DaisySummer 2

DaisySummer 2
DaisySummer 2

Summer Holiday

Daisy Sun Shilei class1

My summer vacation can be said to be very wonderful at the beginning , but the other time of the vacation was very boring .

A wonderful summer holiday has past and I enjoy myself during this summer. Summer holiday was from July to August . It's a long time for me to do all kinds of things . I like visiting some places of interest, and I like travelling by train . It takes me too much time , but it saves money .This summer I first went to Sanya first .The weather was terrific! The sky was bluer than I could describe, the sea was brighter and bluer than I could believe. Walking by the sea was just like being in an oil painting!

We sailed to an island called Xidao. There, I went swimming. Swimming in the sea is quite different from swimming in a pool, because the depth varies all the time. The water may be barely over your ankles one minute, and then it will flow over your head! Besides the swimming, we also had a good meal there. We had a nice seafood dish. I forgot the name of that conch ,but I brought back the shell. If you want to see it, you may ask me, or we may go to Sanya together, for I

am always hoping to go to that place again. I really like Sanya, a place of blue and brightness. I must say thank you to my parents because they gave me such a good chance to travel on my holiday. I also want to say to myself that I should study hard in order to travel to more and more beautiful cities.

After several days I went back to my hometown, a beautiful coastal city of Shandong province. "Qingdao Beer Festival" is held annually in Qingdao. During the festival, there are characteristic snacks from all over China, not to mention beer from all over the world, especially Qingdao Beer. My father took me and my brother to the festival, but there were too many cars, always traffic jams. In addition, the weather was too hot, so we did not participate, but went directly home. This was really annoying.

After I went home , I had nothing to do but stay at home .I wanted to find high school students to come out to play, but they were trying to find part time jobs. They were busy making money ,so that they didn't have time to play with me, so I had to stay at home. I had nothing to do at home, so I played computer games, and watched TV every day.I stay up very late at night , the next day I usually woke up after 10:00AM.

Sometimes it was too boring, I read books on a computer.

I usually watch romantic novels, but sometimes I read some classics, like Waterloo Bridge, and Peter Pan. I like Peter Pan very much. It is a story of a mischievous little boy who won’t grow up. Peter Pan, who can fly and never grows up, spends his never-ending childhood adventuring on the small island of Neverland as the leader of his gang the Lost Boys, interacting with mermaids, Indians, fairies, pirates, and from time to time meeting ordinary children from the world outside.

This is a children's story relevant to growing up, about a person who refuses to grow up. One day Peter Pan came to the girl -who doesn’t want to grow up-Wendy’s home,he tough Wendy and her brothers how to fly in the sky,and took them to the Neverland. When they come to the island, there are many adventures waiting them. They meet mermaids, Indians, fairies, pirates and so on.They have a happy time on the Neverland,but at last Wendy chooses to grow up,and come back to her home.

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

(完整版)弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=?? +=?………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()() 1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=???--+-=??L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()()3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410 x y Pa σσσ?++?==????=?=±?=? 则显然:3 312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ ====+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 306.768 6.77() 104 sin 2cos 2sin 602cos 6022 1 32 3.598 3.60() 22 x y xy MPa MPa σστατα=----+= ?+= ?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τ xy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 607322226.768 6.77()104 sin 2cos 2sin 602cos 602 2 1 32 3.598 3.60()2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+=----+=- ?+=- ?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-????+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τ n 。 题—图 16

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学试题

弹塑性力学试题 (土木院15研) 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小题3 分,共21分) 1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。( ) 2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz z w dy y v dx x u u ??+??+??+ ( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。。 ( ) 4. 塑性力学假设卸载时服从初始弹性规律。( ) 5. 弹性力学空间问题应变状态第二不变量为2 2 2 - yz xz xy z y z x y x γγγεεεεεε--++。( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。( ) 二﹑填空及简答题(填空每小题3分,共23分) 1. 弹性力学平面问题,结构特点是( ),受力特点是( )。 2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。 2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。 3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。(5分) 三﹑计算题(共56分) 1. 写出圆形薄板轴对称弯曲的弹性曲面方程。若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。(8分) 2. 已知应力函数)(A 2 3 xy x +=?,A 为常数。试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。(8分)

