振动探测器的基本工作原理及特点

振动探测器的基本工作原理及特点
振动探测器的基本工作原理及特点

振动探测器的基本工作原理及特点

常用的几种振动探测器

根据所使用的振动传感器的不同,振动探测器可分为:

振动光纤探测器、泄漏电缆探测器、机械式振动探测器、惯性棒电子式振动探测器、电动式振动探测器、压电晶体振动探测器、电子式全面型振动探测器等多种类型。

不同类型的振动探测器其工作机理及安装要求也各有差异,以北京三安古德“sa-z8”振动探测器为例,它属于压电晶体振动探测器。

振动探测器的安装使用要点

1.振动探测器属于面控制型探测器,室内明装、暗装均可,通常安装于可能入侵的墙壁、天花板、地面或保险柜上;

2.探测器安装要牢固,振动传感器应紧贴安装面,安装面应为干燥的平面;

3.安装于墙体时,距地面高2-2.4m为宜,探测器垂直于墙面;

4.埋入地下使用时深度为10cm左右,不宜埋入土质松软地带;

5.振动探测器不宜用于附近有强震动干扰源的场所;

6.安装的位置应远离振动源(如旋转的电机、变压器、风扇、空调),如无法避开震动源,则视振动源震动情况,距离振动源1-3米;

7.注意在振动探测器频率范围内的高频震动、超声波的干扰容易引起误报。

玻璃破碎探测器

玻璃破碎探测器是专门用来探测玻璃破碎的探测器。当犯罪分子打碎玻璃试图入侵作案时,即可发出报警信号。

以北京三安古德“sa-z8”玻璃破碎探测器为例,其是属于次声波—玻璃破碎高频声响双技术探测器。

因此它也是一种双鉴探测器,此种类型的探测器比普通的声控型单技术玻璃破碎探测器或声控—振动型双技术玻璃破碎探测器的性能有了进一步的提高,是目前较好的一种玻璃破碎探测器。

探测玻璃破碎高频声响的原理

玻璃破碎时发出的响亮刺耳的声音频率是处于大约10~15KHZ的高频段范围内。

将带通放大器的带宽选在10~15KHz的范围内,就可将玻璃破碎时产生的高频声音信号取出,从而触发报警。

但对人的脚步声、说话声、雷雨声等却具有较强的抑制作用,从而可以降低误报率。

次声波的产生

次声波是频率低于20Hz的声波,属于不可闻声波。

经过实验分析表明:当敲击门、窗等处的玻璃(此时玻璃还未破碎)时,会产生一个超低频的弹性振动波,这种机械振动波就属于次声波,而当玻璃破碎时,才会发出高频声音。

除此之外,以下一些原因也同样会导致次声波的产生。

一般的建筑物,通常其内部的各个房间(或单元)是通过室内的门、窗户、墙壁、地面、天花板等物体与室外环境相互隔开的。

这就造成了房间内部与外部的环境,在温度、气压等方面存在着一定的差异。

特别是对于那些门、窗紧闭、封闭性较好的房间,这种室内外的环境差异就更大些。

当入侵者试图进室作案时,必定要选择在这个房间的某个位置打开一个通道,如打碎玻璃,强行进入。

由于室内外环境不同所造成的温差、气压差,会在缺口打开的瞬间时产生气流。

并伴随产生超低频的机械振动波,即为次声波,其频率甚至可低于10Hz以下。

直线振动筛的全面分析

一.直线振动筛的工作原理: 直线振动筛采用双振动电机驱动,当两台振动电机做同步、反向旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一合力,因此筛机的运动轨迹为一直线。其两电机轴相对筛面有一倾角,在激振力和物料自重力的合力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。可用于流水线中实现自动化作业。具有能耗低、效率高、结构简单、易维修、全封闭结构无粉尘溢散的特点。最高筛分目数400目,可筛分出7种不同粒度的物料。二。直线振动筛筛网的材料: 目前在破碎筛分中,一级筛分的下层筛网或二级以上筛分的筛网,使用的材材质一般为聚氨酯筛网、橡胶筛网和钢丝编织筛网。聚氨酯筛网很多用户都认为它是最耐磨的筛网,但它有个弱点,就是怕水。在破碎筛分流程中有水或物料含水量较大的情况下,聚氨酯在自然条件下易水解。所以实际中,它的使用效果并没有理论上的好,特别是在有色矿山、煤矿,物料中含水量较大,使用效果较差。钢丝编织筛网,筛分效果最好,但其使用寿命很短,只有几天或十几天,因此,在连续作业的筛分系统,由于更换太频繁,难于适应大规模连续作业需要,使用范围较小。橡胶筛网,有较好的抗水、耐磨特性,柔软、易加工,综合了以上两种材料的优点,因此在很多工矿企业广泛应用。 三。直线振动筛筛网的安装: 小粒度级物料的分级都采用软质的筛网。软质筛网安装采用两端张紧的方式,筛网中部的下方有刚性梁支撑。由于橡胶筛网和聚氨酯等软体材料在使用中都存在伸长现象,因此筛网与支撑梁之间容易产生相对运动,导致筛网磨破。现在从筛网的损坏情况看,筛网失效的原因主要是相对运动摩擦,扯断筛网,因此,安装时,一是支撑梁要有合理的接触面积,再是筛面上方要有压板有效地压紧筛网 四。直线振动筛安装与调试: 安装维护 1、检查电机标牌是否与要求相符。 2、检查电机表面有无损坏、变形。 3、检查电机各紧固件,谨防松动。 4、检查电源,是否缺相,并空载运行5分钟。 5、检查是否转动灵活,若有异常,应排除。 6、用500伏兆欧表测量绝缘电阻,其值应对定子绕组进行干燥处理,烘干温度不能超过120℃。 安装与调整 1、电机应紧固在安装面上,安装面必须光滑、平整。 2、电机可水平安装。 3、激振力的调整。 4、电机应有可靠的接地,电机内有接地装置,引线端有标志,亦可利用底脚坚固螺栓接地。 5、电机引线采用四芯橡胶电缆YZ-500V,接电源时引出线电缆不允许有急折,并与振动体可靠固定五.直线振动筛使用与维修 1、本机应装设电气保护装置。 2、本机运行初期,每天至少检查地脚螺栓一次,防止松动。 3、当电机旋转方向不符合要求时,调整电源相序即可。

