离散数学的基础知识点总结

离散数学的基础知识点总结
离散数学的基础知识点总结

离散数学的基础知识点总结

第一章命题逻辑

1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;

3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;

4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;

5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;

6.真值表中值为1的项为极小项,值为0的项为极大项;

7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取;

8.永真式没有主合取范式,永假式没有主析取范式;

9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)

10.命题逻辑的推理演算方法:P规则,T规则

①真值表法;②直接证法;③归谬法;④附加前提法;

第二章谓词逻辑

1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;

多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含T,存在量词用合取“;

3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合

1.N,表示自然数集,1,2,3……,不包括0;

2.基:集合A中不同元素的个数,|A|;

3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);

4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2;

5.集合的分划:(等价关系)

①每一个分划都是由集合A的几个子集构成的集合;

②这几个子集相交为空,相并为全(A);

6.集合的分划与覆盖的比较:

分划:每个元素均应出现且仅出现一次在子集中;

覆盖:只要求每个元素都出现,没有要求只出现一次;

第五章关系

1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系;

2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系;

3.全关系的性质:自反性,对称性,传递性;

空关系的性质:反自反性,反对称性,传递性;

全圭寸闭环的性质:自反性,对称性,反对称性,传递性;

4.前域(domR):所有元素x组成的集合;

后域(ranR):所有元素y组成的集合;

5.自反闭包:r(R)=RU I x;

对称闭包:s(R)=RU R-1;

传递闭包:t(R)=RU R2U R3U……

6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;

7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;

8.covA二{|x,y 属于A, y 盖住x};

9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大

元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);

10.前提:B是A的子集

上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);

下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);

上确界:最小的上界(若存在就一定唯一);

下确界:最大的下界(若存在就一定唯一);第六章函数

1.若|X|=m,|Y|=n,则从X到Y有2mn种不同的关系,有n种不同的函数;

2.在一个有n个元素的集合上,可以有2n种不同的关系,有n n种不同的

函数,有n!种不同的双射;

:种不同的单射;

3.若|X|=m,|Y|=n,且m<二n,则从X到Y有A

4.单射:f:X-Y,对任意冷必属于X,且x i如,若f(xj彳仏);

满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;

双射:f:X-Y,若f既是单射又是满射,则f是双射;

5.复合函数:fog=g(f(x));

6.设函数f:A-B , g:B-C,那么

①如果f,g都是单射,则fog也是单射;

②如果f,g都是满射,则fog也是满射;

③如果f,g都是双射,则fog也是双射;

④如果fog是双射,则f是单射,g是满射;

第七章代数系统

1.二元运算:集合A上的二元运算就是A2到A的映射;

2.集合A上可定义的二元运算个数就是从AXA到A上的映射的个数, 即从从AXA到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为22*2= 24=16种;

3.判断二元运算的性质方法:

①封闭性:运算表内只有所给元素;

②交换律:主对角线两边元素对称相等;

③幕等律:主对角线上每个元素与所在行列表头元素相同;

④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;

⑤有零元:元素所对应的行和列的元素都与该元素相同;

4.同态映射:,vB,心,满足f(a*b)二f(aFf(b),则 f 为由

的同态映射;若f是双射,则称为同构;

第八章群

1?广群的性质:封闭性;

半群的性质:封闭性,结合律;

含幺半群(独异点):封闭性,结合律,有幺元;

群的性质:封闭性,结合律,有幺元,有逆元;

2.群没有零元;

3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;

4.循环群中幺元不能是生成元;

5.任何一个循环群必定是阿贝尔群;

第十章格与布尔代数

1.格:偏序集合A中任意两个元素都有上、下确界;

2.格的基本性质:

1)自反性

a< a 对偶:a > a

2)反对称性

a< b 八 b > a => a=b

对偶:a>b 八 b a=b

3)传递性

a< b 八 b < c => a< c

对偶:a>b 八 b >c => a>c

4)最大下界描述之一

a A

b < a 对偶avb > a

A A b < b 对偶avb > b

5)最大下界描述之二

c< a,c < b => c < aAb

对偶c>a,c 》b => c》avb

6)结合律

aA(bAc)=(aAbFc

对偶av(bvc)=(avb)vc

7)等幕律

aAa=a 对偶ava=a 8)吸收律

a A(avb)=a 对偶av(a A b)=a

9) a < b <=> aAb=a avb=b

10) a< c,b < d => aAb < cAd avb < cvd

11) 保序性

b< c => aAb < aAc avb < avc

12) 分配不等式

av(b A c) < (avb)A(avc)

对偶aA(bvc) > (aAb)v(aAc)

13 )模不等式

a < c <=> av(bAc) < (avb^c

3.分配格:满足aA(bvc)=(aAb)v(aAc)和av(bAc)=(avb)A(avc);

4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;

5.链格一定是分配格,分配格必定是模格;

6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格的全上界,记为1 ;(若存在则唯一)

全下界:集合A中的某个元素b小于等于该集合中的任何元素,

则称b为格的全下界,记为0;(若存在则唯一)

7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;

8.补元:在有界格内,如果aAb=0,avb=1 ,则a和b互为补元;

9.有补格:在有界格内,每个元素都至少有一个补元;

10.有补分配格(布尔格):既是有补格,又是分配格;

11.布尔代数:一个有补分配格称为布尔代数;

第十一章图论

1.邻接:两点之间有边连接,贝y点与点邻接;

2.关联:两点之间有边连接,则这两点与边关联;

3?平凡图:只有一个孤立点构成的图;

4.简单图:不含平行边和环的图;

5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;

有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;

6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;

7.r-正则图:每个节点度数均为r的图;

8.握手定理:节点度数的总和等于边的两倍;

9.任何图中,度数为奇数的节点个数必定是偶数个;

10.任何有向图中,所有节点入度之和等于所有节点的出度之和;

11.每个节点的度数至少为2的图必定包含一条回路;

12.可达:对于图中的两个节点v,V j,若存在连接v到V j的路,则称V i 与V j相互可达,也称V i与V j是连通的;在有向图中,若存在V到V j的路,则称V i到V j可达;

13.强连通:有向图章任意两节点相互可达;

单向连通:图中两节点至少有一个方向可达;

弱连通:无向图的连通;(弱连通必定是单向连通)

14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,贝S这些点组成的集合称为点割集;

割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;

15.关联矩阵:M(G) , m j是v与勺关联的次数,节点为行,边为列;无

向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特

点:

