混凝土简支梁桥桥墩地震内力计算过程

混凝土简支梁桥桥墩地震内力计算过程
混凝土简支梁桥桥墩地震内力计算过程

混凝土简支梁桥桥墩地震内力计算过程

、桥梁基本概况:

(1)跨径布置:5*20m简支板梁桥;

(2)桥面宽度:0.5m (防撞栏)+6.5m (行车道)+0.5m (防撞栏)

=7.5m;

(3)支承体系:每跨结构一端设置固定支座,一端设置板式橡胶支座;

(4)桥面铺装:C40防水混凝土,平均厚度为13cm;

(5)材料:主梁为C50混凝土,盖梁、墩柱、防撞栏均为C30混凝土;

(6)地震设防:场地地震动加速度峰值为0.1g,地震动反应特征周期为

0.4s,抗震设防类别为B类,抗震设防烈度为7度,场地条件为川类总体

布置图见图1。

U Q U

1桥梁立面布置图

、结构尺寸:

上部结构:主梁梁高0.9m,具体尺寸参见图2

a)主梁横断面图

图3柱式墩地震内力计算简图

图2上部结构具体尺寸图

图3桥墩尺寸图

、桥墩地震内力计算过程(不考虑地基变形):

(1)柱式墩地震内力的计算简图如图 3所示:

b )中板断面图

r

< r

L :」i ix 丄?」

c )边板断面图

F 部结构:采用独柱式桥墩,墩高 7.5m ,桥墩直径1.8m ,见图3.

a )平面图

b )立面图

1

(2) 顺桥向水平地震力的计算公式为:

本算例根据《公路桥梁抗震设计细则》规定属于柱式墩的规则桥梁。其顺 桥向水平地震力可按照6.7.3之规定来计算。具体计算步骤如下:

E htp = Shi G t / g

① G t 的确定:G t = G sp ■ G cp ■ G p ;

一跨主梁重量=20

3 6872 2 7960「10000 26.5 = 1936.4kN

桥面铺装重量=°.!3 6.5 20 26 =439.4kN

防撞栏重量=2 4081.21 “10000 20 25 =408.12kN 一孔梁的重力 G sp -1936.4 439.4 408.12 =2783.92kN 盖梁重力 G cp =25 2 6.783 =339.15kN 墩身重力 G p =7.5 3.14 0.92

25 = 476.89kN

因此 =0.16 516 1 =0.21

由此可求得 G t =2783.92 339.15 0.21 476.89= 3223.22kN

② S h1的确定

该值的确定与结构的基本周期相关。本算例桥墩的自振周期计算公式为

⑴飞为结构在顺桥向或横桥向作用于支座顶面或上部结构质量重心上单

墩身重力换算系数n =0.16 Xf 汉2X

2 2

.二1 +X f X 1 +X 1 +1

f-

f-

f-

2

2

2

J

由于不考虑地基变形,即 X f =0,X 1可根据静力挠度曲线求得: f-

2

悬臂梁

的静力挠度曲线为:y x 二

2

x x - 3丨 . ..

' 丿,当x=l/2时,

6EI 5

yi 「药。由此可知,X f2詁2?耳。

5l 3

y 2 _

48EI ;

丨3

1 f- 2

分,仅将其视为一个分段, 其重心位于桥墩一般位置,即 3.75m 高度处。

位水平力在该点引起的水平位移,可通过下式计算: :s =1 K T 。其中K T 为桥墩 的抗推刚度。本算例桥墩顺桥向的抗推刚度为:

岑=3 3.0 104 严4/64 =「1 105kN/m

H 3

7.53

故而,=1 K T =0.91 10‘m/kN

根据已知条件可知,特征周期为 T g =0.55s ,结构的自振周期为T=0.34s,显 然O.isvTvT g ,因此,水平加速度反应谱 S hi 的取值应根据下式计算:

S11 = S m ax = 2.25C j C s C d A = 2.25 0.43 1.3 1 0.1g=0.126g

③ 结构的顺桥向设计地震力为:

E htp 二 E1G/g =0?126g 3223.22/g =406.13kN

(3) 横桥向水平地震力的计算公式为:(第6.7.2 条)

E ihp = S h1 1 X 1i G i / g

①确定S hi

在计算结构自振周期时,由于桥墩为柔性墩,故

G t 的计算结果与顺桥向计

算结果一致。因此其结构的自振周期为 T i =0.34s 。故水平加速度反应谱S hi 的取 值仍为0.126g 。 ② 1的确定

n ' X 1i G

i

号 O 为简化计算,本算例不对桥墩进行详细划

、X^G i

i =0

⑵桥墩的自振周期为:

1

久=2二 d 2 =2 3.14

.g

⑶确定S hi

1

3223.22x0.91x10, 7

9.8

=0.34s

1

的计算公式为:

1

也'1 一 X f 。鉴于不考虑

H

X 10G 0 X 11G 1 X 12G 2

2783.92 0.96 339.15 0.74 476.89 2 2 2 = 2 2 X 10G 0

X 11G 1 X 12G 2

2783.92 0.96 339.15 0.74

476.89

③ 上部结构产生的横桥向内力 E ohp :

E )hp=0.126g 1.03 1 2783.92/g = 361.3kN

④ 盖梁产生的横桥向内力E ihp :

E 1hp =0.126g 1.03 0.96 339.15/g = 42.25kN

⑤ 桥墩自身产生的横桥向内力 E ihp :

E 2hp =0.126g 1.03 0.74 476.89/g = 45.8kN

⑥ 桥墩横向设计地震内力为:

E hp 二 E 0hp E 1hp

E 2hp = 361.3 42.25

45.8 = 449.35 kN

对于简支梁桥采用实体桥墩的情况,其地震力的计算可参照《细则》中的 第6.7.2条之规定进行相应的计算。

该种情况下重力式桥墩顺桥向与横桥向的水平地震力均按下式计算:

E ihp - S h1 1 X 1i G i / g

、结构资料

因为 H / B =7.5/1.8 =4.17 ::: 5 ,故而 =X f 地基变形,即X f =0,所以,

1

X i 。H "1 ;

X 11 二 H 1 H - II : 7.5 0.6

7.5 1.2 0.45 = 0.96

1 1

X 1^:.:H ^ H 空=」3.75/ 7.5 0.45 1.2 3 =0.74

G o = 2783.92kN ; G =339.15kN ; G 2 二 G p = 476.89kN

因此,

n

、X 1iG

- 7

1 n

、X :

G

上部结构与柔性墩算例的上部结构参数取值相同。下部结构为实体墩,墩身截面尺寸见图4

a)平面图b)立面图

图4桥墩尺寸图

二、桥墩地震内力计算过程:(不考虑地基变形:X f=0)

(1)纵桥向地震内力

①基本参数计算:

上部结构重力:G0二G s p =2783.92kN

盖梁重力:G 二G cp = 339.15kN

桥墩重力:G2=G p=7.5 3.9 1.2 25 =877.5kN

②S hi的确定

丄结构自振周期T i的确定:T

=2.j G t r

I g丿

其中:

G t=G sp+ |X f+丄(1 —X f )b p =2783.92+[><877.5 = 3076.42kN

3_ 3

、s=1k T 1.198 105i;= 0.83 10‘m/kN == -1

1 II

1 II

1 il

1 II

L 」

桥墩的抗推刚度: k

y 3EI 3 3.0 1 04 3.9 1.23

3

12 7.53

5

= 1.198 10 kN /m

⑥桥墩自身产生的纵向地震内力 E 3hp :

X 1^ 已.H 二 7.5 0.6 7.5 1.2 0.45 =0.89

X 12 二 H 2; H 二 3.75/ 7.5 1.2 0.45 [= 0.41 G o =2783.92kN ; G =339.15kN ; G^G^877.5kN

因此,

X 10G 0 +X 11G 1 +X 12G 2

2783.92 +0.89汉

339.15+0.41 汉 877.5

8

n

2

2

2

_

2

2

_〔”08

、v

2

X 10G 0 X 11Gr X 12G 2 2783.92 0.89 339.15 0.41 877.5 X 1G i

i

=0

上部结构产生的纵桥向内力 E ohp :

E °hp =0.126g 1.08 1 2783.92/g =378.84kN

1

结构的自振周期T, =2二d 彳=2 i g 丿 根据已知条件可知,特征周期为 T g =0.55s ,结构的自振周期为T=0.32s,显

3076.42汇 0.83"0生 ¥

二 0.32s 然O.lsvTvT g ,因此,水平加速度反应谱 S hi 的取值应根据下式计算:

S h 1 - S max

2.25C j C s C d A =2.25 0.43 1.3 1 0.1g=0.126g

!

的计算公式为:

n

二 X 1i G i

1

罟 。为简化计算,

Z X 12G i

i =0

本算例不对桥墩进行详细划

分,仅将其视为一个分段,其重心位于桥墩一般位置, 即 3.75m 高度处。

因为 H / B =7.5/1.2 -6.25 ? 5 ,故而 X 1^ X f 1 _ X

F H i 。鉴于不考虑地基

变形,即 X f =0,所以,

n

7 X 1i G i

i =0

1 =

桥梁上部结构计算

第2章 桥梁上部结构计算 2.1 设计资料及构造布置 2.1.1 设计资料 1.桥梁跨径桥宽 标准跨径:30m (墩中心距离) 主梁全长:29.96m 计算跨径:28.9m 桥面净空:净—11m+2?0.5m=12m 2.设计荷载 公路-Ⅰ级,,每侧人行柱、防撞栏重力作用分别为1 1.52kN m -?和14.99kN m -?。 3.材料及工艺 混凝土:主梁采用C50,栏杆及桥面铺装采用C30。 预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)的s φ12.7钢绞线,每束7根,全梁配6束,pk f =1860Mpa 。 普通钢筋直径大于和等于12mm 的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。 按后张法施工工艺制作主梁,采用内径70mm 、外径77mm 的预埋波纹管和夹片锚具。 4.设计依据 (1)交通部颁《公路工程技术标准》(JTG B01—2003),简称《标准》; (2)交通部颁《公路桥涵设计通用规范》(JTG D60-2004),简称《桥规》 (3)交通部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》。 5.基本计算数据(见表2-1) 表2-1 基本计算数据 名称 项目 符号 单位 数据

混 凝 土 立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉设计强度 ,cu k c ck tk cd td f E f f f f MPa MPa MPa MPa MPa MPa 4 503.451032.4 2.6522.41.83 ? 短暂状态 容许压应力 容许拉应力 ' '0.70.7ck tk f f MPa MPa 20.721.757 持久状态 标准荷载组合 容许压应力 容许主压应力 短期效应组合 容许拉应力 容许主拉应力 0.50.6ck ck f f 0.850.6st pc tk f σσ- MPa MPa MPa MPa 16.219.44 01.59 15.2 s φ钢 绞 线 标准强度 弹性模量 抗拉设计强度 最大控制应力con σ 0.75pk p pd pk f E f f MPa MPa MPa MPa 51860 1.951012601395 ? 持久状态应力 标准荷载组合 0.6pk f MPa 1209 料 重 度 钢筋混凝土 沥青混凝土 钢绞线 123γγγ 3 33 ///kN m kN m kN m --- 25.023.078.5 钢筋与混凝土的弹性模量 比 Ep α 无量纲 5.65 2.1.2 横截面布置 1.主梁间距与主梁片数 主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T 梁翼板。由于本设计桥面净空为17.5m,主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T梁横断面 (4) 2.2.2 T梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10) 3.2.4 桥墩计算偏心距的增大系数 (11)

