薄膜组件与逆变器配套选型薄膜电池接地

薄膜组件与逆变器配套选型薄膜电池接地
薄膜组件与逆变器配套选型薄膜电池接地

关于薄膜组件与逆变器配套选型要求

1、对于1000V光伏系统,MPPT工作范围为400-800V,当输入电压升至(600V 左右)打开逆变器,工作电压降至(400V左右)停止工作,括号内为参考值,以实际调试为准。500V~600V应为MPPT最佳工作点即此范围内工作效率最高。

通常选择40~50W/m2辐照下为逆变器的启停点,根据本产品在50W/m2辐照下IV特性中的开压与工作电压,如图(1)所示,可计算出本光伏方阵(9串)的逆变器实际启停时的电压参考值。由于非晶硅电池的开压与工作电压之比大于晶硅电池,一般晶硅逆变器开启电压在400V左右,而非晶硅逆变器开启电压则大于500V,至于逆变器的停机电压两者则相近。

图(1)

2、相应加宽MPPT跟踪步进电压。

由图(2)可看出:由于晶硅电池组件的填充因子FF较高,近似电流源,功率峰值尖; 非晶硅薄膜电池组件的FF相对较低,功率峰值附近曲线较平缓。

图(2)

当MPPT以相同ΔU检测电流瞬间变化时,非晶硅薄膜电池ΔI数值比晶硅电池的值小得多,导致非晶硅组件MPPT追踪相对滞后,甚至失去方向的判断能力,导致故障。

常见故障(1)当辐照度连续剧烈波动时,会导致逆变器功率追踪不到位,如某逆变器会报出方阵电压波动太大的故障;

常见故障(2)易出现在开启阶段,此时输入功率曲线可能有多个波峰波谷,相对较小ΔU会造成MPPT停留在前1个较大的波峰,无法进入之后最大功率峰,

如某逆变器在自动启动阶段输出功率不会随输入功率快速上升,手动复位后,输出正常。

解决方法是调宽MPPT步频电压ΔU,它能解决MPPT追踪滞后问题,突破输入功率曲线多峰谷的困扰,由于非晶硅的最大功率曲线区域较宽,ΔU增大并不会降低最大功率的跟踪精度,因而适合非晶硅产品的特性,提高光伏发电效率。

具体实例,某屋顶光伏电站在早晚时候,组件斜面的底部会被遮阴件而造成输入功率曲线有两个以上峰值,当时有两台100kW的相型号的国外逆变器都是一直工作在430V附件判断出峰值,却无法找到最佳的电压功率点,导致系统输出功率偏低。分析得出MPPT的电压步频ΔU(原值为2V)是争对晶硅而非适用于非晶硅,最后将ΔU设置为5V后,该类的逆变器的MPPT最终可以轻松找到非晶硅方阵的最大功率点约500V左右,问题得到解决。

3、关于非晶硅薄膜电池负极接地与逆变器匹配问题及改进措施

1)关于非晶硅薄膜电池负极接地目的:

(1)泄放静电,防止对地共模电压超过系统电压;

(2)抑制光伏方阵电池板的对地分布电容对逆变器控制电路的共模干扰;

(3)建立电池板正电场,是一种避免电池寿命受影响的措施之一。

2)电池负极接地负面影响及逆变器匹配问题:

(1)增加直流漏电的可能性以及产生正极人员触电的安全隐患;

(2)必须采用内部或外部变压器隔离(含升压变压器)进行逆变并网,接地线路上需加直流漏电保护器以保护人身安全。

3)关于负极接地改进措施:

由于上述原因,组件负极接地并不是防雷接地,而是以防静电为主,因此可以采用间接接地方法。具体方法是:采用在直流汇流柜内将负极母排通过阻值在100kΩ至1MΩ之间、功率在50W以上的大电阻(注意电阻两端爬电电压须大于1500V)串接不大于10mA的复位式直流漏电保护器后接地,若再串接微安表可进行实时漏电流检测。