无向图:

①行:每个节点关联的边,即节点的度;

②列:每条边关联的节点;

有向图:

③所有的入度(1)=所有的出度(0);

16.邻接矩阵:A(G), a j是V i邻接到V j的边的数目,点为行,点为列;

17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;

P(G)=A(G)+ A2(G)+ A3(G)+ A4(G)

可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;

A(G)中所有数的和:表示图中路径长度为1的通路条数;A2(G)中所有数的和:表示图中路径长度为2的通路条数;A3(G)中所有数的和:表示图中路径长度为3的通路条数;A4(G)中所有数的和:表示图中路径长度为4的通路条数;

P(G)中主对角线所有数的和:表示图中的回路条数;

18.布尔矩阵:B(G), V i到V j有路为1,无路则为0,点为行,点为列;

19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;

20.生成树:只访问每个节点一次,经过的节点和边构成的子图;

21.构造生成树的两种方法:深度优先;广度优先;深度优先:

①选定起始点V。;

②选择一个与V0邻接且未被访问过的节点V1 ;

③从V1出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;

广度优先:

①选定起始点V0 ;

②访问与V0邻接的所有节点V1, V2,……,V k ,这些作为第一层节点;

③在第一层节点中选定一个节点V1为起点;

④重复②③,直到所有节点都被访问过一次;

22.最小生成树:具有最小权值(T)的生成树;

23.构造最小生成树的三种方法:

克鲁斯卡尔方法;管梅谷算法;普利姆算法;

(1 )克鲁斯卡尔方法

①将所有权值按从小到大排列;

②先画权值最小的边,然后去掉其边值;重新按小到大排序;

③再画权值最小的边,若最小的边有几条相同的,选择时要满

足不能出现回路,然后去掉其边值;重新按小到大排序;

④重复③,直到所有节点都被访问过一次;

(2)管梅谷算法(破圈法)

①在图中取一回路,去掉回路中最大权值的边得一子图;

②在子图中再取一回路,去掉回路中最大权值的边再得一子图;

③重复②,直到所有节点都被访问过一次;

(3)普利姆算法

①在图中任取一点为起点V i,连接边值最小的邻接点V2 ;

②以邻接点V2为起点,找到V2邻接的最小边值,如果最小边值比V i邻接的所有边值都小(除已连接的边值),直接连接,否则退回V i,连接V i现在的最小边值(除已连接的边值);

③重复操作,直到所有节点都被访问过一次;

24.关键路径

例2求PERT图中各顶点的最早完成时间,最晚完成时间,缓冲时间及关键路径.

解:最早完成时间

TE(V1)=0

TE(V2)=max{0+1}=1

TE(v3)=max{0+2,1+0}=2

TE(v4)=max{0+3,2+2}=4

TE(v5)=max{1+3,4+4}=8

TE(v6)=max{2+4,8+1}=9

TE(v7)=max{1+4,2+4}=6

TE(v8)=max{9+1,6+6}=12

最晚完成时间

TL(v8)=12

TL(v7)=mi n{12-6}=6

TL(v6)=mi n{12-1}=11

TL(v5)=mi n{11-1}=10

TL(v4)=mi n{10-4}=6

TL(v3)=min {6-2,11-4,6-4}=2

TL(v2)=mi n{2-0,10-3,6-4}=2

TL(v1)=mi n{2-1,2-2,6-3}=0 缓冲时间

TS(v1)=0-0=0

TS(v2)=2-仁1

TS(v3)=2-2=0

TS(v4)=6-4=2

TS(v5=10-8=2

TS(v6)=11-9=2

TS(v7)=6-6=0

TS(v8)=12-12=0

关键路径:v1-v3-v7-v8

r 2 欧拉图:具有欧拉回路的图;

单向欧拉路:经过有向图中每条边一次且仅一次的单向路;

欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;

26. ( 1)无向图中存在欧拉路的充要条件:

①连通图;②有0个或2个奇数度节点;

(2 )无向图中存在欧拉回路的充要条件:

①连通图;②所有节点度数均为偶数;

(3)连通有向图含有单向欧拉路的充要条件:

① 除两个节点外,每个节点入度 二出度;

② 这两个节点中,一个节点的入度比出度多1,另一个节点的入; 度比出度少1 ;

v 7

欧拉回路:经过图中每条边一次且仅一次的回路;

(4)连通有向图含有单向欧拉回路的充要条件:

图中每个节点的出度二入度;

27.哈密顿路:经过图中每个节点一次且仅一次的通路;

哈密顿回路:经过图中每个节点一次且仅一次的回路;

哈密顿图:具有哈密顿回路的图;

28.判定哈密顿图(没有充要条件)

必要条件:

任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;

充分条件:

图中每一对节点的度数之和都大于等于图中的总节点数;

29.哈密顿图的应用:安排圆桌会议;

方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;

30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是

平面图;

31.面次:面的边界回路长度称为该面的次;

32.一个有限平面图,面的次数之和等于其边数的两倍;

33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则

v-e+r=2 ;

34.判断是平面图的必要条件:(若不满足,就一定不是平面图)

设图G是v个节点,e条边的简单连通平面图,若v>=3,则ev=3v-

6 ;

35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插

入和除去2度节点可以变成同构的图,则称G1 , G2是同胚的;36?判断G是平面图的充要条件:

图G不含同胚于K3.3或K5的子图;

37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;

②图中每条边的一个端点在V1,另一个则在V2中;

完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:

图中每条回路经过边的条数均为偶数;

38.树:具有n个顶点n-1条边的无回路连通无向图;

39.节点的层数:从树根到该节点经过的边的条数;

40.树高:层数最大的顶点的层数;

41.二叉树:

①二叉树额基本结构状态有5种;

②二叉树内节点的度数只考虑出度,不考虑入度;

③二叉树内树叶的节点度数为0,而树内树叶节点度数为1 ;

④二叉树内节点的度数二边的总数(只算出度);握手定理“节点数二边的两倍”是在同时计算入度和出度的时成立;

⑤二叉树内节点的总数二边的总数+1 ;

⑥位于二叉树第k层上的节点,最多有2k4个(k>=1);

⑦深度为k的二叉树的节点总数最多为2k-1个,最少k个(k>=1);

⑧如果有n o个叶子,n2个2度节点,则n° = n2+1 ;

42.二叉树的节点遍历方法:

先根顺序(DLR);

中根顺序(LDR);

后根顺序(LRD);