3.2.5 墩柱正截面抗压承载力计算 (12) 3.2.6 裂缝宽度验算 (13) 3.3 20米T梁墩柱计算 (13) 3.3.1 计算模型的选取 (13) 3.3.2 15米墩高计算 (14) 3.3.3 30米墩高计算 (18) 3.4 30米T梁墩柱计算 (22) 3.4.1 计算模型的选取 (22) 3.4.2 15米墩高计算 (23) 3.4.3 30米墩高计算 (27) 3.4.4 40米墩高计算 (32) 3.5 40米T梁墩柱计算 (36) 3.5.1 计算模型的选取 (36) 3.5.2 15米墩高计算 (37) 3.5.3 30米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值 (47) 4.2 计算分析 (47) 4.2.1 抗震计算模型 (47) 4.2.2 动力特性特征值计算结果 (48) 4.2.3 E1地震作用验算结果 (49) 4.2.4 E2地震作用验算结果 (49) 4.2.5 延性构造细节设计 (51) 4.3 抗震构造措施 (53)

桥梁工程恒载内力计算例题

一、 设 计 资 料 (一) 桥面净空 16m (行车道)+2*0.75(人行道)+ 2* 0.25 (栏杆)。 (二)主梁跨径和全长 标准跨径 m l b 00.20=(墩中心距离) 计算跨径 m l 50.19=(支座中心距离) 主梁全长 96m .19=全l (主梁预制长度) (三)设计荷载 根据该桥所在道路的等级确定荷载等级为: 公路-Ⅱ级,人群荷载3.5kN/m 2 (四)材料 混凝土:主梁用40 号(C40),人行道、栏杆及桥面铺装用25 号(C25) 钢筋:直径〉=12mm 时采用Ⅱ级钢筋,直径<12 mm 时采用Ⅰ级热轧光面钢筋。 每侧的栏杆和人行道构件重量的作用力为5KN/m 。 (五)计算方法

1.恒载内力 (1)恒载:假定桥面构造各部分重量平均分配给各主梁承担,计算下表

构件名 构件简图及尺寸(cm) 单元构件体积及算式(m 3) 容重 (KN /m 3) 每延米重量(kN/m) 主 梁 434 .0)2 14 .008.030.1(91.0230.100.2=+-? ?-? 25 85.1025434.0=? 横 隔 梁 中 梁 089.05.19591.02216.018.0)214.008.000.1(=÷???+?+- 25 228.225089.0=? 114.12/228.2= 边 梁 桥 面 铺 装 沥青混凝土: 64.01604.0=? 混凝土垫层(取平均厚12cm ): 92.11612.0=? 223 224 72.142364.0=? 08.462492.1=? ∑=+=76 .69/)08.4672.14(人 行 道 部 分 11.19/25=?

桥墩计算

一、桥墩计算 (2007-01-11 13:11:09) 转载 桥墩按偏心受压构件考虑进行计算,先必须确定桥墩的计算长度,按《桥规》表5.3.1取值。 桥墩外力应考虑纵向水平力及其弯矩、横向风力(高墩)、地震力(纵横向、7级设防)、竖直力及其弯矩。 纵向水平力包括制动力引起的水平力、温度引起的水平力、收缩徐变引起的水平力、地震力引起的水平力、支座摩阻力。 一般情况下(无地震力),纵向水平力对桥墩截面影响较大,横向水平力影响较小。水平制动力、温度力,收缩徐变力均按支座和桥墩合成刚度在各墩台分配,然后组合后与摩阻力组合比较,取最不利情况为桥墩水平力。一般情况下取支座产生的摩阻力为最不利情况,此时计算出的配筋较为保守,偏于安全。(关于摩阻力组合的问题,新规范没有进行明确规定,桥梁通新版对摩阻力进行判断组合或者强制组合,当按判断组合进行计算的时候,取制动力、温度力、收缩徐变力进行组合与摩阻力进行比较,取较小者进行配筋,当按强行组合进行计算的时候,取摩阻力为水平力。) 桥墩截面按偏心受压构件必须验算正截面强度,按《桥规》5.3.5~5.3.9条公式进行计算。同时必须按轴心受压构件进行稳定性验算。 当计算桩柱式桥墩时,柱顶受板式橡胶支座弹性约束。桩柱可换算为两端铰接的轴心受压等截面直杆,计算可参考《连续桥面简支梁墩台计算实例》第一节第九款。 关于墩台下部构造验算时的荷载组合问题,新版《地基规范》总则里面对荷载组合进行了明确规定,摘录如下,仅供参考: 1.0.5条基础结构按承载能力极限状态设计时,结构重要性系数γ0,不低于主体结构的采用值,且不小于1.0;偶然组合时取1.0。 1.0.6条基础结构进行强度验算时,作用效应按承载能力极限状态两种组合进行(JTGD60-20044.1.6条)

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: 主要荷载工况: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