双鉴红外探测器工作原理

微波—被动红外复合的探测器,它将微波和红外探测技术集中运用在一体。在控制范围内,只有二种报警技术的探测器都产生报警信号时,才输出报警信号。它既能保持微波探测器可靠性强、与热源无关的优点又集被动红外探测器无需照明和亮度要求、可昼夜运行的特点,大大降低探测器的误报率。这种复合型报警探测器的误报率则是单技术微波报警器误报率的几百分之一。简单的说,就是把被动红外探测器和微波探测器做在了一起,主要是提高探测性能,减少误报。除此之外,市场上也有把微波和主动红外、振动探测器、声音探测器等组合的产品,大家可参考说明书了解。 被动红外探测技术是一探测人体红外辐射与背景物体(墙、家具、树木、地形等)红外辐射相比较而产生的差异部分依据的,背景红外辐射量往往是微弱而稳定的。入侵者(包括各种动物在内)的红外辐射量往往是大的,可以引起警报信号。如果只用一种技术进行探测,各种动物(如狗、猫、老鼠等)及各种非动物的红外辐射源(如暖气、强灯光、太阳光等)往往也会引起警报的,这种报警是符合工作原理的,专门从事双技术探测器研究的科研人员,将微波探测技术和被动红外探测技术组合在一个机壳里构成一种入侵探测器。组成的这种双技术探测器,都选用了不同的工作原理的两种技术组合在一起,使从工作原理上无法避免的误报警的到了抑制。因为双技术探测器要求两种技术都提供报警信息时,才提供一个触发报警信息。其中任何一种提供报警信息,都不触发报警。因此使误报问题得到有效的控制,同时也扩大了探测器的使用范围 微波红外复合探测器的内部结构 下图中是一款有线红外微波复合探测器,其中最上端部分为信号接收、信号处理、信号输出部分;中间为微波探测,下端为红外探测;

直线筛工作原理

直线筛工作原理 直线振动筛采用双振动电机驱动,当两台振动电机做同步、反向旋转时,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一合力,因此筛机的运动轨迹为一直线。其两电机轴相对筛面有一倾角,在激振力和物料自重力的合力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。可用于流水线中实现自动化作业。具有能耗低、效率高、结构简朴、易维修、全封锁结构无粉尘溢散的特点。最高筛分目数325目,可筛分出7种不同粒度的物料。 直线振动筛也是采用惯性激振器来产生振动的,直线振动筛振源有电动机带动激振器,激振器有两个轴,每个轴上有一个偏心重(图2-1),而且以相反方向旋转,故又称双轴直线振动筛,由两齿轮啮合以保证同步。当两个带偏心重的圆盘转动时,两个偏心重产生的离心力F,在x 轴的分量互相抵消,在y轴的分量相加,其结果在y轴方向产生一个往复的激振力,使筛箱在y 轴方向上产生往复的直线轨迹振动。当直线振动筛振源采用振动电机时,必须布置二台,其轴线与直线振动筛纵向轴线方向一致(不平行,具有一夹角)。二台振动电机对称布置在筛箱的上方、下部和两侧均可以。 直线振动筛的筛面倾角通常在8°以下,筛面的振动角度一般为45°,筛面在激振器的作用下作直线往复运动。颗粒在筛面的振动下产生抛射与回落,从而使物料在筛面的振动过程中不断向前运动。物料的抛射与下落都对筛面有冲击,致使小于筛孔的颗粒被筛选分离。筛子的筛分效率及生产能力(处理量)同筛面的倾角、筛面的振动角度、物料的抛射系数有关。为了保证筛分效率高、筛子的生产量大,必须选择合适的Ky(抛射系数)值,同圆振筛选定Ky值的方法相同。吊式直线轨迹振动箱采用箱式结构的激振器,激振力的方向与水平成 45°。箱式激振器结构紧凑激振器的四个偏心重成双地布置在箱体的外部箱体内有一对啮合的齿轮,其作用是保证两对偏心重旋转方向相反、转速相等以及两者相位关系正好互相对正,以使筛箱作直线往复运动。座式直线轨迹振动筛的筛子装有筒式激振器。筒式激振器的偏心重和轴做成一体,在轴的末端有一对互相啮合的齿轮(筛子也可采用双电机驱动自同步),以保证互相之间正确的相位关系,并传递运动。直线振动筛由于筛面倾角小,筛子的高度减小?便于工艺布置。由于筛面是直线往复运动,上面的物料层一方面向前运动,一方面料层在跳起和下落过程中受到压实的作用,有利于脱水、脱泥、脱液(用于食品、纺织、制革等工业部门)和重介选矿时脱除重介质。对于难筛物料如石块、焦炭、烧结矿时等直线振动筛的筛面振动角度可采用 60°。

