程中关于消息队列的操作是临界区.当发送进程正往接收进程的消息队列中添加一条消息时,接收进程不能同时从该消息队列中到出消息:反之也一样. 消息缓冲区通信机制包含以下列内容:

(1) 消息缓冲区,这是一个由以下几项组成的数据结构: 1、消息长度 2、消息正文 3、发送者 4、消息队列指针 (2)消息队列首指针m-q,一般保存在PCB中。 (1)互斥信号量m-mutex,初值为1,用于互斥访问消息队列,在PCB中设置。 (2)同步信号量m-syn,初值为0,用于消息计数,在PCB中设置。(3)发送消息原语send (4)接收消息原语receive(a) 4.共享内存(shared memory): 可以说这是最有用的进程间通信方式。它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。 这种通信模式需要解决两个问题:第一个问题是怎样提供共享内存;第二个是公共内存的互斥关系则是程序开发人员的责任。 5.信号量(semaphore): 主要作为进程之间及同一种进程的不同线程之间得同步和互斥手段。 6.套接字(socket); 这是一种更为一般得进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。 https://www.360docs.net/doc/0f19259145.html,/eroswang/archive/2007/09/04/1772350.aspx linux下的进程间通信-详解

linux进程间通讯的几种方式的特点和优缺点

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。#共享内存( shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等; 2. 用于进程间通讯(IPC)的四种不同技术: 1. 消息传递(管道,FIFO,posix和system v消息队列) 2. 同步(互斥锁,条件变量,读写锁,文件和记录锁,Posix和System V信号灯) 3. 共享内存区(匿名共享内存区,有名Posix共享内存区,有名System V共享内存区) 4. 过程调用(Solaris门,Sun RPC) 消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区

Java串口通信编程指南

Java串口通信编程指南

1. 概述 在java中,利用Java Communication包可以操作串口,但官方的包在3.0之后就只支持Linux和Solaris平台了,Windows平台的只支持到98年出的2.0版本,不过在XP下还能使用。另外,也可以用开源的Rxtx实现串口通信,这里仅以Java Communication包,在Windows 平台实现串口通信进行说明。 2. 前期准备 2.1. 下载Java Communication包 ?下载地址如下:https://www.360docs.net/doc/0f19259145.html,/Jolt/javacomm20-win32.zip。 ?如果是非Windows平台,请到Sun网站选择其他版本下载。地址如下: https://www.360docs.net/doc/0f19259145.html,/download/products.xml?id=43208d3d 2.2. 配置 ?解压缩javacomm20-win32.zip ?把win32com.dll拷贝到{JAVA_HOME}\jre\bin ?把comm.jar拷贝到{JAVA_HOME}\jre\lib\ext ?把https://www.360docs.net/doc/0f19259145.html,m.properties拷贝到{JAVA_HOME}\jre\lib ?set CLASSPATH={JAVA_HOME}\jre \lib\ext \comm.jar;%classpath%

3. 实现过程 主要步骤包括: ?获得串口标识 ?打开串口 ?设置串行端口通讯参数 ?获取输入(出)流 ?进行读写操作 3.1. 获得串口标识 指定串口的端口号,生成串口的标识类的实例。 https://www.360docs.net/doc/0f19259145.html,mPortIdentifier是通讯端口管理器,控制访问到通讯端口的中心类。一个应用程序首先使用CommPortIdentifier中的方法,通过相关的驱动去获取那些通讯端口是可用的并且选择一个端口便于开始。它包括如下功能: a. 通过驱动决定通讯端口是可用的。 b. 打开通讯端口为了I/O操作。 c. 决定端口的拥有者。 d. 解析端口拥有者的争夺。 e. 管理事件显示在端口拥有者的中的状态改变。 示例代码如下: 代码: 3.2. 打开串口 示例代码如下: 代码:

Linux下的进程间通信-详解

Linux下的进程间通信-详解 详细的讲述进程间通信在这里绝对是不可能的事情,而且笔者很难有信心说自己对这一部分内容的认识达到了什么样的地步,所以在这一节的开头首先向大家推荐著 名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文译本《UNIX环境高级编程》已有机械工业出版社出版,原文精彩,译文同样地道,如果你的确对在Linux下编程有浓 厚的兴趣,那么赶紧将这本书摆到你的书桌上或计算机旁边来。说这么多实在是难抑心中的景仰之情,言归正传,在这一节里,我们将介绍进程间通信最最初步和最 最简单的一些知识和概念。 首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来, 进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系 统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信 方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。 2.3.1 管道 管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。 无名管道由pipe()函数创建: #include int pipe(int filedis[2]); 参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。 #define INPUT 0 #define OUTPUT 1 void main() { int file_descriptors[2]; /*定义子进程号 */ pid_t pid; char buf[256]; int returned_count; /*创建无名管道*/ pipe(file_descriptors); /*创建子进程*/ if((pid = fork()) == -1) { printf("Error in fork\n"); exit(1); } /*执行子进程*/ if(pid == 0) { printf("in the spawned (child) process...\n"); /*子进程向父进程写数据,关闭管道的读端*/ close(file_descriptors[INPUT]); write(file_descriptors[OUTPUT], "test data", strlen("test data"));