2)组合内力计算 3)结构验算取用内力 根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

混凝土简支T形梁桥设计计算实例

钢筋混凝土简支T形梁桥设计 1 基本资料 1.1公路等级:二级公路 1.2主梁形式:钢筋混凝土T形简支形梁 1.3标准跨径:20m 1.4计算跨径:19.7m 1.5实际梁长:19.6m 1.6车道数:二车道 1.7 桥面净空 桥面净空——7m+2×0.75m人行道 1.8 设计依据 (1)《公路桥涵设计通用规范(JTG D60—2004)》,简称《桥规》。 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》,简称《公预规》。 (3)《公路桥涵地基与基础设计规范(JTJ 124-85)》,简称《基规》。 2 具体设计 2.1 主梁的详细尺寸 主梁间距:1.7m 主梁高度:h=(1 11 ~ 1 18 )l=( 1 11 ~ 1 18 )20=1.82~1.1(m)(取1.8) 主梁肋宽度:b=0.2m 主梁的根数:(7m+2×0.75m)/1.7=5 2.2行车道板的内力计算 考虑到主梁翼板在接缝处沿纵向全长设置连接钢筋,故行车道板可按两端固接和中间铰接的板计算。 已知桥面铺装为2cm的沥青表面处治(重力密度为23kN/m3)和平均9cm厚

混泥土垫层(重力密度为24kN/m 3),C30T 梁翼板的重力密度为25kN/m 3。 2.2.1结构自重及其内力(按纵向1m 宽的板条计算) ) ①每米延板上的恒载1g 沥青表面处治:1g =0.02×1.0×23=0.46kN/m C25号混凝土垫层:2g =0.09×1.0×24=2.16kN/m T 梁翼板自重:3g =(0.08+0.14)/2×1.0×25=2.75kN/m 每延米板宽自重:g= 1g +2g +3g =0.46+2.16+2.75=5.37kN/m ②每米宽板条的恒载内力: 弯矩:M g m in,=-21gl 20=-2 1×5.37×0.712 =-1.35kN.m 剪力:Q Ag =g·l 0=5.37×0.71=3.81kN 2.2.2汽车车辆荷载产生的内力 公路II 级:以重车轮作用于铰缝轴线上为最不利荷载布置,此时两边的悬臂板各承受一半的车轮荷载下图:

桥梁下部结构设计——毕业设计

建筑工程系道路桥梁工程技术专业 毕业设计 :钢筋混凝土简支梁桥下部结构设计 (一)毕业设计原始资料 1. 道路等级:乡村道路; 2. 桥面横坡:设置1.5%的人字坡; 3. 横向布置:0.5m(防撞墙)+7.5m(车行道)+0.5m(防撞墙),桥梁全宽8.5m.; 4. 设计荷载:公路-Ⅱ级; 5. 桥面铺装:12cm厚C40防水钢筋混凝土及涂HM1500防水剂; 6. 桥梁孔跨布置:本桥为上跨铁路而设,设3-20m 预应力混凝土空心板梁,桥面连续; 7. 桥梁线形:本桥位于直线上,与铁路正交; 8. 地震基本烈度:8度。 地质情况详见:桥梁工程地质纵断面图。 (二)、毕业设计的任务与内容 1. 桥墩和基础的方案比选; 2. 盖梁设计; 3. 桥梁墩柱设计; 4. 基础(钻孔灌注桩)设计; 5. 施工组织设计; 6. 设计图纸:桥梁总体布置图、盖梁配筋图、桥墩构造图、桥墩配筋图、基础构造图、基础配筋图。

目录 摘要 (Ⅰ) Abstract (Ⅱ) 前言 (Ⅲ) 第一章设计资料与方案比选 (1) 1.1设计资料与方案必选 (1) 1.1.1设计标准及上部构造 (1) 1.1.2水文地质条件 (1) 1.1.3材料 (1) 1.1.4下部结构比选 (1) 1.1.5桥梁下部构造尺寸 (3) 第二章盖梁计算 (3) 2.1 荷载计算 (3) 2.1.1上部构造永久荷载表 (3) 2.1.2 盖梁自重及作用效应计算 (4) 2.1.3 可变荷载计算 (5) 2.1.4 双柱反力Gi的计算 (12) 2.2 内力计算 (12) 2.2.1 恒载加活载作用下的各截面内力 (12) 2.2.2 盖梁内力汇总表 (14) 2.2.3 盖梁各截面的配筋设计及承载力校核 (15) 第三章桥墩墩柱设计 (17) 3.1 荷载计算 (17) 3.1.1 恒载计算 (17) 3.1.2 活载计算 (17) 3.1.3 双柱反力横向分布计算 (17) 3.1.4 荷载组合 (18) 3.2 截面配筋计算及应力验算 (19)

混凝土简支梁桥的计算

第四章混凝土简支梁桥的计算 一、填空题: 1、设置横隔梁的作用:。 2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:。 3、偏压法计算横隔梁内力的力学模型是:。 二、名词解释: 1、荷载横向分布影响线 2、板的有效分布宽度 3、预拱度 4、单向板 三、简答题: 1.行车道板的定义是什么?其作用是什么? 2.单向板的定义是什么?其结构受力计算要求是什么? 3.自由端悬臂板的定义是什么?其结构受力计算要求是什么? 4.铰接端悬臂板的定义是什么?其结构受力计算要求是什么? 5.行车道板上的车轮荷载作用面是由有哪三条假定进行分布的? 6.板的有效工作宽度的定义是什么? 7.试写出多跨连续单向板弯矩计算的步骤? 8.试写出铰接悬臂板悬臂根部最大弯矩计算的步骤? 9.主梁结构重力的内力计算有哪两点基本假定? 10.荷载横向分布系数的定义是什么? 11.杠杆原理法的基本假定是什么?该方法的适用范围如何? 12.试写出杠杆原理法计算荷载横向分布系数的步骤? 13.偏心压力法的基本假定是什么?该方法的适用范围如何? 14.试写出偏心压力法计算荷载横向分布系数的步骤? 15.修正偏心压力法的基本假定是什么? 16.两种偏心压力法对边梁或中梁计算的荷载横向分布系数值,在定性上有何异同? 17.荷载横向分布系数沿桥跨变化的条件与特征各是什么? 18.桥跨上恒载、活载产生的挠度各有何特性?何谓预拱度? 19.试述荷载横向分布计算的铰接板法的基本假定和适用条件? 20.设计桥梁时,为什么要设置预拱度,如何设置? 四、计算题: 1、如图所示T梁翼缘板之间为铰接连接。试求该行车道板在公路—Ⅰ级荷载作用下的计算内力,已知铺装层的平均厚度12cm,容重22.8kN/m3,T梁翼缘板的容重为25kN/m3。(依《桥规》,车辆荷载的前轮着地尺寸a1=0.2m,b1=0.3m,中、后轮着地尺寸a1=0.2m,b1=0.6m)