红外探测器原理

红外探测器原理 安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅 被动红外探测器 凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。而任 何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波 长和距离也不尽相同,通常分为三个波段。 近红外:波长范围0.75~3μm 中红外:波长范围3~25μm 远红外:波长范围25~1000μm 人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。㈠被动红外报警探测器 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。我们之所以称为被动红外,即探测器本身不发 射任何能量而只被动接收、探测来自环境的红外辐射。探测器安装后数秒种已适 应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体 红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报 。被动红外入侵探测器形成的警戒线一般可以达到数十米。 被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警 控制器等部分组成。其核心是不见是红外探测器件,通过关学系统的配合作用可 以探测到某个立体防范空间内的热辐射的变化。红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内. 被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警 戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。多波束型采用透镜聚焦式光学系统,目前大都采 用红外塑料透镜——多层光束结构的菲涅尔透镜。这种透镜是用特殊塑料一次成

gk双质体直线振动筛原理功能

g k双质体直线振动筛 g k双质体直线振动筛简介 g k的双质体振动筛具有独一无二的高效和工作性能。经过实地证明,与传统的直接驱动设计,双质体驱动系统能够更好地降低电能消耗,同时提高筛分效率。可选件包括:可更换式筛网、多层筛体、香蕉式筛体及特殊防腐蚀处理。 g k双质体振动筛可以制作成标准尺寸或定制尺寸,以适应现有的工艺流程。 g k双质体直线振动筛工作原理 双质体是振动设备中的一种类型,采用一个质体驱动另一个质体。激发质体通常由电机和连接矿槽的一组弹簧构成。使用弹簧连接两个质体,这样就形成了一个敏感的亚共振系统,并不会因为装载量的变化而影响性能的发挥。 与单质体系统相比,双质体系统只用较小的马力就能达到相同的工作效能。利用双质体设计原理使用的专用振动电机,功率只有传统设计电机功率的 25%左右,充分满足国家节能环保的长远发展要求。随着时间的推移,将为用户产生可观的节电经济效益。g k双质体直线振动筛的设备体现了全球节能降耗的绿色理念。 g k双质体直线振动筛功能介绍 1.该振动筛采用双质体设计,使用自适应式、亚共振专利技术,实现用很小的激振力(来自于小功率振动电机)驱动大型筛体,通过激振弹簧系统放大工作振幅;并且不会随着物料负荷的变化而影响筛分性能的发挥。 2.g k的振动筛拥有优越的可靠性和机械性能,且振动电机安装在筛子上部,下部隔震弹簧固定在基础上,可轻易实现整体吊装。 3.g k振动筛整体安放在隔震弹簧上,无需螺栓固定,这样就满足客户整机移动性的要求 4.聚氨酯筛网采用小面积组合结构,方便安装、容易更换、耗量较小,解决了由于局部损坏而需更换大面积筛板的弊端,直接降低生产成本。 5.全部零部件原装进口,包括振动电机、激振弹簧、隔震弹簧、可变力轮及控制、振幅测试装置、螺栓和防松螺母等。

简述汽车爆震传感器

简述汽车爆震传感器 摘要:文章主要叙述了爆震传感器的作用,分类,组成,工作原理,工作状况以及爆震传感器的 常见故障现象。简要分析了爆震传感器的常见故障波形,叙述了检测修理方法以及检测和使用的注 意事项,着重了分析几种车系的爆震传感器并剖析了一些系列的实用故障案例。最后展望了未来传感器的应用。 关键词:爆震传感器;构造;工作原理;检测诊断;波形分析;故障实例 Briefly automobile knock sensor Abstract: the paper mainly describes the knock sensor, classification, composition, working principle, working status and knock sensor familiar malfunctions. Briefly analyzed the common knock sensor fault detection, describes the method of repair and test and some matters needing attention of the analysis, some of the larger superkings cars knock sensor and analyses some series of practical fault cases. Finally the future of the sensor. Keywords:knock sensor, Structure, Working principle, Detection and diagnosis, Waveform analysis, Failure case