采用大阻值电阻间接接地,避免了直接接地造成与无变压器隔离型逆变器的不兼容的问题。由于通过该接地电阻的实际电流很小,不会因此造成无变压器隔离型逆变器直流漏电报警,同时接地线路上的直流漏电保护器设置值很小能起到

人员安全保护作用。

同时采用大阻值电阻泄放电池板静电方面并不存在问题,当正极对地绝缘电阻大于10MΩ时,电池板建立正电场也没问题。间接接地唯一不足是在抑制电池板分布电容对逆变器的共模干扰方面降低了,而这个问题可以通过减小分布电容(如采用无边框组件)和逆变器内部电路提高抗干扰能力来解决,而目前大多数逆变器都能适合。

福建钧石能源有限公司电站部

2011年5月27日

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器就是将太阳能直流电转换为可接入交流市电得设备,就是太阳能光伏发电站不可缺少得重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细得介绍与分析。 1. 并网逆变器在光伏电站中得作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统得基本特点就就是太阳电池组件产生得直流电经过并网逆变器转换成符合市电电网要求得交流电之后直接接入公共电网。 1、1 并网光伏电站得基本结构 1、2 并网逆变器功作用与功能 并网逆变器就是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合得综合体现,它就是光伏并网发电系统中不可缺少得关键部分。并网逆变器得主要功能就是: ◆最大功率跟踪 ◆DCAC转换 ◆频率、相位追踪 ◆相关保护 2. 并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型与无变压器型逆变器,其中变压器型又分为高频变压器型与低频变压器型。变压器型与无变压器型逆变器得主要区别在于安全性与效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DCACDCAC得电路结构,设计较为复杂,采用较多得功率开关器件,因此损耗较大。 ◆低频变压器型 采用DCACAC得电路结构,电路简单,采用普通工频变压器,具有较好得电气安全性,但效率较低。 ◆无变压器型 采用DCAC得电路结构,无电气隔离,电压范围较窄,但就是损耗小、效率高。

3. 并网逆变器主要技术指标 a、使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器得冷却方式等相关指标。 b、直流输入最大电流 c、直流输入最大电压 d、直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)得电压范围,一般小于逆变器允许得最大直流输入电压,设计电池组件得输出电压应当在MPP电压范围之内。 e、直流输入最大功率 大于逆变器得额定输出功率,即通常所说得“逆变器功率”。为了充分利用逆变器得容量,设计接入并网逆变器得电池组件得标称功率可以等于直流侧输入最大功率。 f、最大输入路数 指逆变器直流侧可接入得直流回路数目。 g、额定输出电压 在规定得输入条件下,逆变器应输出得电压值。电压波动范围一般应:单相220V±5%,三相380±5%。 h、额定输出功率 在规定得输出频率与负载功率因数下,逆变器应输出得额定电流值。 i、额定输出频率 在并网系统中,额定输出频率要对应所并入得电网频率,而且当电网得频率与相位有微小波动时,逆变器输出得交流电应自动追踪电网得频率与相位。当检测到电网频率波动过大,逆变器将自动切离电网。我国得市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。 j、最大谐波含量 正弦波逆变器,在阻性负载下,输出电压得最大谐波含量应≤10%。 k、过载能力 在规定得条件下,在较短时间内,逆变器输出超过额定电流值得能力。逆变器

薄膜组件与逆变器配套选型薄膜电池接地

关于薄膜组件与逆变器配套选型要求 1、对于1000V光伏系统,MPPT工作范围为400-800V,当输入电压升至(600V 左右)打开逆变器,工作电压降至(400V左右)停止工作,括号内为参考值,以实际调试为准。500V~600V应为MPPT最佳工作点即此范围内工作效率最高。 通常选择40~50W/m2辐照下为逆变器的启停点,根据本产品在50W/m2辐照下IV特性中的开压与工作电压,如图(1)所示,可计算出本光伏方阵(9串)的逆变器实际启停时的电压参考值。由于非晶硅电池的开压与工作电压之比大于晶硅电池,一般晶硅逆变器开启电压在400V左右,而非晶硅逆变器开启电压则大于500V,至于逆变器的停机电压两者则相近。 图(1) 2、相应加宽MPPT跟踪步进电压。 由图(2)可看出:由于晶硅电池组件的填充因子FF较高,近似电流源,功率峰值尖; 非晶硅薄膜电池组件的FF相对较低,功率峰值附近曲线较平缓。