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

桥易与桥梁通关于桥梁下部结构计算的对比测试

xx与桥梁通关于桥梁下部结构计算的对比测试 xx是新近开发的一款软件,主要应用在桥梁设计行业,解决桥梁下部结构的计算及出图和桥梁总图绘制的问题,目前正处于推广阶段。桥梁通是比较成熟的一款桥梁辅助设计软件,其功能强大,适用范围广,已经为众多的设计人员所接受。现就两款软件的桥梁下部结构计算功能做对此,主要在功能范围、用户感受方面着手,并未对计算结果进行验算。具体内容见下表: xx与桥梁通比较表 2 功 能 描 述 1、主要包含土压力、温度力、制 动力和地震力等水平力的计算 2、墩柱极限荷载组合 3、基础极限荷载组合和基础容许 荷载组合 4、墩柱强度计算(配筋) 5、桩基础强度计算(配筋) 6、桩基础承载计算(求桩长) 1、计算土压力、温度力、制动 力等水平力 2、进行各种荷载组合 3、计算墩身和基桩的内力、配 筋、裂缝及变形 二者均能满足桥梁下部结 构设计所要求的计算深 度。关于上部结构反力, xx需要人工输入恒、活载; 桥梁通需要输入恒载,活 载可以自动加载。关于水 平力计算,xx考虑了地震 作用,并把地震力加入到

程载反力和车列数。在对桩 基的验算中,桥梁通考虑 了水的浮力影响,xx没有 此项考虑 包括基本数据、墩柱荷载单项、输出恒载内力、活载支反力、活 载墩顶作用力制动力、墩柱分配 系数、摩阻力表、土压力计算表、 单柱顶水平力、每个柱作用力、 柱顶截面配筋、柱底截面内力、 xx输出的计算书比较简 单,桥梁通的计算书则详 综上所述,xx专注于做桥梁下部结构,以Excel为载体,擅于批量处理数据,在处理特大桥梁方面体现出很大的优势,另外,由于其所要求录入的数据量相对较小,在极大程度上节省了用户的时间;桥梁通功能全面,兼顾各种计算和绘图,这也就要求用户录入相对较多的数据,并且造成了在执行单一计算时整体连贯性不强的现象,但其输出的计算书甚是详细,这也是其优势所在。 附图:

桥梁下部结构通用图计算书

第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T 梁横断面 (4) 2.2.2 T 梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10)

3.2.4 桥墩计算偏心距的增大系数................. 错误!未定义书签。

3.2.5 墩柱正截面抗压承载力计算. (12) 3.2.6 裂缝宽度验算. (13) 3.3 20 米T 梁墩柱计算 (13) 3.3.1 计算模型的选取. (13) 3.3.2 15 米墩高计算 (14) 3.3.3 30 米墩高计算 (18) 3.4 30 米T 梁墩柱计算 (22) 3.4.1 计算模型的选取. (22) 3.4.2 15 米墩高计算 (23) 3.4.3 30 米墩高计算 (27) 3.4.4 40 米墩高计算 (32) 3.5 40 米T 梁墩柱计算 (36) 3.5.1 计算模型的选取. (36) 3.5.2 15 米墩高计算 (37) 3.5.3 30 米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值. (47) 4.2 计算分析. (47) 4.2.1 抗震计算模型. (47) 4.2.2 动力特性特征值计算结果. (48) 4.2.3 E1 地震作用验算结果 (49) 4.2.4 E2 地震作用验算结果 (49) 4.2.5 延性构造细节设计. (51) 4.3 抗震构造措施. (53) 第一部分项目概况及基本设计资料 1.1 项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长77.4 公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m 30m 40m装配式预应力砼T梁。

简支梁桥下部结构计算书

计算书 工程名称: 设计编号: 计算内容:桥梁计算书 共页 计算年月日校核年月日审核年月日专业负责年月日

目录 一、计算资料.......................................... 错误!未定义书签。 二、桥梁纵向荷载计算.................................. 错误!未定义书签。 1.永久作用........................................... 错误!未定义书签。 2.可变作用........................................... 错误!未定义书签。 三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算.. 错误!未定义书签。 四、墩台桩基竖向承载力计算............................ 错误!未定义书签。 五、桥台桩身内力计算.................................. 错误!未定义书签。 1、桥台桩顶荷载计算................................... 错误!未定义书签。 2、桥台桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥台桩身内力............................... 错误!未定义书签。 六、桥墩桩身内力计算.................................. 错误!未定义书签。 1、桥墩墩柱顶荷载计算................................. 错误!未定义书签。 2、桥墩桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥墩桩身内力............................... 错误!未定义书签。 七、桥台、桥墩桩基桩身强度校核........................ 错误!未定义书签。 1、桥台桩基桩身强度校核............................... 错误!未定义书签。 2、桥墩桩基桩身强度校核............................... 错误!未定义书签。 一、计算资料