双鉴探测器的原理及应用

双鉴探测器的原理及应用 所谓双鉴探测器,是指将两种不同技术原理的探测器整合成一体,当两种探测器都报警时才发出报警的装置。该类探测器是入侵探测器的一种,它兼具两种探测器的优点,误报警率显著降低。 目前,市面主流的双鉴探测器是用微波(或超声波)和被动红外等两种技术复合的探测器。本文介绍双鉴探测器的原理,探讨了导致失效或误报警的原因。 1 原理概述 1.1 微波(或超声波)探测的原理 微波探测是利用“多普勒效应”实现目标探测。 1)多普勒效应 1842年,奥地利科学家多普勒发现:当声音、光和无线电波等振动源相对于观测者运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。这种效应被称为“多普勒效应”。 由“多普勒效应”引起的频率变化叫做“多普勒频移”,它与相对速度成正比、与振动的频率成反比,这被称为多普勒原理。 2)微波(或超声波)探测的原理 微波探测的原理是,探测器持续发射微波,并接收发射回来的微波信号。当探测区有目标移动时,利用多普勒原理,即可实现目标探测。 微波探测器的灵敏度取决于: ●目标的移动速度; ●目标的外形大小; ●目标发射能力; ●目标与探测器之间的距离 微波探测器会根据频率改变的大小来产生相应强度的探测信号。一般来说,探测灵敏度取决于目标的外形大小以及与探测器的距离。目标越大,距离越短,探测灵敏度就越高。 图1 微波探测器的原理效果

1.2 PIR(被动红外探测)的原理 被动红外探测简称为PIR(Passive Infrared Detection),是利用红外辐射特性,感应移动物体与背景物体的温度差异,从而实现目标探测。在移动物进入探测区域前,现场红外辐射稳定不变,一旦有移动物体进入,则会通过光学系统,将红外线辐射聚到热释电红外传感器上,使其输出比前期更强的电信号,而发出警报。 1)红外辐射特性 任何物体,其自身温度只要高于绝对零度(即0K,或-273.15℃),就会不停地产生热辐射,而温度低于1725°C的物体产生的热辐射光谱集中在红外光区域。不同温度的物体,其释放的红外能量的波长是不一样的,因此,红外波长与温度的高低是相关的。 由于物体本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波长和距离也不尽相同,通常分为三个波段。 ●近红外(波长范围0.75μm~3μm) ●中红外(波长范围3μm~25μm) ●远红外(波长范围25μm~1000μm) 2)人体的红外辐射特征 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。 人体辐射的红外光,其波长在3μm~50μm范围内,其中8μm~14μm占46%,峰值波长在9.5μm。 3)被动红外探测的工作原理 公元前300年,人们就发现热释电效应。所谓热释电效应,是指晶体随温度的变化,而在晶体表面产生电荷聚集的物理现象,并且该种材料自发极化的强度随温度的变化而变化。 关于热释电效应的最早记录,是电气石吸引小物体。热释电的现代名称是英国物理学家D.布儒斯特在1824年引入的。 被动红外探测(PIR)主要有热释电红外传感器和光学系统等两个关键元件。 ●热释电红外传感器:可以将波长为8μm~12μm之间的红外信号变化转变为电信号,对其 他波长的白光信号具有抑制作用。而人体辐射正好在这个范围内,可以较好地识别出人。 ●光学系统一般有反射镜和菲涅尔透镜等两种。其中,菲涅尔透镜有两个作用。一是聚焦作 用,将红外信号折射(反射)在热释电红外传感器上;二是将警戒区内分为若干个明区和暗区,使进入警戒区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这 样PIR就能产生变化的电信号。 被动红外探测器的灵敏度取决于背景的表面面积、目标的表面面积、目标的速度以及探测器的距离。 图2 PIR探测器的原理效果

直线振动筛尺寸

直线振动筛尺寸 工作原理 D Z S F系列直线振动筛为双振动电机驱动。当两台振动电机做同步、反向旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一合力,因此筛机的运动轨迹为一直线。两电机轴相对筛面在垂直方向有一倾角,在激振力和物料自重力的合力作用下,物料在筛面上被抛起跳跃或向前作直线运动,从而达到对物料进行筛选和分级的目的。适用于粒度在0.074—5m m,含水量小于7%,无粘性的各种干式粉状或颗粒状物料的筛分。最大给料粒度不大于10m m。 工作特点 该产品筛分精度高、处理量大、结构简单、耗能少、噪音低、筛网使用寿命长、密封性好、无粉尘溢散、维修方便、可用于流水线生产中的自动化作业。 主要适用行业 该产品广泛适用于化工、食品、塑料、医药、冶金、玻璃、建材、粮食、化肥、磨料、陶瓷等行业中干式粉状物料的筛分。 型号说明 D--------------------------------- -电机(振动源) Z--------------------------------- --直线(运转轨迹) S F-------------------------------- --筛分机 1030------------------------------ 筛面尺寸(1000m m宽x3000m m长) 5---------------------------------