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

(整理)弹塑性力学答案

一、简答题 1答:(1)如图1所示,理想弹塑性力学模型: e s s e E E σε εεσεσεε=≤==>当当 (2)如图2所示,线性强化弹塑性力学模型: () 1e s s e E E σε εεσσεεεε=≤=+->当当 (3)如图3所示,幂强化力学模型:n A σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性: s s εσσεσσ=≤=>当不确定 当 (b )线性强化钢塑性: ()0 /s s s E εσσεσσσσ=≤=->当当 图1理想弹塑性力学模型 图2线性强化弹塑性力学模型 图 3幂强化力学模型 (a ) (b ) 图4钢塑性力学模型 2答:

3答:根据德鲁克公设, ()00,0p p ij ij ij ij ij d d d σσεσε-≥≥。在应力空间中,可将0ij ij σσ-作为向量ij σ与向量0 ij σ之差。由于应力主轴与应变增量主轴是重合的,因此,在应力空间 中应变增量也看作是一个向量。利用向量点积的定义: ()0 0cos 0p p ij ij ij ij ij ij d σ σεσσε?-=-≥,?为两个向量的夹角。由于0ij ij σσ-和p ij ε都是 正值,要使上式成立,?必须为锐角,因此屈服面必须是凸的。 4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。 半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。如果能满足弹性力学的全部条件,则这个解就是正确的解答。否则需另外假定,重新求解。 二、计算题 1解:对于a 段有:0N a a a a F A E a a σσεε==?= ,对b 段有:0 N b b b b P F A E b b σσεε-==?= 又a b ?=? 则N bP F a b = + 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=, 3 1.5MPa σ=- ()0123/3 5.33MPa σσσσ=++= 08.62MPa τ= = 3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=, 310MPa σ=-

弹塑性力学总结(精华)

(一) 弹塑性力学绪论:1、定义:是固体力学的一个重要分支学科,是研究可变形固体受到外荷载或温度变化等因素的影响而发生的应力、应变和位移及其分布规律的一门科学,是研究固体在受载过程中产生的弹性变形和塑性变形阶段这两个紧密相连的变形阶段力学响应的一门科学。 2、研究对象:也是固体,是不受几何尺寸与形态限制的能适应各种工程技术问题需求的物体。3、分析问题的基本思路:受力分析及静力平衡条件 (力的分析);变形分析及几何相容条件 (几何分析);力与变形间的本构关系 (物理分析)。4、研究问题的基本方法:以受力物体内某一点(单元体)为研究对象→单元体的受力—应力理论;单元体的变形——变形几何理论;单元体受力与变形间的关系——本构理论;(特点:1、涉及数学理论较复杂,并以其理论与解法的严密性和普遍适用性为特点;弹塑性力学的工程解答一般认为是精确的;可对初等力学理论解答的精确度和可靠进行度量。)5、基本假设:物理假设: (连续性假设:假定物质充满了物体所占有的全部空间,不留下任何空隙;均匀性与各向同性的假设:假定物体内部各处,以及每一点处各个方向上的物理性质相同。力学模型的简化假设:(A )完全弹性假设 ;(B )弹塑性假设)。几何假设——小变形条件(假定物体在受力以后,体内的位移和变形是微小的,即体内各点位移都远远小于物体的原始尺寸,而且应变( 包括线应变与角应变 )均远远小于1。在弹塑性体产生变形后建立平衡方程时,可以不考虑因变形而引起的力作用线方向的改变;在研究问题的过程中可以略去相关的二次及二次以上的高阶微量;从而使得平衡条件与几何变形条件线性化。 )6、解题方法(1)静力平衡条件分析;(2)几何变形协调条件分析;(3)物理条件分析。从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决 7、应力的概念: 受力物体内某点某截面上内力的分布集度 =lim n n n A O F dF A dA σσ?→==?=lim n n nt A O F dF A dA σσ?→==?。正应力σ,剪应力τ,必须指明两点:是哪一点的应力;是该点哪个微截面的应力。7、应力的表示及符号规则:xx xy xx x στσσ?、、:第一个字母表明该应力作用截面的外法线方向同哪一个坐标轴相平行,第二个字母表明该应力的指向同哪个坐标轴 相平行。 8、三维空间应力圆:

弹塑性理论

金属的塑性变形抗力及轧制过程的 滑动摩擦 ——弹塑性理论讨论课 学院:机械工程学院 班级:轧钢设备及工艺一班 小组成员:戴华平罗湘粤裴泽宇王奕答谢世豪 指导教师:李学通 完成时间:金属的塑性变形抗力 一、塑性变形抗力的基本概念及测定方法 塑性变形抗力:材料在一定温度、速度和变形程度条件下,保持原有状态而抵抗塑性变形的能力。在所设定的变形条件下,所研究的变形物体或其单元体能够实现塑性变形的应力强度。变形抗力与变形力数值相等方向相反。不同金属材料变形抗力不同。同一金属材料在一定变形温度、变形速度和变形程度下,以单向压缩(或拉伸)时的屈服应力的大小度量其变形抗力。 变形抗力测定方法条件:简单应力状态下,应力状态在变形物体内均匀分布。 1)拉伸试验法:。变形较均匀,均匀变形程度小。 2)压缩试验法:。能产生更大变形,与拉伸相比,变形不均匀,由 于接触摩擦,实测值较高。 3)扭转试验法:圆柱试样:。应力状态分布不均匀,为

降低不均匀性,可取空心管试样,数据换算到另外变形状态有困难,且 在大变形时,纯剪切遭到破坏等原因,未广泛应用。 二、金属的塑性变形抗力的影响因素 1.金属的化学成分及组织对塑性变形抗力的影响 1)对于各种纯金属,原子间结合力大,滑移阻力大,变形抗力也大。 2)同一种金属,纯度愈高,变形抗力愈小。 3)合金元素的存在及其在基体中存在的形式对变形抗力有显著影 响。原因:a溶入固溶体,基体金属点阵畸变增加;b形成化合物; c形成第二相组织,使增加。 4)合金元素使钢的再结晶温度升高,再结晶速度降低,因而硬化倾 向性和速度敏感性增加,变形速度高↑。 5)某些情况下改变合金的某主要成分的含量不会引起变形抗力的太 大变化。 2.组织对塑性变形抗力的影响。 1)基体金属原子间结合力大,大。 2)单相组织和多相组织单相 单相:合金含量越高,越大。原因:晶格畸变。 3)晶粒大小 d,变形抗力。 3.温度对塑性变形抗力的影响 变形抗力随温度↑的变化情况: 1)变形抗力↓例:Cu 2)情况较复杂,如:钢 随着温度↑,屈服应力↓,屈服延伸↓,至400℃消失。 <300℃:抗拉强度,塑性;>300℃:抗拉强度,塑性。 变形抗力降低的原因 1)软化效应:发生了回复和再结晶 2)其他变形机构的参与 a)温度升高,原子动能大,结合力弱,临界切应力低,滑 移系增加,由于晶粒取向不一致对变形抗力影响减弱。 b)温度升高,发生热塑性。 c)晶界性质发生变化,有利于晶间变形,有利于晶间破坏 的消除。 d)组织发生变化,如相变。 硬化随温度升高而降低的总效应决定于:

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学

应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。 一.典型应力-应变关系 图1-1 典型应力-应变曲线 1)弹性阶段(OC段) 该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,非线性弹性阶段AB段和初始屈服阶段BC段。该阶段应力和应变满

足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。 2)塑性阶段(CDEF 段) CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。超过强度极限后应变变大应力却下降,直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。 该阶段应力和应变的关系:)(ε?σ=。 3)卸载规律 如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用 OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有 p e εεε+= (1-1) 即总应变等于弹性应变加上塑性应变。 该阶段应力和应变的关系满足εσ?=?E 。 4)卸载后重新加载 DO ′段若在卸载后重新加载,则σ—ε曲线基本上仍沿直线O ′D 变化,直至应力超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化(简称为硬化)现象。为了与初始屈服相区别,我们把继续发生新的塑性变形时材料的再度屈服称为后继