某大桥桥墩受船舶撞击静力计算和评估

820mm 的管柱连接系弯曲破坏 后,冲开钢围堰吊箱下游侧钢板,并撞击锚固在承台上的塔吊立柱, 使其折断失稳后倒塌。 图1 为了明确船舶撞击对桥墩承台及桩基结构所造成的影响、承台和桩基础的损伤程度,确保桥梁结构建造和使用的安全性,必须对承台桩基结构进行检测评估。2事故调查据调查,撞击船舶空载重量为200t ,实际载有货物重量300t 。根据现场调查结论,船舶撞击作用点分别位于管桩连接系正中、钢吊箱围堰下游侧承台顶面以上的钢板上、底节塔吊上,撞击方向近似与承台横向轴线成夹角30°.由于管桩连接系自身未断裂,船首受到连接系阻挡,不能直接撞击在承台顶面以下的钢围堰钢板上,说明船舶撞击作用未直接作用于承台侧面。3计算概述分析认为,肇事船舶撞击作用力部分传递至承台桩基结构上,而相当大的一部分则被船舶、管桩连接系、钢吊箱围堰、塔吊等部件变形吸收。在考虑桥墩承台及桩基结构外围的“防撞消能系统”后,按静力计算的结果对承台桩基结构进行安全性评估。水泥用量控制:水泥用量的控制是整个过程控制的重中之重,如果能有效地控制水泥用量,那么水泥搅拌桩就基本能达到设计要求。在施工过程中应一直旁站,定时不定时的检查流量计读数,按设计要求严格控制水泥浆的水灰比及外掺计的用量。每天可根据水泥袋的个数统计一天的水泥消耗量,核查每根水泥搅拌桩的水泥掺量是否符合设计要求。 制浆质量的控制:准备好的水泥浆应不停的搅拌,使其拌合均匀稳定,不得离析或放置时间过长,放置超过两小时的水泥浆需降低标号使用。水泥浆倒入集料斗时应过筛,防止水泥浆结块损坏泵体。泵送水泥浆时,泵管应保持潮湿以利送浆,应保证泵有足够稳定的压力,供浆必须连续不得中途停泵。 桩长、桩径控制:桩长的控制不仅要看表,开钻前按设计桩长丈量钻杆的长度,用明显的记号记录停钻点,以便控制钻杆钻入长度。桩底标高的误差应控制在±200mm 内。桩径控制要求不小于设计直径,要经常检查钻头,发现磨损超限时及时焊补。 机头提升速度的控制:机头控制速度应控制在0.5m/min 内,机头在提升过程中应均匀稳定,不得忽快忽慢。 搭接长度的控制:两根水泥搅拌桩的搭接长度应大于200mm 。 4.3事后控制 成桩结束后3天用轻型动力触探检查每米桩身的均与性,检查数量为施工总桩数的1%且不得少于3根。成桩7天后,采用浅部开挖桩头,开挖桩头时不得使用重锤或重型机械,宜用小锤、短钎等轻便工具操作以免损伤桩头。桩头挖出后目测检查搅拌的均匀性,检查量为总数的5%。成桩28天后还应取芯检测抗压强度,检测数量为总量的0.5%且不少于3根,钻芯时不应在桩中心,应偏外侧些。取出的芯样搅拌应均匀,凝体无松散,其颜色应深浅一致,不应存在水泥浆聚集的“结核”。取出桩芯后留下的空洞应用同等强度的水泥砂浆回灌密实。5结束语水泥搅拌桩以施工简单,设备投入小等优点,在软土地基加固工程中的应用不断增加。水泥搅拌桩能很好的加固较深较厚的淤泥、淤泥质土、粉土和含水量较高的粘性土地基,能很好的改善大面积堆料厂房的承载力。很好的解决了软土区大型工业生产厂房的建设生产问题。参考文献:[1]邵锦周.长江口北岸岩土工程实录[M ].南京大学出版社,2009.[2]江正荣.简明施工工程师手册[M ].机械工业出版社,2004.[3]江正荣.建筑地基与基础施工手册[M ].中国建筑工业出版社 ,2005.

桥梁下部结构通用图计算书

桥梁下部结构通用图计 算书 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

目录

第一部分项目概况及基本设计资料项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m、30m、40m装配式预应力砼T梁。 根据《中国地震动参数区划图》(GB18306-2001),项目区地震动峰值加速度为、。项目起点~K22+400路段为,对应地震基本烈度为Ⅵ度(路线长度约)。 K22+400~项目终点路段为,对应地震基本烈度为Ⅶ度(路线长度约)。6度区与7度区分界点位于罗甸县罗苏乡纳庆村,属第LWSJ-1标范围。 按照桥梁相关规范要求,对位于7度区内的桥梁需进行抗震计算及抗震措施的设置。桥梁通用图设计计算时,需充分考虑桥梁的抗震要求。 技术标准与设计规范 (1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) (2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D06-2004)(3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004),以下简称《规范》 (4)中华人民共和国交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) (5)中华人民共和国交通部标准《公路坞工桥涵设计规范》(JTG D61-2005)(6)中华人民共和国交通部标准《公路工程抗震规范》(JTG B02-2013) (7)中华人民共和国交通部标准《公路桥梁抗震设计细则》(JTG/T B02-01-2008) 基本计算资料 (1)桥面净空:2x净米、净米 (2)汽车荷载:公路Ⅰ级,结构重要系数 (3)设计环境条件:Ⅰ类