43.哈夫曼树:用哈夫曼算法构造的最优二叉树;

44.最优二叉树的构造方法:

①将给定的权值按从小到大排序;

②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;

③重复②,直达所有权值构造完毕;

45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1

代替所有边的权值;

每个节点的编码:从根到该节点经过的0和1组成的一排编码;

离散数学必备知识点总结

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项 时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^;

3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为mn,A到B上可以定义m n 2种不同的关系; 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性;

打印版教育学心理学知识要点归纳

教育学知识点 1. 什么是教育、教育学、学校教育?教育就其定义来说有,有广义和狭义之分。广义的教育泛指增进人们的知训、技能和身体健康,影响人们的思想观念的所有活动。广义的教育包括:家庭教育、社会教育和学校教育。狭义的教育主要指学校教育,是教育者根据一定的社会要求,有目的,有计划,有组织地对受教育者的身心施加影响,把们们培养成为一定社会或阶级所需要的人的活动。教育学是研究教育现象和教育问题,揭示教育规律的科学。 2.学校教育的构成要素有哪些?简述各构成要素在教育活动中的地位。学校教育包括三个基本要素:教育者、受教育者和教育影响。 教育者是从事学校教育活动的人,教师是学校教育者的主体,是直接的教育者,在教育过程中发挥主导作用。受教育者是接受教育的人,他既要接受教育者的改造和塑造,同时也要自我改造和塑造。教育影响是教育内容、教育方法和教育手段极其联系得总和,是教育者和受教育者相互作用的中介。 3.什么是学校教育制度?简述学校教育制度的基本类型。学校教育制度简称"学制",是一个国家各级各类学校教育的系统,它规定着各级各类学校的性质、任务、入学条件、修业年限以及它们之间的关系。基本类型:双轨制学制、单轨制学制和分支制学制。 1902年"壬寅学制"第一个近代学制;1904年 "癸卯学制"第一个正式实施的学制;1922年 "壬戌学制提出"六三三"学制 4.试述现代学校教育制度的发展趋势。(1)加强学前教育并重视及小学教育的衔接; (2) 强化普及义务教育,延长义务教育年限;(3)普通教育及职业教育朝着相互渗透的方向发展;(4)高等教育的类型日益多样化;(5) 学历教育及非学历教育的界限逐渐淡化;(6)教育制度有利于国际交流 5.为什么教师在教育过程中发挥着主导作用?第一教师承担着传承人类文明和促进社会发展的重任;第二,教师受过专门的职业训练;第三,青少年处在身心迅速发展的时期。 6.教育的历史发展分为哪几个时期?各个时期的教育有什么特点?分为原始形态的教育、古代学校教育、现代学校教育和学习化社会的终身教育。原始形态的教育特点:(1)教育是在生产劳动和社会生活中进行的。(2)教育没有阶级性。(3)教育内容简单,教育方法单一。古代学校教育的特点:(1)教育及生产劳动相脱离(2) 教育具有阶级性和等级性(3) 教育内容偏重于人文知识,教学方法倾向于自学、对辨和死记硬背。现代学校教育的特点:(1)教育及生产劳动相结合;(2)教育面向全体社会成员;(3)教育的科学化程度和教育水平日益提高。学习化社会的终身教育的特点:(1)全体社会成员的一生都处在不断的学习之中;(2)社会能为每一位社会成员提供适当的教育。 7.资产阶级采取哪些措施建立国民教育体系?(1)国家建立公立教育系统,加强对教育的控制;(2)普遍实施义务教育;(3)重视教育立法,依法治教 8.试述世界教育改革的趋势。教育终身化、教育全民化、教育民主化、教育多元化、教育技术现代化。 9.简述古代教育思想家的主要思想及其代表作。最早把"教"和"育"连在一起的是孟子。西周建立了典型的政教合一的官学体系,并有了"国学"及"乡学"之分,形成了六艺(礼、乐、射、御、书、数)。1905年废除科举;"以僧为师""以吏为师"成为古代埃及教育的一大特征古印度教育控制在婆罗门教和佛教手中,婆罗门将人分为四个等级:婆罗门、刹帝利、吠舍和首陀罗。西欧中世纪分为僧院学校、大主教学校和教区学校,内容有神学和七艺(文法、修饰、辩证法、算术、几何、天文、音乐) 孔子主张"有教无类",希望把人培养成"贤人"和"君子",教授的基本科目是《诗》《书》《礼》《乐》《易》《春秋》,强调"学而知之",提出了因材施教、启发诱导、学思并重、学行兼顾、博约结合、学以致用、以身作则等教学原则;战国后期《学记》我国最早专门论述教育问题的著作,提出教学相长、启发诱导、循序渐进、长善救失、藏息相辅、师严而道尊;苏格拉底 "产婆术",是一种教师和学生共同讨论、辩论的方法,为启发式教学奠定的基础;柏拉图的教育思想都体现在代表作《理想国》中,构建了较为系统的学制,为近代资源共享本主义教育提供了雏形;亚历士多德是古希腊百科全书式的哲学家提出了"教育遵循自然"的观点,主张按照儿童心理发展规律对儿童分阶段进行教育,提倡对儿童进行和谐的教育;昆体良是西方第一个专门论述教育问题的教育家,他的《雄辩术原理》是西方第一本教育专专著。他主张教育者要了解儿童的天赋、倾向和才能,遵循儿童的特点进行教育。他重视教师的作用,认为教师是教育成败的关键。 10.简述近代、现代教育思想家的代表及其主要贡献。英国的培根首次把教育学作 1 / 1