---五层(五层筛网六个出料口) P------------------------------------(普碳钢)钢板材质 筛分原理 物料从给料机均匀地进入筛分机的进料口,在振动电机的激振下,向出料口方向边跳动边筛分,通过多层筛网筛分出数种产品和不合格的筛上、筛下物,分别从各自的出口排出,流入料仓或盛料筒. 主要技术参数和外形尺寸 本文转自新乡大用振动设备

红外探测器原理与应用

主动红外探测器原理与应用 一、主动红外探测器组成与工作原理 主动红外入侵探测器是由主动红外发射机和主动红外接收机组成。探测器利用发射机发车红外射线,由接收机接收。当发射机与接收机之间的红外光束被完全遮断或按给定百分比遮断时,产生报警信号。 主动红外发射机通常采用红外发光二极管作光源,其主要优点是体积小、重量轻、寿命长,交直流均可使用,并可用晶体管和集成电路直接驱动。现在的主动红外入侵探测器多数是采用互补型自激多谐振荡电路作驱动电源,直接加在红外发光二级管两端,使其发出经脉冲调制的、占空比很高的红外光束,这既降低了电源的功耗,又增强了主动红外入侵探测器的抗干扰能力。 主动红外接收机中的光电传感器通常采用光电二极管、光电三极管、硅光电池、硅雪崩二极管等,按GBl0408.4—2000《入侵探测器第4部分:主动红外入侵探测器》规定:“探测器在制造厂商规定的探测距离工作时,辐射信号被完全或按给定百分比遮光的持续时间大于40ms时,探测器应产生报警状态。”目前市售的主动红外入侵探测器均给出最短遮光时间范围。例如:某品牌的主动红外入侵探测器最短遮光时间范围是30ms—600ms。给出一个范围的原因是不同的使用部位可以设定(调节)不同的最短遮光时间,这有益于减少系统的误报警。例如:将主动红外入侵探测器构成电子篱笆警戒时,就应将最短遮光时间调至30ms附近;用在围墙上或围墙内侧警戒时,就应将最短遮光时间调至600ms附近。具体数值使用者可通过试验确定。 主动红外发射机所发红外光束定发散角,在GBl0408.4—2000标准中规定:“室内使用时,发射机与接收机经正确安装和对准,并工作在制造厂商规定的探测距离,辐射能量有75%。被持久地遮挡时,接收机不应产生报警状态。”从另一角度理解这句话的意思就是:当接收机接收的能量小于25%时,系统就要产生误报警。为了减少由此引起的误报警,安装使用中应让发射机与接收机轴线重合。 目前,除单光束主动红外入侵探测器外,还有双光束和4光束的。工作原理

振动筛的分类及工作原理

振动筛的分类及工作原理 振动筛是一种适合潮湿细粒级难筛物料干法筛分的振动筛分机械设备,是目前国内处理难筛物料的振动筛分机械设备。振动筛具有大振幅、大振动强度、较低频率和弹性筛面的工艺特点。工作过程中始终保持最大的开孔率,从而筛分效率高、处理能力大,筛板更换方便,降低了成本。振动筛超大筛面和大处理能力可满足现场的生产需要。振动筛筛子的结构采用多段筛面振动而筛箱和机架不参与振动的运动方式,使筛子实现了大型化。 振动筛的分类 振动筛分设备按重量用途可分为:矿用振动筛,轻型精细振动筛,实验振筛机 矿用振动筛可分为:高效重型筛,自定中心振动筛,椭圆振动筛,脱水筛,圆振筛,香蕉筛,直线振动筛等 轻型精细振动筛可分为:旋振筛,直线筛,直排筛,超声波振动筛,过滤筛等可参考振动筛系列 实验振动筛:拍击筛,顶击式振筛机,标准检验筛,电动振筛机等请参考实验设备 按照振动筛的物料运行轨迹可以分为: 按直线运动轨迹分:直线振动筛(物料在筛面上向前做直线运动) 按圆型运动轨迹分:圆振筛(物料在筛面上做圆形运动)结构和优点 振动筛的工作原理 振动筛工作时,两电机同步反向旋转使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分作业。适宜采石场筛分砂石料,也可供选煤、选矿、建材、电力及化工等行业作产品分级用。 振动筛工作部分固定不动,靠物料沿工作面滑动而使物料得到筛分。固定格筛是在选矿厂应用较多的一种,一般用于粗碎或中碎之前的预先筛分。它结构简单,制造方便。不耗动力、可以直接把矿石卸到筛面上。主要缺点是生产率低、筛分效率低,一般只有50—60%。 振动筛工作面是由横向排列的一根根滚动轴构成的,轴上有盘子,细粒物料就从滚轴或盘子间的缝隙通过。大块物料由滚轴带动向一端移动并从末端排出。选矿厂一般很少用这种筛子。振动筛工作部分为圆筒形,整个筛子绕筒体轴线回转,轴线在一般情况下装成不大的倾角。物料从圆筒的一端给入,细级别物料从筒形工作表面的筛孔通过,粗粒物料从圆筒的另一端排出。圆筒筛的转速很低、工作平稳、动力平衡好。但是其筛孔易堵塞、筛分效率低,工作面积小,生产率低。选矿厂很少用它来作筛分设备。振动筛机体是一个平面内摆动或振