图(2) 当MPPT以相同ΔU检测电流瞬间变化时,非晶硅薄膜电池ΔI数值比晶硅电池的值小得多,导致非晶硅组件MPPT追踪相对滞后,甚至失去方向的判断能力,导致故障。 常见故障(1)当辐照度连续剧烈波动时,会导致逆变器功率追踪不到位,如某逆变器会报出方阵电压波动太大的故障; 常见故障(2)易出现在开启阶段,此时输入功率曲线可能有多个波峰波谷,相对较小ΔU会造成MPPT停留在前1个较大的波峰,无法进入之后最大功率峰,

如某逆变器在自动启动阶段输出功率不会随输入功率快速上升,手动复位后,输出正常。 解决方法是调宽MPPT步频电压ΔU,它能解决MPPT追踪滞后问题,突破输入功率曲线多峰谷的困扰,由于非晶硅的最大功率曲线区域较宽,ΔU增大并不会降低最大功率的跟踪精度,因而适合非晶硅产品的特性,提高光伏发电效率。 具体实例,某屋顶光伏电站在早晚时候,组件斜面的底部会被遮阴件而造成输入功率曲线有两个以上峰值,当时有两台100kW的相型号的国外逆变器都是一直工作在430V附件判断出峰值,却无法找到最佳的电压功率点,导致系统输出功率偏低。分析得出MPPT的电压步频ΔU(原值为2V)是争对晶硅而非适用于非晶硅,最后将ΔU设置为5V后,该类的逆变器的MPPT最终可以轻松找到非晶硅方阵的最大功率点约500V左右,问题得到解决。 3、关于非晶硅薄膜电池负极接地与逆变器匹配问题及改进措施 1)关于非晶硅薄膜电池负极接地目的: (1)泄放静电,防止对地共模电压超过系统电压; (2)抑制光伏方阵电池板的对地分布电容对逆变器控制电路的共模干扰; (3)建立电池板正电场,是一种避免电池寿命受影响的措施之一。 2)电池负极接地负面影响及逆变器匹配问题: (1)增加直流漏电的可能性以及产生正极人员触电的安全隐患; (2)必须采用内部或外部变压器隔离(含升压变压器)进行逆变并网,接地线路上需加直流漏电保护器以保护人身安全。 3)关于负极接地改进措施: 由于上述原因,组件负极接地并不是防雷接地,而是以防静电为主,因此可以采用间接接地方法。具体方法是:采用在直流汇流柜内将负极母排通过阻值在100kΩ至1MΩ之间、功率在50W以上的大电阻(注意电阻两端爬电电压须大于1500V)串接不大于10mA的复位式直流漏电保护器后接地,若再串接微安表可进行实时漏电流检测。 采用大阻值电阻间接接地,避免了直接接地造成与无变压器隔离型逆变器的不兼容的问题。由于通过该接地电阻的实际电流很小,不会因此造成无变压器隔离型逆变器直流漏电报警,同时接地线路上的直流漏电保护器设置值很小能起到