离散数学(集合论)课后总结

第三章集合论基础 1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。 ⑴{a}∈A T ⑵?({a}? A) F ⑶c∈A F ⑷{a}?{{a,b},c} F ⑸{{a}}?A T ⑹{a,b}∈{{a,b},c} T ⑺{{a,b}}?A T ⑻{a,b}?{{a,b},c} F ⑼{c}?{{a,b},c} T ⑽({c}?A)→(a∈Φ) T 2、证明空集是唯一的。(性质1:对于任何集合A,都有Φ?A。) 证明:假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得Φ1 ?Φ2 。 因为Φ2是空集,则由性质1得Φ2 ?Φ1 。 所以Φ1=Φ2 。 3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念) a)是否Φ∈B?是否Φ?B? b)是否{Φ}∈B? 是否{Φ}?B? c)是否{{Φ}}∈B? 是否{{Φ}}?B? 解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}} 在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b} B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}} 然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}} 以后熟悉后就可以直接写出。 a) Φ∈B Φ?B b) {Φ}∈B {Φ} ? B c) {{Φ}}∈B {{Φ}}?B a)、b)、c)中命题均为真。 4、证明A?B ? A∩B=A成立。 证明:A∩B=A ??x(x∈A∩B ?x∈A) ??x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B)) ??x((x?A∩B∨x∈A)∧(x?A∨x∈A∩B)) ??x((?(x∈A∧x∈B)∨x∈A)∧(x?A∨(x∈A∧x∈B)) ??x(((x?A∨x?B)∨x∈A)∧(x?A∨(x∈A∧x∈B))) ??x(T∧(T∧( x?A∨x∈B))) ??x( x?A∨x∈B)??x(x∈A→x∈B)? A?B 5、(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) ?x∈(A-C)∧x?(B-C) ?(x∈A∧x?C)∧?(x∈B∧x?C) ?(x∈A∧x?C)∧(x?B∨x∈C) ?(x∈A∧x?C∧x?B)∨(x∈A∧x?C∧x∈C) ?x∈A∧x?C∧x?B?x∈A∧x?B∧x?C ?(x∈A∧x?B)∧x?C ?x∈A-B∧x?C?x∈(A-B)-C 所以(A-B)-C=(A-C)-(B-C)

离散数学期末练习题-(带答案)

离散数学复习注意事项: 1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。 2、第二遍复习按照考试大纲的要求对第一遍复习进行总结。把大纲中指定的例题及书后习题认真做一做。检验一下主要内容的掌握情况。 3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。 离散数学综合练习题 一、选择题 1.下列句子中,()是命题。 A.2是常数。B.这朵花多好看呀! C.请把门关上!D.下午有会吗? 2.令p: 今天下雪了,q:路滑,r:他迟到了。则命题“下雪路滑,他迟到了” 可符号化为()。 A. p q r ∨→ ∧→ B. p q r C. p q r ∨? ∧∧ D. p q r 3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()。 A.p q ∧ ∧? B.p q C.p q →? ∨? D. p q 4.设() Q x:x会飞,命题“有的鸟不会飞”可符号化为()。 P x:x是鸟,() A. ()(()()) Q x ??∧()) x P x Q x ??→ B. ()(() x P x C. ()(()()) Q x ??∧()) x P x Q x ??→ D. ()(() x P x 5.设() L x y:x大于等于y;命题“所有整数 f x:x的绝对值,(,) P x:x是整数,() 的绝对值大于等于0”可符号化为()。 A. (()((),0)) ?→ x P x L f x ?∧B. (()((),0)) x P x L f x C. ()((),0) ?→ xP x L f x ?∧ D. ()((),0) xP x L f x 6.设() F x:x是人,() G x:x犯错误,命题“没有不犯错误的人”符号化为()。 A.(()()) ??→? x F x G x ?∧B.(()()) x F x G x C.(()()) ??∧? x F x G x ??∧D.(()()) x F x G x 7.下列命题公式不是永真式的是()。 A. () p q p →→ →→ B. () p q p C. () →∨ p q p p q p ?∨→ D. () 8.设() R x:x为有理数;() Q x:x为实数。命题“任何有理数都是实数”的符号化为()

离散数学必备知识点总结

离散数学必备知识点总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

教育学基础311重点总结

一. 教育目的和教学目标的关系 教育目的是预期的教育结果,是国家,家长,教育机构,教师对培育什么样的人的总的要求。广义的教育目的还包括培养目标,课程目标,教学目标等。教育目的是教学的总方向,是一切教育活动的出发点和归宿,也是教育评价的根本标准。教学目标是在某一阶段(如一节课或一个单元)教学过程中预期达到的具体结果,是教学工作的依据和评价标准。教师在教学工作中必须有明确的教学目标,这是确保教学有效的基本条件,但是今年仅有具体的教学目标,没有总的教育目的作为指导,教学工作就会失去意义和方向。二. 皮亚杰和维果茨基建构主义的区别 两者都认为知识是个体对经验的建构,但是在知识的实质以及知识的建构过程方面,两人仍存在明显的理论上的差异。皮亚杰的将建构观称为认知或个体的建构主义。认知建构者认为,知识以心理结构的形势存在在学生的头脑之中,这种知识是通过同化,顺华等过程为个体所建构起来的。维果茨基的知识建构则成为社会建构主义。社会建构主义者认为,知识在得以内化之前,以各种社会化工具的形式存在于社会之中,而知识的内化则是个体与社会环境互动的结果。 三. 什么是道德体谅模式 体谅模式是英国学者麦克费尔等人创建的一种侧重培养学生道德情感的德育模式。该模式强调德育的主要目的是培养和提高学生的社会意识和社会技能,引导学生学会体谅,学会关心。该模式通过使用一套包含大量社会情境问题的教材《生命线》,引导学生通过角色扮演等方式进行道德学习。 四. 简要比较相关课程,融合课程,广域课程的异同点 共同点:三者都是以学科为中心的综合课程 不同点:三者对学科之间的知识的综合程度不同。相关课程吧两门以上学科知识综合在一门课程中,但不打破原来的学科界限,融合课程打破了学科界限,把有着内在联系的不同学科知识合并成一门课程,广域课程将各科教材依性质归到各个领域,再将同一领域的各科教材加以组织和排列,进行系统的教学,与相关课程,融合课程相比,其综合范围更加广泛。 五. 美国进步教育运动衰落的原因 1.美国进步教育运动未能与美国社会的持续变化始终保持同步,未能较好的适应美国社会发展对教育提出的新要求。 2.进步教育理论和实践存在局限性,如:过分强调儿童自由,忽视社会和文化发展对教育的决定与制约作用。 3. 改造主义教育和一些保守主义教育流派的抨击与批判,加速了进步教育的衰落。 六. 参与式观察的优缺点 优:便于了解到真实的信息。便于获得较为完整的资料。便于进行多次观察 缺:易受观察者的主观影响。观察的样本数小,观察结果的代表性不强。 七. 问题解决的基本过程和影响因素 基本过程: 理解与表征阶段:将问题的情境转化为某种内部的心理结构,或者说形成某种问题空间寻求解答阶段:在问题的表征阶段,个体有可能凭借与之熟悉的问题直接提取相应的策略来解决现有的问题,若无这种经验,个体便不得不制定计划,如建立解决问题的子目标层级,或选择相应的解决策略。 执行计划或尝试某种解答阶段:在对问题作出表征并选择好某种解决方案后,个体要执行这一计划,尝试解答。 评价结果阶段:在选择并运用某种解题策略之后,个体应对这一策略运用的结果作出评价,这一过程包括检查与答案相一致或相矛盾的地方。