红外探测器是什么,红外探测器的原理和使用方法

红外探测器是什么,红外探测器的原理和使用方法如今,随着社会的进步,经济的发展,越来越多人开始重视安防产品,家庭安防产品销售量开始逐年增长,红外探测器普及到越来越多的家庭,那么,什么是红外探测器的原理和使用方法? 一、什么是红外探测器? 红外探测器是将入射的红外辐射信号转变成电信号输出的器件。 红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。

二、红外探测器的原理 无线红外探测器的基本原理是,将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。 在红外线探测器中,热电元件检测人体的存在或移动,并把热电元件的输出信号转换成电压信号。然后,对电压信号进行波形分析。于是,只有当通过波形分析检测到由人体产生的波形时,才输出检测信号。例如,在两个不同的频率范围内放大电压信号,且将被放大的信号用于鉴别由人体引起的信号。于是,误将诸如热电元件的爆米花噪声一类噪声当作为由人体所产生而在准备加以检测乃得以防止。 三、红外探测器的使用方法 而红外探测器有很多种类,不同分类的红外探测器有不同的使用方法。 1. 接近探测器:是一种当入侵者接近它时能触发报警的探测装置。在接近探测器中,通常有一个高频率的LC震荡电路,震荡电路的LC回路通过导线连

振动传感器种类、原理及发展趋势

振动传感器种类、原理及发展趋势 【摘要】振动传感器是一种能感受机械运动振动的参量(振动速度、频率,加速度等)并转换成可用输出信号的传感器。 在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。 【关键词】种类;原理;发展趋势 【Abstract】:Vibration transducer is atransducer that can feel the vibration of a mechanical movement parameters (frequency of the vibration velocity, acceleration, etc.) and converted into usable output signal of the sensor. At the height of the development of modern industry, modern testing technology to digitization, information management has become an inevitable trend of development, and testing system for the front end is the sensor, it is the soul of an entire test system, is listed as a leading-edge technology around the world, particularly in recent years, the rapid development of IC technology and computer technology, the development of a sensor provides a good and reliable scientific and technology base. Place the sensor development, Crescent IK, and multipurpose digital, is a modern and intelligent sensor development, an important feature. 【Keywords】:type , principle , inevitable trend of development 振动传感器的分类

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

震动探测器原理

全向振动传感器 它是一种全方位固态振动控制器件,传感部分采用目前最先进的固态加速度检测器件,既对振动有很高的检测灵敏度,也对周围环境的声音信号抑制,具有很强的抗干扰能力。 目前所出现的振动传感器为一弹簧振子,通过碰撞实现振动感应,主要缺点是有方向性,可靠性差。针对这一缺陷,本方案使用的传感器, 克服了这一弱点。敏感器件采用压电陶瓷片,置于一密闭腔中,两侧为金属小球,空腔设计为球形, 以利用小球滚动。在三维空间中,无论传感器在什么方位,始终有小球与压电陶瓷片接触。在振动时,小球对压电陶瓷片压力变化,产生脉动电压, 从而实现振动感应。因为本振动传感器的输出电压幅度主要取决于振动强度,在不同方向上振动, 输出电压太小差别不大,故为全方向性。 (1) 全向振动传感器工作原理 全向振动传感器,是一种目前广泛应用的报警检测传感器,它内部用压电陶瓷片加弹簧重锤结构检测振动信号,并通过LM358等运放放大并输出控制信号。如图2-8所示为全向振动传感器电路图。 ND-2采用特别设计的低功耗检测控制芯片,静态耗电小于1μA ,是目前振动传感器中耗电最小的器件。为了方便使用,采用引线方式。引线连接方式:红线为电源正极,绿线为输出端,黑线为地。如图2-9所示为ND-2引线图。 当检测到振动大于一定幅度时,动作指示灯点亮,并发出报警。振动检测的灵敏度可以通过灵敏度调节旋钮调节,顺时针灵敏度增加,逆时针灵敏度降低。 3V 图2-8 全向振动传感器电路图 红 绿 黑 图2-9 ND-2引线图 如图2-10所示,ND-2采用集电极开路输出方式,其内部三极管的控制电流不小于10mA 。受内部定时器的控制,每检测出一次振动信号,三极管导通5秒,