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

PVsyst 逆变器选型

Inverter / Array sizing The inverter power sizing is a delicate and debated problem. Many inverter providers recommend (or require) a PNom array limit or a fixed Pnom (inverter/array) ratio, usually of the order of 1.0 to 1.1. PVsyst provides a much more refined and reliable procedure. Preliminary observations about Pnom sizing 1. -The Pnom of the inverter is defined as the output AC power. The corresponding input power is Pnom DC = Pnom AC / Efficiency, i.e. about 3 to 6% over. For example a 10 kW inverter will need PNomDC=10.5 kW input for operating at 10 kWac. 2. -The Pnom of the array is defined for the STC. But in real conditions, this value is very rarely or never attained. The power under 1000 W/m2 and 25°C is equivalent to that produced under 1120 W/m2 and 55°C with μPmpp = -0.4%/°C. Such an irradiance is only reached episodically in most sites. 3. -The power distribution is dependent on the plane orientation: a fa?ade will never receive more than 700 -800 W/m2, depending on the latitude. 4. -The maximum powers are not very dependent on the latitude: by clear day and perpendicular to the sun rays, the irradiance is quite comparable, only dependent on the air mass. But it significantly depends on the altitude. 5. -Many inverters accept a part of overload specified by a Pmax parameter, during short times (dependent on the temperature of the device). This is not taken into account in the simulation, and may still reduce the calculated overload loss, 6. -When over-sized, the inverter will operate more often in its low power range, where the efficiency is decreasing. Sizing principle In PVsyst, the inverter sizing is based on an acceptable overload loss during operation, and therefore involves estimations or simulations in the real conditions of the system (meteo, orientation, losses). Taking the following into account: A. -Overload behaviour: With all modern inverters, when the Pmpp of the array overcomes its Pnom DC limit, the inverter will stay at its safe nominal power by displacing the operating point in the I/V curve of the PV array (towards higher voltages). Therefore it will not undertake any overpower; simply the potential power of the array is not produced. There is no power to dissipate, no overheating and therefore no supplementary ageing. B. -Loss evaluation: In this mode the only energy loss is the difference between the Pmpp "potential" power and the Pnom DC limit effectively drawn. We can see on the power distribution diagrams, that even when the inverter's power is a little bit under the maximum powers attained by the array in real operation, this results in very little power losses (violet steps by respect to the green ones, quasi- invisibles). The simulation - and the analysis of the overload loss - is therefore a very good mean for assessing the size of an inverter. This is shown on the power histogram in the "System" definitions, button "Show sizing".

逆变器的选型

逆变器主要技术指标有:额定容量;输出功率因数;额定输入电压、电流 电压调整率;负载调整率;谐波因数;总谐波畸变率;畸变因数;峰值子数等 通过对逆变器产品的考察,现对250kW、500kW逆变器产品及1000kW逆变器做技术参数比较: 本工程装机容量,10MWp,若选用单台容量大的逆变器,逆变器发生故障时,发电系统损失发电量较大;选用单台容量小的逆变设备,则设备数量较多,会增加投资后期的维护工作量;在投资相同的条件下,应尽量选用容量大的逆变设备,可在一定程度上降低投资,并提高系统可靠性,因此,从工程运行及维护考虑,本工程拟采用高效率、大功率逆变器,选用容量为 500kW,逆变器参数暂按如下参数进行设计

集中型逆变器 主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。目前国内的主流机型以 500kW、630kW 为主,欧洲及北美等地区主流机型单机功率 800kW 甚至更高,功率等级和集成度还在不断提高,德国 SMA 公司今年推出了单机功率 2.5MW 的逆变器。按照逆变器主电路结构,集中型逆变器又可以分为以下 2 种类型 集中型逆变器是目前大部分中大型光伏电站的首选,在全球 5MW 以上的光伏电站中,其选用比例超过 98% 通过对比集中型和组串型主流机型方案在 100MW 电站的运维数据(见表 5),发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。同时,在占地几千亩的百 MW 级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一