离散数学谓词逻辑课后总结

第二章谓词逻辑 2—1基本概念 例题1. 所有的自然数都是整数。 设N(x):x是自然数。I(x):x是整数。此命题可以写成?x(N(x)→I(x)) 例题2. 有些自然数是偶数。 设E(x):x是偶数。此命题可以写成?x(N(x)∧E(x)) 例题3. 每个人都有一个生母。 设P(x):x是个人。M(x,y):y是x的生母。此命题可以写 成:?x(P(x)→?y(P(y)∧M(x,y))) 2-2 谓词公式及命题符号化 例题1. 如果x是奇数,则2x是偶数。 其中客体x与客体2x之间就有函数关系,可以设客体函数g(x)=2x, 谓词O(x):x是奇数,E(x):x是偶数, 则此命题可以表示为:?x(O(x)→E(g(x))) 例题2 小王的父亲是个医生。 设函数f(x)=x的父亲,谓词D(x):x是个医生,a:小王,此命题可以表示为D(f(a))。 例题3 如果x和y都是奇数,则x+y是偶数。 设h(x,y)=x+y ,此命题可以表示为:?x?y((O(x)∧O(y))→E(h(x,y)) 命题的符号表达式与论域有关系 两个公式:一般地,设论域为{a1,a2,....,an},则有 (1). ?xA(x)?A(a1)∧A(a2)∧......∧A(an) (2). ?xB(x)?B(a1)∨B(a2)∨......∨B(an) 1.每个自然数都是整数。该命题的真值是真的。 表达式?x(N(x)→I(x))在全总个体域的真值是真的, 因?x(N(x)→I(x))?(N(a1)→I(a1))∧(N(a2)→I(a2))∧…∧(N(an)→I(an)) 式中的x不论用自然数客体代入,还是用非自然数客体代入均为真。例如(N(0.1)→I(0.1))也为真。 而?x(N(x)∧I(x))在全总个体域却不是永真式。

离散数学知识点整理

离散数学 一、逻辑和证明 1.1命题逻辑 命题:是一个可以判断真假的陈述句。 联接词:∧、∨、→、?、?。记住“p仅当q”意思是“如果p,则q”,即p→。记住“q除非p”意思是“?p→q”。会考察条件语句翻译成汉语。 系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。 1.3命题等价式 逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。

谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如?x>0P(x)。 当论域中的元素可以一一列举,那么?xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。同理,?xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。 两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如?x(P(x)∧Q(x))和(?xP(x))∧(?xQ(x))。 量词表达式的否定:??xP(x) ??x?P(x),??xP(x) ??x?P(x)。 1.5量词嵌套 我们采用循环的思考方法。量词顺序的不同会影响结果。语句到嵌套量词语句的翻译,注意论域。嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。 1.6推理规则 一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。但有效论证

二、集合、函数、序列、与矩阵 2.1集合 ∈说的是元素与集合的关系,?说的是集合与集合的关系。常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。 A和B相等当仅当?x(x∈A?x∈B);A是B的子集当仅当?x(x∈A→x∈B);A是B的真子集当仅当?x(x∈A→x∈B)∧?x(x?A∧x∈B)。 幂集:集合元素的所有可能组合,肯定有?何它自身。如?的幂集就是{?},而{?}的幂集是{?,{?}}。 考虑A→B的函数关系,定义域、陪域(实值函数、整数值函数)、值域、像集(定义域的一个子集在值域的元素集合)。 一对一或者单射:B可能有多余的元素,但不重复指向。 映上或者满射:B中没有多余的元素,但可能重复指向。 一一对应或者双射:符合上述两种情况的函数关系。 反函数:如果是一一对应的就有反函数,否则没有。 合成函数:fοg(a)=f(g(a)),一般来说交换律不成立。 2.4序列 无限集分为:一组是和自然数集合有相同基数,另一组是没有相同基数。前者是可数的,后者不可数。想要证明一个无限集是可数的只要证明它与自然数之间有一一对应的关系。 如果A和B是可数的,则A∪B也是可数的。

教育学知识点整理

教育学 一、名词解释 1.教育的概念:指教育者根据一定社会的要求,遵循受教育者身心发展的规律,有目的有计划有组织地对受教育者身心施加影响,把他们培养成为一定社会所需要的人的活动。 2.教育目的的层次结构:是指由国家提出的教育目的、各级各类学校培养目标、课程目标和教学目标所构成的一个教育目的系统。 3.素质教育:就是全面贯彻党的教育方针,以提高国民素质为根本宗旨,以培养学生的创新精神和实践能力为重点,造就生理素质、心理素质和社会素质等全面发展的社会主义事业的建设者和接班人的教育活动。 4.义务教育:是指国家采用法律形式规定的适龄儿童、少年都必须接受的,国家、社会、学校、家庭都必须予以保证的带有强制性的国民教育。义务教育的性质决定了它是一种具有强制性、法律保障的、免费特征的教育制度。 5.人的身心发展:是指个体从出生、成熟、衰老直至死亡的整个生命进程中所发生的一系列身心变化。 6.教师专业化:指教师职业具有自己独特的职业要求和职业条件,有专门的培养制度和管理制度。 7.学科课程:是以文化知识为基础,按照一定的价值标准,从不同的知识领域或学术领域选择一定的容,根据知识的逻辑体系,将所选出的知识组织为学科的课程。 8.经验课程:也称为活动课程,是从儿童的兴趣和需要出发,以儿童的经验为基础,以各种不同形式的一系列活动组成的课程。