常见电控发动机传感器工作原理 2

常见电控发动机传感器工作原理 传感器是将某种变化的物理量(绝大部分是非电量)转化成对应的电信号的元件。在汽车上,传感器用来感受诸如温度、压力、转速、位置、空气流量、气体浓度等物理量的状态及变化情况,并送到控制器或仪表。传感器提供的状态信息,是汽车电子控制的基本依据。 一、电磁式曲轴位置传感器 作用:产生发动机转速信号,确定基本喷油量和基本点火提前角;计算曲轴转角,确定一缸上止点。 工作原理: 转子上有很多齿,并且有缺齿,缺齿处对应一缸上止点。电磁式传感器利用电磁感应原理产生正弦变化的电压信号,当齿转到将要与磁铁正对时,磁通量的变化量最大,所产生的感应电压最大。当转子抓到使电磁元件位于两个齿中间时,磁通量的变化量几乎为零,感应电压也很小。当转子转到使电磁元件位于缺齿处时,由于这段距离相对较长,因此此处波形与正常波形不同。我们可以根据这一特点计算出转速、曲轴转角等信息。 二、霍尔式凸轮轴位置传感器 作用:确定一缸压缩上止点。

工作原理:利用霍尔效应,使用触发盘规律性遮挡磁力线,使霍尔电压产生规律性变化。因为凸轮轴一个工作循环只转一圈,缺齿处对应一缸压缩上止点,所以可以从波形上判断出 一缸压缩上止点,从而确定点火时刻。 三、压力检测式爆震传感器(共振形) 作用:提高发动机的动力性能同时不产生爆震;降低油耗;降低有害气体的排 放量。

工作原理:传感器中压电元件紧密地贴合在振荡片上,振荡片则固定在传感器的基座上。振荡片随发动机的振动而振荡,波及压电元件,使其变形产生电压信号。当发动机爆震时的振动频率与振荡片的固有频率相符合时,振荡片产生共振。此时,压电元件将产生最大的电压信号。该爆震传感器在发动机爆震时输出的电压比较高,因此无需使用滤波器即可判别有无爆震产生。 四、氧传感器 氧传感器作用:测量废气中氧的含量,检测空燃比,实现空燃比闭环控制。 前氧作用是检测废气中氧的含量,检测混合气比例是否正常,用于闭环控制; 后氧的作用是与前氧作比较,检测三元催化器的好坏; 锆管的陶瓷体是多孔的,渗入其中的氧气,在 温度较高时发生电离。由于锆管内、外侧氧含量不 一致,存在浓差,因而氧离子从大气侧向排气一侧 扩散,从而使锆管成为一个微电池,在两铂极间产 生电压。氧气浓度差大,电动势大;氧气浓度小, 电动势小。氧传感器利用这一性质,在氧化锆管内 侧通入大气(氧浓度高),外侧接触氧浓度低的排气。因此,随着排气中的氧浓度变化,其内外侧浓度比也在变化,从而锆管内外侧之间的电动势也在变化。 六、电位计式节气门位置传感器 作用:检测节气门的开度及开度变化,此信号输入ECU,控制燃油喷射及其他辅助控制。

直线振动筛

直线振动筛 直线振动筛利用振动电机激振作为振动源,使物料在筛网上被抛起,同时向前作直线运动,物料从给料机均匀地进入筛分机的进料口,通过多层筛网产生数种规格的筛上物、筛下物、分别从各自的出口排出。具有耗能低、产量高、结构简单、易维修、全封闭结构,无粉尘溢散,自动排料,更适合于流水线作业。 直线振动筛采用双振动电机驱动,当两台振动电机做同步、反缶旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一合力,因此筛机的运动轨迹为一直线。其两电机轴相对筛面有一倾角,在激振力和物料自重力的合力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。可用于流水线中实现自动化作业。具有能耗低、效率高、结构简单、易维修、全封闭结构无粉尘溢散的特点。最高筛分目数400目,可筛分出7种不同粒度的物料。 使用范围 直线振动筛(直线筛)系高效新型的筛分设备,广泛用于矿山、煤炭、冶炼、建材、耐火材料、轻工、化工等行业。直线振动筛(直线筛)稳定可靠、消耗少、噪音低、寿命长、振型稳、筛分效率高等优点。 直线振动筛亦可对粉状、颗粒状物料的筛选和分级,广泛应用于塑料、磨料、化工、医药、建材、粮食、炭素、化肥等行业. 使用说明书资料 ☆特点☆ 1)独特之筛网结构设计,方便和快速更换筛网 ( 只需3到5分钟 ) ,此外此种设计 允许使用各种筛网 ( 尼龙、特种龙、PP网 )。 2)筛机设计;精巧和容易装配,一人即可操作筛机。 3)和其他相关品牌厂商比较,具较大筛选面积和高效益之处理能力。 4)其母网完全支撑细网,因此细网可独得较长之寿命,而降低细网耗材使用,淤长时间之生产过程可降低诸多成本。 作用与原理 基本原理系借电机轴上下端所安装的重锤(不平蘅重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。若改变上下部的重锤的相位角可改变原料的行进方向。 电机使用说明: 本系列电机满足下列条件时,能连续输出额定激振力。 1、振动加速度:不超过7g(g:重力加速度) 2、环境温度:不超过40℃ 3、海拔:不超过1000m 4、电源频率:50Hz 5、电压:380V 6、温升:小于80K(电阻法) 结构以及各部分功能说明 本筛机主要由筛箱、筛框、筛网、振动电机、电机台座、减振弹簧、支架等组