十大锂电池排名

十大锂电池排名 1、排名第一锂电池厂商—宁德时代CATL 宁德时代新能源科技股份有限公司(CATL)成立于2011年,公司总部位于福建宁德。公司专注于通过电池技术,为全球绿色能源应用,提供能源存储解决方案。 公司研发生产电动汽车及储能系统的锂电池,电动汽车电池模组,电动汽车电池系统,动力总成,大型电网储能系统,智能电网储能系统,分布式家庭储能系统,及电池管理系统(BMS)。公司建立了动力和储能电池领域完整的研发、制造能力,拥有材料、电芯、锂电池系统、电池回收的全产业链核心技术。在储能领域,公司承接了部分关键客户的大型储能项目,年项目总量已超过40兆瓦时。 2、排名第二锂电池厂商—比亚迪 比亚迪股份有限公司创立于1995年,横跨IT、汽车和新能源三大产业,分别在香港(H股)和深圳(A股)上市。全球较大的充电电池生产商,镍镉电池/手机锂电池畅销,具有强大的研发实力的高新技术企业。主要产品为磷酸铁锂动力电池。 在新能源领域,比亚迪成功推出了太阳能电站、储能电站、电动车、LED和电动叉车等新能源产品,并在全球多个国家和地区推广应用。凭借全球领先的铁锂电池技术,比亚迪正积极引领全球新能源产业变革。目前的有效产能为4.5Gwh,其中惠州1Gwh、深圳坑梓3.5Gwh,预计到2015年底,整体产能将达到6Gwh,2016年将扩张到10Gwh。比亚迪的动力电池仅供比亚迪自用。2015年上半年,比亚迪动力电

池业务收入约30亿元。 3、排名第三锂电池厂商—国轩 合肥国轩高科动力能源有限公司成立于2005年,是由珠海国轩贸易有限公司和合肥国轩营销策划有限公司发起设立。国轩主要从事锂电池材料、电芯设计工艺等供应商和服务商,专业从事新型锂离子电池及其材料的研发、生产和经营的企业。主要产品为磷酸铁锂材料、电芯、动力电池组、BMS系统及储能型锂电池组。 国轩高科目前的有效产能1.5Gwh,主要为方形和圆柱形动力锂电池电芯。国轩高科的主要客户包括南京金龙、江淮汽车、安凯客车、中联重科、上海申沃、东风汽车、河北御捷等。2015年上半年,国轩高科动力电池营业收入约7.5亿元左右。 4、排名第四锂电池厂商—力神电池 天津力神电池股份有限公司,创立于1997年,锂电池十大品牌,天津市名牌产品,行业标准起草单位,致力于为客户提供整体电源解决方案,专注于于新能源汽车、储能和特种设备配套市场主力供应商。力神电池产品包括圆(柱)型、方型、动力和聚合物锂电池以及光伏系统、超级电容器等六大系列近千个型号。产品应用涵盖消费类电子产品、新能源交通工具和储能三大领域。 目前的有效产能约为1Gwh,主要客户包括江淮、吉利、一汽、东风汽车、南京金龙、厦门金龙、中通客车、天津清源等。2015年上半年,其动力电池业务收入约为5.7亿元。 5、排名第五锂电池厂商—中航锂电

薄膜锂电池

能源材料课程业 ——薄膜锂电池的研究进展 院系:材料科学与工程学院 专业:金属材料与成型加工 班级:2012级金属材成1班 学号:20120800828 姓名:吴贵军

薄膜锂电池的研究进展 摘要:微电子机械系统(MEMS)和超大规模集成电路(VLSI)技术的发展对能源的微型化、集成化提出了越来越高的要求.全固态薄膜锂电池因其良好的集成兼容性和电化学性能成为MEMS和VLSI能源微型化、集成化的最佳选择.简单介绍了薄膜锂电池的构造,举例说明了薄膜锂电池的工作原理.从阴极膜、固体电解质膜、阳极膜三个方面概述了近年来薄膜锂电池关键材料的研究进展.阴极膜方面LiCoO2依旧是研究的热点,此外对LiNiO2、LiMn2O4、LiNixCo1-xO2、V2O5也有较多的研究;固体电解质膜方面以对LiPON膜的研究为主;阳极膜方面以对锂金属替代物的研究为主,比如锡的氮化物、氧化物以及非晶硅膜,研究多集中在循环效能的提高.在薄膜锂电池结构方面,三维结构将是今后研究的一个重要方向.。 关键词:薄膜锂电池;微系统;薄膜:微电子机械系统随着电子集成技术的飞速发展,SO C (System on chi p) 成为 现实,电子产品在不断地小型化、微型化。以整合集成电路及机械系统,如各种传感器于同一块晶片上的技术,即微机电技术,受到了普遍重视。微小型飞行器、微小型机器人和微小型航天器等都在源源不断地出现和进一步地改进。这些微型系统的功能强大,必然对其能源系统提出了微型化的