9.教学:是教师的教和学生的学共同组成的传递和掌握社会经验的双边活动。 10.班级授课制:是一种集体教学形式。它是将一定数量的学生按年龄和知识程度编成固定的班级,根据课程计划和规定的时间,安排教师有计划地面向全班学生进行教学的一种组织形式。 二.简答题 1. 学校产生的条件: (1)进入奴隶社会后,金属工具代替了原始社会的石器,生产水平提高了,有了剩余产品且足以供养一部分人脱离直接的生产劳动,专门从事教育与学习,学校的产生有了必要的物质基础以及专门从事教育活动的知识分子—教师。 (2)随着生产力的发展和人们认识水平的提高,人们积累了越来越多的社会生产、生活经验,为学校的产生提供了更丰富的教育容。 (3)文字的产生,为学校传授知识提供了便利的工具。 (4)私有制的产生,社会贫富两级分化,对立的阶级形成,国家机器产生,统治阶级为强化对劳动人民的统治,迫切需要有专门的机构培养阶级的接班人和为其服务的官吏及知识分子,学校的产生有了客观的需要。 2. 多元智力视野中的学生观 第一,对所有学生都抱有热切的成才期望,充分尊重每一个学生的智力特点,使我们的教育真正成为“愉快教育”和“成功教育”。 第二,针对不同的学生的不同智力特点,进行有针对性的教育教学,即教师

离散数学学习体会

我的离散数学学习心得 (1) -- 一类抽象代数题的解题思路 学习离散数学已经有一段时间了,书读了不少,题也做了一些。最近又常在群里和研友们讨论离散数学中的问题。所以对离散数学也有了一些心得和体会。在今后的一段时间里,我会不定期的写一些小的经验总结,以供后来人参考。:) 因为是“心得体会”,所以多半是想到什么写什么,组织和条理方面可能会比较差。还望各位看官多多包涵。;) 这次我们来讨论一类代数问题的解题思路。 问题:设R为含幺环,求证:对任意a,b∈R,若1-ab可逆,则1-ba也可逆。 分析: 我们知道,证明问题的方法大致可以分为两类:构造性证明和存在性证明。前者要求给出一个切实的方法,找出符合命题要求的元素(在这道题中,就是找到1-ba的逆元)。后者则只证明这样的元素必然存在,但并不给出切实的寻找方法。反证法是存在性证明的基本方法。 无论打算采用是哪种证明方法,确认一下我们可以使用的前提条件总是必要的。 就这道题而言,我们可以使用这些前提: 1、R是含幺环。这就意味着R对加法构成Abel群(从而我们可以自由地使用加法交换律、加法消去律、加法逆元等),R对乘法构成独异点(从而可以使用乘法单位元1),当然还有乘法对加法的分配律。 2、1-ab是可逆的,这就是说,存在c∈R,使得c(1-ab)=(1-ab)c=1。移项后得到:cab=abc=c-1。 需要注意的是: 1、在题设中没有假设R的可换性(事实上,如果R可换的话,整个问题就没有任何难度了),也没有假设a、b是可逆的。所以,在解题时,不能使用乘法交换律,也不能随便使用a、b的逆元(除非已经证明了它们的存在性)。 2、如果没有1-ab可逆这个条件,肯定是推不出1-ba可逆的(我们在环中可以找到太多的反例)。所以,cab=abc=c-1将是解题的关键。观察这个式子,我们注意到,它提供了在c的参与下,移动和消去ab 的方法。 我们的目的是,证明存在这样的一个元素d∈R,满足(1-ba)d=d(1-ba)=1。 初看到这道题,我们并不知道使用构造性证明容易还是使用反证法容易。 不过推理一下我们可以发现,如果要使用反证法的话,我们需要反设1-ba不存在乘法逆元,然后由此推出1-ab也不可能有逆元(或者推出R不是含幺环)。 但反设1-ba不存在乘法逆元后,我们到底能推出哪些结论来呢?似乎很少。我们甚至连“对任意x∈R,必有x(1-ba)≠1”这样简单的情况都难以证明(因为我们只假设了1-ba没有“乘法逆元”,并不能由此推出1-ba没有“乘法左逆元”)。 另一方面,利用等式cab=abc=c-1直接构造出一个1-ba的逆元应该一个比较有希望的方法。 这时,我们可以“取巧”了。注意到: 1、如果我们相信题目给的命题没有错的话,我们只要找到1-ba的左逆元(或者右逆元)就基本完成任务了(虽然最终书写证明时,我们需要证明我们找到的元素既是左逆元又是右逆元)。因为如果一个元素的左右逆元都存在的话,它的左右逆元是唯一且相等的(所以,1-ba确实可逆,而我们又找到了它的一

离散数学课程总结

离散数学课程总结 姓名: 学号: 班级:级计科系软件工程()班 近年来,计算机科学与技术有了飞速发展,在生产与生活的各个领域都发挥着越来越重要的作用。离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程。 一、课程总结 本书的主要内容有数理逻辑、集合论、代数结构、组合数学、图论以及初等数论六部分,而我们主要学习的有第一部分数理逻辑、第二部分集合论以及第五部分图论,第三部分代数结构也学习了一部分。第一部分:数理逻辑 数理逻辑是研究推理的数学分支,推理有一些列的陈述句组成。在数理逻辑中,主要学习了命题逻辑的基本概念、命题逻辑的等值演

算、命题逻辑的推理理论、一阶逻辑基本概念、一阶逻辑等值演算与推理。 1.在命题逻辑的基本概念中学习了命题的真值及真值表、命题与联 结词、命题及其分类、联结词与复合命题、命题公式及其赋值。2.在命题逻辑的等值演算中主要学习了等值式与基本的等值式模式、 等值演算与置换规则、析取范式与合取范式,极大值和极小值,主析取范式与主合取范式、联结词完备集。 3.在命题逻辑的推理理论中主要学习了推理的正确与错误、推理的 形式结构、判断推理正确的方法、推理定律;自然推理系统P、形式系统的定义与分类、自然推理系统P,在P中构造证明:直接证明法、附加前提证明法、归谬法。 4.在一阶逻辑基本概念中主要学习了一阶逻辑命题符号化、个体词、 谓词、量词、一阶逻辑公式及其解释、一阶语言、合式公式及合式公式的解释、永真式、矛盾式、可满足式。 5.在一阶逻辑等值演算与推理中主要学习了一阶逻辑等值式与基本 等值式、置换规则、换名规则、代替规则、前束范式、自然推理系统N及其推理规则。 第二部分:集合论 在集合论中,主要学习了集合代数、二元关系和函数。 1.在集合代数中,学习了集合的基本概念:属于、包含、空集、元 集、幂集、全集;集合的基本运算:并、交、补相对、对称差等; 集合恒等式:集合运算的主要算律、恒等式的证明方法。