Java串口通信详解

Java串口通信详解 序言 说到开源,恐怕很少有人不挑大指称赞。学生通过开源代码学到了知识,程序员通过开源类库获得了别人的成功经验及能够按时完成手头的工程,商家通过开源软件赚到了钱……,总之是皆大欢喜。然而开源软件或类库的首要缺点就是大多缺乏详细的说明文档和使用的例子,或者就是软件代码随便你用,就是文档,例子和后期服务收钱。这也难怪,毕竟就像某个著名NBA 球员说的那样:“我还要养家,所以千万美元以下的合同别找我谈,否则我宁可待业”。是啊,支持开源的人也要养家,收点钱也不过分。要想既不花钱又学到知识就只能借助网络和了,我只是想抛砖引玉,为开源事业做出点微薄共献,能为你的工程解决哪怕一个小问题,也就足够了。 虽然我的这个系列介绍的东西不是什么Web框架,也不是什么开源服务器,但是我相信,作为一个程序员,什么样的问题都会遇到。有时候越是简单的问题反而越棘手;越是小的地方就越是找不到称手的家伙。只要你不是整天只与“架构”、“构件”、“框架”打交道的话,相信我所说的东西你一定会用到。 1串口通信简介 1.1常见的Java串口包 1.2串口包的安装(Windows下) 2串口API概览 https://www.360docs.net/doc/0f19259145.html,mPort https://www.360docs.net/doc/0f19259145.html,mPortIdentifier https://www.360docs.net/doc/0f19259145.html,m.SerialPort 2.4串口API实例 2.4.1列举出本机所有可用串口 2.4.2串口参数的配置 2.4.3串口的读写 3串口通信的通用模式及其问题 3.1事件监听模型 3.2串口读数据的线程模型 3.3第三种方法 4结束语 1串口通信简介 嵌入式系统或传感器网络的很多应用和测试都需要通过PC机与嵌入式设备或传感器节点进行通信。其中,最常用的接口就是RS-232串口和并口(鉴于USB接口的复杂性以及不需要很大的数据传输量,USB接口用在这里还是显得过于奢侈,况且目前除了SUN有一个支持USB 的包之外,我还没有看到其他直接支持USB的Java类库)。SUN的CommAPI分别提供了对常用的RS232串行端口和IEEE1284并行端口通讯的支持。RS-232-C(又称EIA RS-232-C,以下简称RS232)是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。RS232是一个全双工的通讯协议,它可以同时进行数据接收和发送的工作。 1.1 常见的Java串口包 目前,常见的Java串口包有SUN在1998年发布的串口通信API:comm2.0.jar(Windows 下)、comm3.0.jar(Linux/Solaris);IBM的串口通信API以及一个开源的实现。鉴于在Windows下SUN的API比较常用以及IBM的实现和SUN的在API层面都是一样的,那个开源的实现又不像两家大厂的产品那样让人放心,这里就只介绍SUN的串口通信API在Windows 平台下的使用。 1.2 串口包的安装(Windows下) 到SUN的网站下载javacomm20-win32.zip,包含的东西如下所示:

进程间的通信

# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。# 共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 windows进程通信的几种方式(转) 2008-10-13 16:47 1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、邮件槽等)把对象句柄传递给第二个进程。第二个进程复制该句柄就取得对该文件映射对象的访问权限。 文件映射是在多个进程间共享数据的非常有效方法,有较好的安全性。但文件映射只能用于本地机器的进程之间,不能用于网络中,而开发者还必须控制进程间的同步。 2 共享内存 Win32 API中共享内存(Shared Memory)实际就是文件映射的一种特殊情况。进程在创建文件映射对象时用0xFFFFFFFF来代替文件句柄(HANDLE),就表示了对应的文件映射对象是从操作系统页面文件访问内存,其它进程打开该文件映射

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

Java串口通信编程指导

Java串口通信编程指导 Java串口通信编程

概述 在java中,利用Java Communication包能够操作串口,但官方的包在3.0之后就只支持Linux和Solaris平台了,Windows平台的只支持到98年出的2.0版本,只是在XP下还能使用。另外,也能够用开源的Rxtx实现串口通信,那个地点仅以Java Communication包,在Windows平台实现串口通信进行讲明。 前期预备 下载Java Communication包 下载地址如下:https://www.360docs.net/doc/0f19259145.html,/Jolt/javacomm20-win32.zip。 配置 解压缩javacomm20-win32.zip 把win32com.dll拷贝到{JA V A_HOME}\jre\bin 把comm.jar拷贝到{JA V A_HOME}\jre\lib\ext set CLASSPATH={JA V A_HOME}\jre \lib\ext \comm.jar;%classpath%

实现过程 要紧步骤包括: 获得串口标识 打开串口 设置串行端口通讯参数 猎取输入(出)流 进行读写操作 获得串口标识 指定串口的端口号,生成串口的标识类的实例。 a. 通过驱动决定通讯端口是可用的。 b. 打开通讯端口为了I/O操作。 c. 决定端口的拥有者。 d. 解析端口拥有者的争夺。 e. 治理事件显示在端口拥有者的中的状态改变。示例代码如下: 代码: 打开串口 示例代码如下: 代码:

5000(毫秒)是超时时刻。 设置串行端口通讯参数 设置串口传输的波特率、数据位、停止位、奇偶校验等参数。 示例代码如下: 代码: try { // 通信条件の設定 // 通信速度 9600 baud // データビット 8bit // ストップビット 1bit // パリティなし // フローコントロールの設定 // 無制御を使用 port.setSerialPortParams(9600, SerialPort.DATABITS_8, SerialPort.STOPBITS_1, SerialPort.PARITY_NONE); port.setFlowControlMode(SerialPort.FLOWCONTROL_NONE); } catch (UnsupportedCommOperationException ex) { ex.printStackTrace(); System.exit(1); } 猎取输入(出)流 利用getInputStream()以及getOutputStream()从每个串口产生对应的输入输出流对象。 示例代码如下: 代码:

进程间通讯机制

进程间通讯机制 进程在核心的协调下进行相互间的通讯。Linux支持大量进程间通讯(IPC) 机制。除了信号和管道外,Linux 还支持Unix系统V中的IPC机制。 信号 信号是Unix系统中的最古老的进程间通讯方式。它们用来向一个或多个进程发送异步事件信号。信号可以从键盘中断中产生,另外进程对虚拟内存的非法存取等系统错误环境下也会有信号产生。信号还被shell程序用来向其子进程发送任务控制命令。 系统中有一组被详细定义的信号类型,这些信号可以由核心或者系统中其它具有适当权限的进程产生。使用kill命令(kill -l)可以列出系统中所有已经定义的信号。在我的系统(Intel系统)上运行结果如下: 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 当我在Alpha AXP中运行此命令时,得到了不同的信号个数。除了两个信号外,进程可以忽略这些信号中的绝大部分。其一是引起进程终止执行的SIGSTOP信号,另一个是引起进程退出的SIGKILL信号。至于其它信号,进程可以选择处理它们的具体方式。进程可以阻塞信号,如若不阻塞,则可以在自行处理此信号和将其转交核心处理之间作出选择。如果由核心来处理此信号,它将使用对应此信号的缺省处理方法。比如当进程接收到SIGFPE(浮点数异常)时,核心的缺省操作是引起core dump和进程的退出。信号没有固有的相对优先级。如果在同一时刻对于一个进程产生了两个信号,则它们将可能以任意顺序到达进程并进行处理。

一个通过JAVA串口通信控制LED显示数据的实例

一个通过java串口通信控制LED显示数据的实例 在很多应用程序中都需要用到pc机与外部设备如:嵌入式系统、传感器、开关 设备等进行数据通讯。其中,最常用的接口就是RS-232串口和并口。SUN的 CommAPI分别提供了对常用的RS232串行端口和IEEE1284并行端口通讯的支持。 至于java串口通讯的配置以及通讯模式在sun的demo以及网上都有很多具体的 实例。 下面是我在开发一个叫号功能模块时通过串口通信来控制LED显示的实例,由于 第一次进行相关的开发,看似一个非常简单的功能在实际开发中却遇到了一些问 题,希望本人的解决方式能够对大家有所帮助,也希望大家能够提出更好的解决 方式。 先看一下LED显示屏厂商提供的通讯协议: ---遥控单双色、单双行、混合屏 一、每一次对任一特定地址发送信息由内码帧(7f/7e),数码帧 (6f/6e),定时帧(5f),时间帧(4f)中的一种或多种构成,结束 时发送一结束帧。 二、帧结构:每帧由84字节构成。 1、内码帧:一幕由一起始帧和零或多个中间帧组成,一次 发送可有多幕。 1)起始帧:地址(1字节)+帧控制7F(1字节) +幕号(1字节)+COMMAND(8字节) +内码/ASCII(73字节) 2)中间帧:地址(1字节)+帧控制7E(1字节)+ 幕号(1字节)+COMMAND(8字节)+内码/ASCII (73字节) 3)COMMAND: 前4字节未定义,后4字节依次为动画(0~4),移入及移出(各16种),速度(0~255),追加 (D3连续、D2停止、D0闪烁、D4时间、D6暂停、 D7动画) 4)内码/ASCII结构: a、内码4字节,依次为控制字节(D7宽体/正常体、D4绿色、D5红色、D3粗体、D2细体反白、D1 粗体反白、D0细体),内码高位,内码低位,未用 b、ASCII2字节,依次为控制字节(D7宽体/正常体、D5绿色、D4红色、D3粗体、D2细体反白、D1粗体 反白、D0细体),ASCII码 2、数码帧:由一起始帧和零或多中间帧组成。 1)起始帧:地址(1字节)+帧控制6F(1字节)+ 数据(82字节)

进程间通信的几种方式

进程间通信的几种方式 2009-06-19 23:28 (1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。 (2)命名管道(named pipe):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建。 (3)信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数)。 (4)消息(Message)队列:消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺 (5)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。 (6)内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。 (7)信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。 (8)套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字

相关文档
最新文档