要求。当电池系统被微型化,电池底面积小于10 m m2、功率在微瓦级以下时,被称为微电池。微电池的制备通常是将传统的电池微型化、薄膜化。目前,用于微电池的体系有:锌镍电池、锂电池、太阳能电池、燃料电池、温差电池和核电池。锂电池是目前具有较高比能量的实用电池体系,因此人们对薄膜化的锂电池投入了大量的研究。 优点: (1)成本低,根据Photon 的预测,预计到2012 年下降到2.08 美元/w;预计薄膜电池的平均价格能够从2.65 美元/w 降至1.11 美元/w,与晶体硅相比优势明显;而相关薄膜电池制造商的预测更加乐观,EPV 估计到2011 年,薄膜组件的成本将大大低于1 美元/w;Oerlikon 更估计2011 年GW 级别的电站其组件成本将降低于0.7 美元/w,这主要是由转化率提高和规模化带来的。 (2)弱光性好 (3)适合与建筑结合的光伏发电组件(BIPV),不锈钢和聚合物衬底的柔性薄膜太阳能电池适用于建筑屋顶等,根据需要制作成不同的透光率,代替玻璃幕墙。 缺点: (1)效率低,单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳电池组件(约1000平方厘米)的效率为 10-12%,还存在一定差距。

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

蒸发器冷凝器选型参数.doc

选型参数计算表 蒸发器简易选型 ( 仅供参考) 压缩机输 RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°) 入功率备注 (kW)(COP3.33) (Hp) EATB25 EATB55 EATB85 小1 0.62 0.124 0.65 2.17 16 2°蒸发 1 0.7 0.2 2 0.75 2.5 18 2°蒸发 1.5 1.05 0.33 1.13 3.76 22 2°蒸发 2 1.4 0.4 3 1.50 5 26 2°蒸发 3 2.1 0.65 2.25 7.5 3 4 18 2°蒸发 4 2.8 0.86 3.00 10 44 22 2°蒸发 5 3.5 1.1 3.75 12.5 54 2 6 2°蒸发 6 4.2 1.29 4.50 15 30 2°蒸发 7 5 1.5 5.25 17.5 32 2°蒸发 8 5.7 1.7 6.00 20 36 2°蒸发 9 6.4 1.9 6.75 22.5 40 2°蒸发 10 7.1 2.1 7.50 25 46 2°蒸发 11 7.9 2.4 8.25 27.5 50 2°蒸发 12 8.5 2.6 9.00 30 56 36 2°蒸发 13 9.4 2.8 9.75 32.5 60 40 2°蒸发 14 10 3 10.50 35 64 42 2°蒸发 15 11 3.26 11.25 37.5 70 46 2°蒸发 16 11.3 3.44 12.00 40 74 48 2°蒸发 17 12.2 3.7 12.75 42.5 78 52 2°蒸发 18 12.7 3.87 13.50 45 84 56 2°蒸发 19 13.6 4.13 14.25 47.5 60 2°蒸发 20 14.2 4.3 15.00 50 64 2°蒸发 21 15 4.5 15.75 52.5 68 2°蒸发 22 15.6 4.7 16.50 55 74 2°蒸发 23 16.5 5 17.25 57.5 80 2°蒸发 24 17 5.16 18.00 60 84 2°蒸发 25 18 5.6 18.25 62.5 90 2°蒸发 26 20 6 19.00 65 98 2°蒸发 选型参数计算表

逆变器的选型

。 集中式逆变器和组串式逆变器选型的比较 国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW 以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏 电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。对于MW级别的电站亦可选择380V或10KV方式并网。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结 构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用 DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比: 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: (1)逆变器数量少,便于管理; (2)逆变器元器件数量少,可靠性高; (3)谐波含量少,直流分量少电能质量高; (4)逆变器集成度高,功率密度大,成本低; (5)逆变器各种保护功能齐全,电站安全性高; (6)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有: (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多 的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