弹塑性力学公式合集.doc

弹性力学假设:连续性假设、均匀性假设、各向同性假设、完全弹性假设、小变形假设、无初应力假设 任意斜截而上的应力 Cauchy 公式:T x= o xl+ T x〉m + T zxn> T y = T xy 1+ o ym +T zy n、T y=T xz I+T y zm +Q z n 弹性体的应力边界条件: — 0 + mT^ + =X ?I,人右I %+〃9;、+浒.、=「> y Zr +g、?_ +Z ?" y<. 主应力、应力张量、不变量 当一点处于某种应力状态时,在过该点的所有截面中,一般情况下存在着三个互相垂直 的特殊截面,在这些截面上没有刃应力,这种剪应力等于零的截面称 为过该点的主平面,主平面上的正应力称为该点的主应力,主平面的法线所指示方向称为该点的主方向。 4 = J + + % ~ 2 2 j" /■I = + CT..C7. + — r 二——了二 应力偏?不变si ?勺+$3=q ~~I =!(4+$;+日) =打(0 ,S ■成 + 0 - 0) ' 1 ____ ?儿何方程: dx + — dy + — dx 物理方程 -y q)] *q+E)】 7 _2Q +咯 1 2(1+ y) ”=科=一r-^ T F 牛妇弘=.-,七-是体积弹形模量, 3 3 (1-2。 三个基本原理:解的唯一性原理、叠加原理、圣维南原理。 圣维南原理:由作用在物体局部边界表面上的自平衡力系,所引起的应力和应变,在远离作用区的地方将衰减到可以忽略不计的程度。另一种提法:如果把物体局部边界表面上的力系,使用分布不同但静力等效(主失相等,绕-点的主矩也相等)的力系来代替,则这种等效代换处理使得物体内的应力分布仅在作用区附近有显著影响,而在远离作用区的地方所受影响很小,可以忽略不计。为什么要用:1、在弹性力学的边值问题中,要求在边界上任意点,应力与面力相等,方向一致,往往难以满足。2、有时只知道边界而上的合力和合力矩,并不知道面力的分布形式。因此,在弹性力学问题的求解过程中,一■些边界条件可以通过某种等效形式提出。其要点有两处:一、两个力系必须是按,照刚体力学原则的“等效''力系(主矢虽和主矩分则等于对应而力的主矢员和主矩); 二、替换所在的表面必须小,并II.替换导 静力平衡方程

弹塑性力学读书笔记

弹塑性力学在岩体变形加固中的应用 姓名: xx学号:导师: xx 弹塑性力学这门课程是《弹性力学》的延伸,经典弹塑性力学的基本要求是应力只能在屈服面以内或屈服面之上,材料在屈服面以外的力学行为是没有定义的,这意味着经典弹塑性理论只能处理稳定结构。结构需要加固力维持稳定,说明结构部分区域应力已超出屈服面。一般说来对于给定的外荷载,结构的工作区域可能是弹性区、稳定弹塑性区和非稳定弹塑性区。弹性区和稳定弹塑性区可由经典弹塑性力学处理,变形加固理论处理的是非稳定弹塑性区。本文首次提出变形加固理论的基础是非平衡态弹塑性力学,它是经典弹塑性力学的增量延拓,其理论核心是最小塑性余能密度原理,在结构上反映为最小塑性余能原理。 1变形加固理论的提出 工程结构弹塑性有限元计算表现为一系列逼近真解的迭代过程。考察某一典型的迭代步,设某一高斯点在该迭代步的初始应力为σ 0且有f(σ 0)≤0,当前应力为σ 1。应力场σ 0,σ 1都应满足平衡条件,即该应力场在结构内处处满足平衡微分方程,在边界上满足力的边界条件,在有限元分析中表示为 Σ∫BTσ 0dV=Σ∫BTσ

1dV=F (1) 式中: F为外荷载向量,e表示对结构所有单元求和。 经典弹塑性理论要求结构各点应力必须在屈服面之上或以内,即各点都要满足屈服条件,这意味着结构在外荷载作用下是稳定的。而本文讨论加固问题首先意味着结构在外荷载作用下是不稳定的,需要引入加固力以维持稳定。所以有必要对经典弹塑性理论进行延拓以容纳加固特点。受弹塑性迭代总是使范数不断减少的启发,本文提出一个最小塑性余能原理: 对于给定的外荷载,在所有和其平衡的应力场中,结构真实应力场的塑性余能范数最小。以此而论,弹塑性有限元计算的迭代过程就是△E的一个最小化过程。 3经典弹塑性本构关系 本文讨论关联的理想弹塑性材料,且不考虑弹塑性耦合。经典弹塑性力学的本构关系为率形式。 4非平衡态弹塑性本构关系 非平衡态弹塑性力学处理应力状态处于屈服面以外的材料行为,其本构关系基本上就是上述经典弹塑性本构关系的增量化。只有增量化才能出现应力位于屈服面以外的情形,这和弹塑性数值方法的处理方法是一致的。不过弹塑性数值方法是作为弹塑性理论的近似方法,而在本文,这些增量关系作为非平衡态弹塑性力学的本构关系,是作为事先给定的基本定义和出发点。 第一和第二最小塑性余能密度原理可统称为最小塑性余能密度原理,如上所述,其实质为增量型正交流动法则。增量型正交流动法则为正交流动法则的一阶近似。正是在这个意义上,非平衡态弹塑性力学可以看作是经典弹塑性力学在非稳定弹塑性区的一阶近似。最小塑性余能密度原理式可以认为是极值问

相关文档
最新文档