离散数学第二章一阶逻辑知识点总结

数理逻辑部分 第2章一阶逻辑 2.1 一阶逻辑基本概念 个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域: 个体变项的取值范围 有限个体域,如{a, b, c}, {1, 2} 无限个体域,如N, Z, R, … 全总个体域: 宇宙间一切事物组成 谓词: 表示个体词性质或相互之间关系的词 谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F 一元谓词: 表示事物的性质 多元谓词(n元谓词, n≥2): 表示事物之间的关系 如L(x,y):x与y有关系L,L(x,y):x≥y,… 0元谓词: 不含个体变项的谓词, 即命题常项或命题变项 量词: 表示数量的词 全称量词?: 表示任意的, 所有的, 一切的等 如?x 表示对个体域中所有的x

存在量词?: 表示存在, 有的, 至少有一个等 如?x表示在个体域中存在x 一阶逻辑中命题符号化 例1 用0元谓词将命题符号化 要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲 在命题逻辑中, 设p:墨西哥位于南美洲 符号化为p, 这是真命题 在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲 符号化为F(a) 例2 在一阶逻辑中将下面命题符号化 (1)人都爱美; (2) 有人用左手写字 分别取(a) D为人类集合, (b) D为全总个体域 . 解:(a) (1) 设G(x):x爱美, 符号化为?x G(x) (2) 设G(x):x用左手写字, 符号化为?x G(x) (b) 设F(x):x为人,G(x):同(a)中

大学《教育学基础》考点总结.doc

大学《教育学基础》考点总结 第一部分:名词解释、选择、填空、简答考点 教育:一定社会背景下发生的促使个体的社会化和社会的个性化的实践活动 非制度化的教育:那些没有能够形成相对独立的教育形式的教育。与生产或生活高度一体化,没有从日常的生产或生活中分离出来形成一种相对独立的社会机构及其制度化行为。 教育的生物起源说,代表人物法国社会学家、哲学家利托尔诺《各人种教育的演化》;沛西能《人民的教育》 农业和工业社会教育特征:古代学校的出现和发展,教育阶级性的出现和强化,学校教育与生产劳动相脱离;现代学校的出现和发展,教育与生产劳动从分离走向结合,教育的生产性日益突出,教育的公共性日益突出;教育的复杂性程度和理论自觉性都越来越高,教育研究在推动教育改革中的作用越来越大 教育学的创立:1捷克夸美纽斯《大教育学论》泛智教育,近代第一本教育学著作;2康德四次讲授教育学《康德论教育》时间和“真知灼见”结合起来,教育必须成为一种学业,教育方法必须成为一种科学3赫尔巴特“现代教育学之父”“科学教育学的奠基人”创立教育学。《普通教育》第一本现代教育学著作;在格尼斯堡大学创办教育科学研究所和实验学校。 实用主义教育学:19C末20C初,杜威《民主主义与教学》《经验与教育》、克伯屈《设计教学法》。是在批判以赫尔巴特为代表的传统教育学基础上提出,1教育即生活,教育的过程是与生活的过程合一的,不是为将来的某种生活作准备2教育即学生个体经验增长3学校是一个雏形的社会,学生要学习现实中要求的基本态度技能和知识4课程阻止以学生经验为中心5师生关系以儿童为中心,教师是学生成长的帮助者6教学过程应重视学生自己的独立发现、表现和体验,尊重学生发展的差异性 批判教育学:美鲍尔斯、金蒂斯《资本主义美国的学校教育》、阿普尔《教育与权力》、吉鲁《批判教育学、国家与文化斗争》,法国布迪厄《教育、社会和文化的再生产》 教育学的价值:反思日常教育经验,科学解释教育问题,沟通教育理论与实践(1启发教育实践工作者的教育自觉,使他们不短地领悟教育的真谛;获得大量的教育理论知识,扩展教育工作的理论视野;养成正确的教育态度,培植坚定得教育信念;提高教育实践工作者的自我反思和发展能力;为成为研究型的教师打下基础) 教育功能:是教育活动和教育系统对个体发展和社会发展所产生的各种影响和作用。1从作用的对象看,分个体功能和社会功能2作用的方向看,正向和负向 3作用形式,显性和隐性4多维度的复合分类(1性质和形式结合起来:显性正向2对象与性质结合起来:教育对个人发展的正向功能) 教育实现个体的个性化:教育促进人的主体意识的形成和主体能力的发展;促进个体差异的充分发展,形成人的独特性;开发人的创造性,促进个体价值的实现 教育对政治的正向功能和负向功能:培养合格的公民和政治人才为政治服务(最基本的途径);通过思想传播和制造舆论为统治阶级服务;促进社会民主化的重要力量。当社会发展处于负向时期,教育对社会出现总体的负向功能;当社会发展处于正向时期,教育对社会发展的功能总体上是正向的,但也由于某种因素的影响,似的教育与社会的外部关系失调,出现局部的负向功能,教育与社会政治经济文化发展的不协调,是教育产生负向功能的根源。教育目的:教育意欲达到的归宿所在或预期实现的结果。狭义:一定社会为整个教育事业的

(完整word版)离散数学知识汇总,推荐文档

离散数学笔记 第一章命题逻辑 合取 析取 定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句 定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句 定义 1.2.1合式公式 (1)单个命题变元、命题常元为合式公式,称为原子公式。 (2)若某个字符串A 是合式公式,则?A、(A)也是合式公式。 (3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A?B 是合式公式。 (4)有限次使用(2)~(3)形成的字符串均为合式公式。 1.3等值式 1.4析取范式与合取范式