桥梁下部结构分类和受力特点

桥梁下部结构分类和受力特点 一、桥梁下部结构分类 可分为重力式桥墩、重力式桥台、轻型桥墩、轻型桥台。 (一)重力式墩、台 重力式桥墩与重力式桥台的主要特点是靠自身重量来平衡外力而保持其稳定,因此,墩、台身比较厚实,可以不用钢筋,而用天然石材或片石混凝土砌筑。它适用于地基良好的大、中型桥梁,或流冰、漂浮物较多的河流中。在砂石料方便的地区,小桥也往往采用。主要缺点是圬工体积较大,因而其自重和阻水面积也较大。 拱桥重力式桥墩分为普通墩与制动墩,制动墩要能承受单向较大的水平推力,防止出现一侧的拱桥倾坍,因而尺寸较厚实;与梁桥重力式桥墩相比较,具有拱座等构造设施。 梁桥和拱桥上常用的重力式桥台为u型桥台,它适用于填土高度在8~lom以下或跨度稍大的桥梁。缺点是桥台体积和自重较大,也增加了对地基的要求。此外,桥台的两个侧墙之间填土容易积水,结冰后冻胀,使侧墙产生裂缝,所以宜用渗水性较好的土夯填,并做好台后排水措施。 (二)轻型墩、台 1.梁桥轻型桥墩、台 (1)梁桥轻型桥墩 ·钢筋混凝土薄壁桥墩:施工简便,外形美观,过水性良好,适用于低级土软弱的地区。需耗费用于立模的木料和一定数量的钢筋。 ·柱式桥墩:外形美观,圬工体积少,而且重量较轻。 ·钻孔桩柱式桥墩:适合于多种场合和各种地质条件。通过增大桩径、桩长或用多排桩加建承台等措施,也能适用于更复杂的软弱地质条件以及较大的跨径和较高的桥墩。 ·柔性排架桩墩:优点是用料省、修建简便、施工速度快。主要缺点是用钢量大,使用高度和承载能力受到一定限制。因此它只适合于在低浅宽滩河流、通航要求低和流速不大的水网地区河流上修建小跨径桥梁时采用。

桥梁下部结构设计图文详解

一、桥涵水文基础知识 跨水域桥梁,满足洪水宣泄要求。桥梁基本尺寸,包括桥孔长度、桥面标高、 基础埋深等的确定,必须考虑设计使用年限内可能发生的最大洪水,包括其流量、流速及水位等因素。 1大、中桥设计流量推算 设计流量的推算,要按《公路工程水文勘测设计规范》的要求,根据所掌握 的资料情况,选择适当的计算方法。对于大、中河流,具有足够的实测流量资 料时,主要采用水文统计法。而缺乏实测流量资料时,则多采用间接方法或经 验公式计算。 计算时要注意水文断面与桥位的关系,正确推算桥位处的设计流量和设计水位。 2小桥涵设计流量推算 桥涵一般都缺乏观测资料。因此相关部门制定了各种小流域流量计算公式和相 应的图表作参考,设计时,应以多种计算方法予以比较。 常用的方法:形态调查法、暴雨推理法和直接类比法。 暴雨推理公式是直接根据设计规定频率P推求出对应的洪峰流量Qp,此方法计 算出的Qp即是拟建小桥涵处设计流量。 形态调查法和直接类比法仅推出了形态断面处或原有小桥涵位处的流量Q‘p故须向拟建小桥涵位处折算成设计洪峰流量Qp。 在条件许可情况下,宜用几种方法计算互相核对比较,并通过加强调查研究、 积累资料、进行科学实验,找出适合本地区的计算方法,结合实际情况确定计 算公式和有关的参数。 3桥位选择的一般规定 (1)调查和勘测。对复杂的大桥、特大桥应进行物探和钻探;考虑现状,征求有关部门的意见,经全面分析认证,确定推荐方案。 (2)在整体布局上与铁路、水力、航运、城建等方面规划互相协调配合;保护文物、环境和军事设施等;照顾群众利益,少占良田,少拆迁。 (3)高速公路、一级公路的特大、大、中桥桥位线形应符合路线布设要求。原则上应服从路线走向;桥、路综合考虑;注意位于弯、坡、斜处的桥梁设计和 施工的难度。 (4)对水文、工程地质和技术复杂的特大桥位、应在已定路线大方向的前提下、根据河流的形态特征、水文、工程地质、通航要求和施工条件以及地方工农业 发展规划等,在较大范围内作全面的技术、经济比较确定。 (5)跨河位置、布孔方案等应征求水利、航运等部门的意见。

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 ............... 错误!未定义书签。项目概况......................................... 错误!未定义书签。技术标准与设计规范............................... 错误!未定义书签。基本计算资料..................................... 错误!未定义书签。第二部分上部结构设计依据 ..................... 错误!未定义书签。概况及基本数据................................... 错误!未定义书签。技术标准与设计规范............................... 错误!未定义书签。技术指标......................................... 错误!未定义书签。设计要点......................................... 错误!未定义书签。 T梁构造尺寸及预应力配筋 ......................... 错误!未定义书签。 T梁横断面....................................... 错误!未定义书签。 T梁预应力束..................................... 错误!未定义书签。 罗望线T梁构造配筋与部颁图比较................... 错误!未定义书签。 结构分析计算..................................... 错误!未定义书签。