逆变电源选型资料以及图片

逆变电源 AND48系列通信逆变电源 【产品简介】 西安杰瑞达仪器有限公司是拥有国际权威机构认可的ISO9001国际质量标准管理体系的制造商。专业生产电源设备。逆变电源设备是一种将直流的电能转化为不间断的、净化的交流电能的变换装置,给计算机和其他电气设备提供可使用的连续交流电源,防备市电的不稳定及断电。亦能防止公用通信的各种畸变,如供电电压下降、浪涌电压、尖峰电压及广播频率干扰。 【产品特点】 ★完全隔离型逆变技术,输出无噪音纯净正弦交流电压; ★逆变单元采用微处理器控制,SPWM正弦脉宽调制技术,波形纯净; ★独有的动态电流环控制技术确保逆变器可靠运行; ★过负载能力强,能承受计算机负载开机浪涌冲击; ★大功率静态旁路开关,过载时可由旁路供电,切换时间短; ★具有输入过、欠压,输出过、欠压,过温、短路等保护功能; ★逆变器前面板有LED显示方式,状态一目了然; ★多种防雷保护方案可选择; 【工作原理】 通信专用型逆变系统工作方框图:如图1所示 图1通信专用逆变系统架构方块图

A.逆变系统工作于旁路状态时各部份电路工作原理:市电进入经EMI滤波器滤除市电端送来的杂讯干扰后,由静态开关送出后经输出EMI滤波器滤除干扰后送到用户负载端,为用户负载提供电能。机器此时的输出只是经过滤波后而无稳压、稳频处理过程的普通市电。 图2逆变系统工作于旁路状态时各部份电路之运作方法 B.逆变系统工作于直流正常供电状态时各部份电路工作原理,当市电故障时,直流电压被送到逆变器输入端,在主控制电路驱动下,逆变器将直流电变成电压、频率稳定、无干扰的纯正正弦波输出到静态开关,由静态开关将此优质电源送到输出EMI滤波器后,由EMI 滤波器滤除干扰后送到用户负载端,为用户提供高品质的电源。 图3逆变系统工作于电池正常供电状态时各部份电路之运作方法 【主要技术指标】 型号(AND48-)1005101010201030105010801100额定容量500V 1KVA2KVA3KVA5KVA8KVA10KVA A 运行方式纯逆变

光伏逆变器的简单选型

`光伏逆变器的简单选型 一、光伏逆变器工作原理 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 逆变器简单原理图 二、光伏逆变器的主要技术指标 1、输出电压的稳定度 在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V 或380V的交流电。但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。 2、输出电压的波形失真度 对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。 3、额定输出频率 对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在±l%以内。 4、负载功率因数 表征逆变器带感性负载或容性负载的能力。正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的

冷却塔选型计算

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。

关于逆变器转换交流电的蓄电池选型说明

关于逆变器转换交流电的蓄电池选型说明 蓄电池容量选择: 工作时间=电压伏数×电池容量×0.8×0.9÷电器功率 0.8是电池的放电系数 0.9是逆变器的转换系数 注:具体使用时间与你的电池新旧有关,汽车点火器最大供电只能带动200W以下负载。 根据以上公式: 48V蓄电池容量1000VA 48×1000×0.8×0.9÷1000=3.456H 24V蓄电池容量1000VA 24×1000×0.8×0.9÷1000=1.728H 12V蓄电池容量1000VA 12×1000×0.8×0.9÷1000=0.864H 手机的极限使用温度在~20-45度之间 逆变器的选择: 逆变器的分类和主要技术性能的评价 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器 的频率为50~60HZ的逆变器;中频逆变器的频率一般为400HZ到十几KHZ;高频逆变器的频率一般为十几KHZ到MHZ。

2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向 工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆 变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘 栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。 前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电 压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式 逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能

逆变器选型知识手册

逆变器选型知识手册 一、逆变器基础知识 目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。 输出电压被脉冲调制的自励逆变器为脉冲逆变器。这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。 交流侧的等效电感决定了电流谐波的含量。因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。 逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。 二、逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 三、逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。。 工频逆变器 工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。

相关文档
最新文档