将一个普通公式转换为范式的基本步骤

1.6推理 定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。(用等值演算或真值表) 第二章 谓词逻辑 2.1、基本概念 ?:全称量词 ?:存在量词 一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"?x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如?x(H(x)∨WL(x)),即量词的后面为合取式 例题 R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ?x ?y(R(x)∧T(y)→H(x,y)) 有的兔子比所有的乌龟跑得快表示为:?x ?y(R(x)∧T(y)→H(x,y)) 2.2、谓词公式及其解释 定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22 y x 的 f(x,y))、 谓词常元(如表示人 类的 H(x))。 定义 2.2.2、逻辑符号:个体变元、量词(??)、联结词(﹁∨∧→?)、逗号、括号。 定义 2.2.3、项的定义:个体常元、变元及其函数式的表达式称为项(item)。 定义 2.2.4、原子公式:设 R(n x x ... 1)是 n 元谓词,n t t ...1是项,则 R(t)是原子公式。原子公式中的个体变元,可以换成个体变元的表达式(项),但不能出现任何联结词与量词,只能为单个的谓词公式。 定义 2.2.5 合式公式:(1)原子公式是合式公式;(2)若 A 是合式公式,则(﹁A)也是合式公式;(3)若 A,B 合式,则 A ∨B, A ∧B, A →B , A ?B 合式(4)若 A 合式,则?xA 、?xA 合式(5)有限次使用(2)~(4)得到的式子是合式。 定义 2.2.6 量词辖域:?xA 和?xA 中的量词?x/?x 的作用范围,A 就是作用范围。 定义 2.2.7 约束变元:在?x 和?x 的辖域 A 中出现的个体变元 x ,称为约束变元,这是与量词相关的变元,约束变元的所有出现都称为约束出现。 定义 2.2.8 自由变元:谓词公式中与任何量词都无关的量词,称为自由变元,它的每次出现称为自由出现。一个公式的个体变元不是约束变元,就是自由变元。 注意:为了避免约束变元和自由变元同名出现,一般要对“约束变元”改名,而不对自由变元改名。 定义 2.2.9 闭公式是指不含自由变元的谓词公式

教育学与教学法基础知识整理提纲

《教育学与教学法基础知识》整理提纲 (蓝色部分代表考纲要求,黑色代表考纲解读) (一)教育学。 1. 教育与教育学。 (1)了解教育的含义及构成要素。 教育的含义教育是人类有目的的培养人的一种社会活动,是传承文化,传递生产与社会生活经验的一种途径 构成要素:教育者,受教育者,教育媒介 教育者:在教育活动中,有目的的影响他人的心理,生理,性格发展的人. 受教育者:在社会教育活动中,在生理,心理,性格发展方面,有目的得接受影响,从事学习的人.受教育者是教育的对象,学习的主题. 教育媒介:建构于教育者与受教育者之间的桥梁或者沟通关系的一切事物的总和.包括:教育容,教育方法及组织形式,教育手段 (2)了解教育的起源、基本形态及其历史发展脉络。 教育的起源 1、神话起源说 代表人物:朱熹也支持此观点 2、生物起源说(标志着在起源问题上开始转向科学解释) 代表人物:法国利托尔诺(法1831-1902),以达尔文的生物进化论为指导、美国的桑代克、英国的沛.西能 主要思想: ①教育活动不仅存在于人类社会之中,而且存在于人类社会之外,甚至存在于动物界,他把动物对小动物的爱护和照顾都说成是教育; ②教育的产生完全来自动物的本能,是种族发展的本能需要; 页脚

③人类只是在早已存在的教育形式上做了些改进,人类的教育就起本质来说与动物没有不同。 否认了人与动物的区别,没有认识到教育的社会性。 3、心理起源说(对生物起源说的批判) 代表人物:孟禄(美国,1869-1947) 主要思想: ①原始社会的教育“普遍采用的方法是简单的无意识的模仿”。这种原始共同体中儿童对年长成员的无意识模仿就是最初的教育的发展; ②儿童对成人一种出于本能的模仿是教育过程的基础。不管成人是否意识到或同意,儿童总是在模仿他们的行为。模仿是教育的本质。 忽视了教育的有意识性和社会性。 4、劳动起源说(批判生物起源和心理起源说) 代表人物:马克思、恩格斯、联米丁斯基、凯洛夫 主要思想: ①教育是人所特有的有意识的活动; ②教育是人类特有的传递经验的途径; ③教育起源于生产劳动中传递生产经验和生活经验。 基本形态:学校教育,家庭教育,社会教育 历史发展脉络 (3)能够根据现代社会的特点以及现代教育的发展趋势对教育现象做出正确的评价。 (4)了解教育学发展过程中国外著名教育家的代表著作及主要教育思想。 孔子 中国 页脚

离散数学总结

离散数学学习总结 一、课程内容介绍: 1.集合论部分: 集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。只是对于以后的应用还不是很了解,感觉学好它很重要。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。例如: 方程x2-1=0的实数解集合; 26个英文字母的集合; 坐标平面上所有点的集合; 集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。 表示一个集合的方法有两种:列元素法和谓词表示法, 如果两个集合的交集为,则称这两个集合是不相交的。例如B和C 是不相交的。 两个集合的并和交运算可以推广成n个集合的并和交: A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An} A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An} 2.关系 二元关系也可简称为关系。对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。 例如R1={<1,2>,},R2={<1,2>,a,b}。则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。根据上面的记法可以写1R12,aR1b,aR1c等。 给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。 设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。如果R不具有自反性,我们通过在R中添加一部分有序对来改造R,

得到新的关系R',使得R'具有自反性。但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。满足这些要求的R'就称为R的自反闭包。通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。 3.代数系统 代数结构也叫做抽象代数,主要研究抽象的代数系统。抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。例如在形式语言中常将有穷字符表记为∑,由∑上的有限个字符(包括0个字符)可以构成一个字符串,称为∑上的字。∑上的全体字符串构成集合∑*。设α,β是∑*上的两个字,将β连接在α后面得到∑*上的字 αβ。如果将这种连接看作∑*上的一种运算,那么这种运算不可交换,但是可结合。集合∑*关于连接运算就构成了一个代数系统,它恰好是抽象代数系统--半群的一个实例。抽象代数在计算机中有着广泛的应用,例如自动机理论、编码理论、形式语义学、代数规范、密码学等等都要用到抽象代数的知识。代数结构的主要研究对象就是各种典型的抽象代数系统。 构成一个抽象代数系统有三方面的要素:集合、集合上的运算以及说明运算性质或运算之间关系的公理。请看下面的例子。 整数集合Z和普通加法+构成了代数系统〈Z,+〉,n阶实矩阵的集合Mn(R)与矩阵加法+构成代数系统〈Mn(R),+〉。幂集P(B)与集合的对称差运算也构成了代数系统。类似这样的代数系统可以列举出许多许多,他们都是具体的代数系统。考察他们的共性,不难发现他们都含有一个集合,一个二元运算,并且这些运算都具有交换性和结合性等性质。为了概括这类代数系统的共性,我们可以定义一个抽象的代数系统,其中 A是一个集合,是A上的可交换、可结合的运算,这类代数系统实际上就是交换半群。 为了研究抽象的代数系统,我们需要先定义一元和二元代数运算以及二元运算的性质,并通过选择不同的运算性质来规定各种抽象代数系统的定义。在此基础上再深入研究这些抽象代数系统的内在特性和应用。

相关文档
最新文档