桥梁工程习题

第一章概述 填空题: 1. 桥梁的基本组成部分一般由上部结构、下部结构、支座及附属工程等几部分组成。 2. 按桥梁受力体系分,桥梁的基本体系有梁式桥、拱式桥、悬索桥、刚架桥、斜拉桥。 3. 梁式桥按照结构的受力体系可分为简支梁桥、悬臂梁桥和连续梁桥。 4. 对于刚构桥,除了门式刚架桥外,还有T形刚架桥、连续刚架桥、斜腿刚架桥。 5. 按桥梁总长与跨径的不同来划分,有特大桥、大桥、中桥、小桥、和涵洞。 6. 按桥跨结构的平面布置,可分为正交桥、斜交桥和弯桥(或曲线桥)等。 选择题: 7. 按照行车道处于主拱圈的不同位置划分拱桥,下列哪种不属于此划分范畴(B) A.中承式 B.斜拉式 C.上承式 D.下承式 8. 斜拉桥的上部结构中塔柱的主要受力特点是(C) A.受拉为主 B.受剪为主 C.受弯为主 D.受压为主 9. 斜拉桥的上部结构主要由(A)组成 A.塔柱、主梁和斜拉索 B. 塔柱、主梁 C.主缆、塔柱、主梁 D. 主缆、塔柱、吊杆 判断题: 10. 梁式桥是一种在竖向荷载作用下无水平反力的结构。(√) 11. 拱式桥的主要承重结构是主拱圈或拱肋。(√) 12. 刚架桥在竖向荷载作用下,将在主梁端部产生正弯矩,在柱脚处产生水平反力。(√) 13. 刚架桥的桥跨结构是梁或板与墩台(或立柱)整体相连的桥梁。(√) 14. 相对于其它体系的桥梁而言,悬索桥的刚度最小,属于柔性结构,在车辆荷载作用下,悬索桥将产 生较大的变形。(√) >100m。(×) 15. 特大桥单孔跨径是L K 简答题: 19. 桥梁按主要承重结构用的材料分类有哪些 答:钢筋混凝土桥、预应力混凝土桥、圬工桥、钢桥和钢-混凝土组合桥和木桥等。 20. 按照受力体系划分,桥梁可分为哪几种基本体系阐述各种桥梁体系的主要受力特点 答:按照桥梁受力体系分类,可分为梁式桥、拱式桥和悬索桥三大基本体系。梁式桥是一种在竖向荷载作用下无水平反力的结构由于外力(恒载和活载)的作用方向与桥梁结构和轴线接近垂直,因而与同样跨径的其它结构体系相比,梁桥内产生的弯矩最大,即梁式桥以受弯为主。拱式桥的主要承重结构是主拱圈或拱肋,拱圈或拱肋以受压为主,桥墩和桥台将承受水平推力。悬索桥在桥面系竖向荷载作用下,通过吊杆使主缆承受巨大的拉力,主缆悬跨在两边塔柱上,锚固于两端的锚碇结构中;锚碇承受主缆传来的巨大拉力,该拉力可分解为垂直和水平分力,因此,悬索桥也是具有水平反力(拉力)的结构。论述题: 21. 在已取得的桥梁建设成就的基础上,要进一步建造更大跨径的桥梁,主要影响因素有哪些 答:要进一步建造更大跨径的桥梁,主要影响因素有新材料、新工艺的出现和新技术的不断向前发展。其中新材料的发展尤为突出和重要,要想使桥梁朝着更大跨径发展,必须要有高强度、高弹性模量和轻质材料的出现。目前,研究较多的有超高强硅粉和聚合物混凝土,高强双向钢丝纤维增强混凝土,轻质高强的玻璃纤维和碳纤维等,这些新材料若能逐步取代目前广泛使用的钢和混凝土材料,必将导致桥梁建设乃至土木工程的又一次新的飞跃。 第二章桥梁的总体规划设计 填空题: 22. 桥梁工程必须遵照安全、适用、经济和美观的基本原则进行设计。 23. 桥梁设计基本建设程序的前期工作包括预可行性研究报告和可行性研究报告两阶段。

某桥梁计算实例

某桥梁计算实例

设计原始资料 1.地形、地貌、气象、工程地质及水文地质、地震烈度等自然情况(1)气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化显著。年平均气温1 2.20C,最冷月平均气温-40C,七月平均气温26.40C。 (2)工程地质:地铁1号线经过地区处于海河冲积平原上,地形平坦,地势低平,地下水位埋深较浅,沿线分布了较多的粉砂、细砂、粉土,均为地震可液化层,局部地段具有地震液化现象。沿线地层简单,第四系地层广泛发育,地层分布从上到下依次为人工堆积层、新近沉积层、上部陆相层、第一海相层、中上部陆相层、上部及中上部地层广泛发育沉积有十几米厚的软土。 a.人工填土层,厚度5m,?k=100KP a; b.粉质黏土,中密,厚度15m,?k=150 KP a; c.粉质黏土,密实,厚度15m,?k=180KP a; d.粉质黏土,密实,厚度10m,?k=190KP a。 第一章方案比选 一、桥型方案比选 桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。任选三种作比较,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。 桥梁设计原则 1.适用性 桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。桥下应满足泄洪、安全通航或通车等要求。建成的桥梁应保证使用年限,并便于检查和维修。 2.舒适与安全性 现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。 3.经济性 设计的经济性一般应占首位。经济性应综合发展远景及将来的养护和维修等费用。 4.先进性 桥梁设计应体现现代桥梁建设的新技术。应便于制造和架设,应尽量 2

桥墩桩基础设计计算书

桥墩桩基础设计计 算书 1 2020年4月19日

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 2 2020年4月19日

桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m3。承台平面尺寸:长×宽=7×4.5m2,厚度初定 2.5m,承台底标高 3 2020年4月19日

相关文档
最新文档