被动红外与主动红外探测的原理及优缺点

被动红外与主动红外探测的原理及优缺点 红外探测器是防盗报警系统中最关键的组成部分,直接决定系统的灵敏性与稳定性,是整个系统品质的保障。中国安防厂商在这些年来,无论在技术的掌握与生产能力的提升上,均有明显的改善,这得归功于中国厂商不断吸收外商的产品设计和生产技术,并致力于降低成本,使中国安防产品开始得到工程商们的认同,加上低价对于甲方有着重要的吸引力,使得国产品在市场上成长迅速。虽然国产品的品质仍与进口产品有段差距,但在用户对安防产品不熟悉的情况下,中国安防产品仍极具竞争优势。 许多外国厂商也承认,以前外商大幅依靠技术优势来应对中国国产品的成本优势,但近年来差距已经缩小,优势渐减,可见中国厂商在技术上已经逐步赶上国外厂商,部分厂商更具有创新能力,推出具特色的产品,使得中国安防产品的水准大幅提高。这个现象主要来自许多厂商对于品牌意识与产品质量的重视,加大了投资与研发力度。 红外探测器的原理及特点 人体都有恒定的体温,一般在37度左右,会发出特定波长10μm左右的红外线,被动红外探测器就是靠探测人体发射的10μm左右的红外线而进行工作的。人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1.被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。 2.为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 3.其传感器包含两个互相串联或并联的热释电元件。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4.一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。 被动红外深测器优缺点 优点:本身不发任何类型辐射,器件功耗很小,隐蔽性较好,价格低廉。 缺点:容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探测器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

汽车传感器工作原理

卡门旋涡式空气流量计的检测 卡门旋涡式空气流量计用于丰田凌志LS400、三菱、现代等轿车上。凌志LS400的卡门旋涡式空气流量计电路如图2-25所示。 图2-25 卡门旋涡式空气流量计电路图(丰田凌志LS400) 用万用表欧姆档测量THA和E2之间的电阻,如图2-26所示,0℃时约为4~7kΩ;20℃时约为2~3 kΩ;60℃时约为0.4~0.7 kΩ。 图2-26 空气流量计端子与测量 检查进气温度传感器的信号电压,20℃时信号电压为2.5~3.4V;60℃时为0.2~1.0V。 当发动机转速高于300r/min时,空气流量计5s没在输入信号,发动机就失速,故障部位可能是ECU与空气流量计之间的线路、空气流量计或发动机ECU,可按以下步骤检查: ①打开点火开关,发动机不起动,测量流量计端子Ks和E2之间的电压,应为4.5~5.5V。发动机运转时,输出电压应为2~4V(脉冲电压信号)。进气量越大,电压越高。若输出电压正常,则应检查或更换ECU;如不正常,转下一步。

②检查流量计至ECU之间的线路是否正常。 ③拔开流量计连接器插头,测量端子Vc和E2之间的电压,应为4.5~5.5V。若不正常,应检查或更换ECU;若正常,应更换空气流量计。 (五)进气歧管绝对压力传感器的检测 进气歧管绝对压力传感器种类很多,其中电容式和半导体压敏电阻式进气压力传感器在当今发动机电子控制系统中应用较为广泛。压敏电阻式进气压力传感器的信号是电压型的,电容式进气压力传感器的信号是频率型的。 进气压力传感器都是3线的,一根电源线,一根信号线,一根接搭铁线。拔开进气压力传感器的插头,接通点火开关,电源线的开路电压约+5V。用万用表检测时因信号类型不同,应选用不同的档位,电压信号选用直流电压档,频率信号选用频率档。 丰田车进气压力传感器电路图如图2-27所示,它输出的是电压信号,用万用表检测的方法如下: 图2-27 进气压力传感器电路(丰田) 接通点火开关,端子VC和E2间的电压应当是4.5~5.5V。ECU端子PIM与E2之间的信号电压应当是3.3~3.9V,发动机怠速时信号电压约1.5V左右,随着节气门开度的增加,信号电压应上升,真空度与电压信号关系应符合图2-28所示的关系。

相关文档
最新文档