大物仿真实验报告

大物仿真实验报告
大物仿真实验报告

大物仿真实验报告

大学物理仿真实验报告

实验名称:测量刚体的转动惯量

实验目的:

1.用实验方法验证刚体转动定律,并求其转动惯量;

2.观察刚体的转动惯量与质量分布的关系

3.学习作图的曲线改直法,并由作图法处理实验数据。

实验原理:

1.刚体的转动定律

具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:

M = Iβ (1)

利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量

待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at2/2。刚体受到张力的力矩为Tr和轴摩擦力力矩Mf。由转动定律可得到刚体的转动运动方程:Tr - Mf = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:

m(g - a)r - Mf = 2hI/rt2 (2)

Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

所以可得到近似表达式:

mgr = 2hI/ rt2 (3)

式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量

从(3)出发,考虑用以下两种方法:

A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:

M = K1/ t2 (4)

式中K1 = 2hI/ gr2为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr2求得刚体的I。B.作r –1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为:

r = K2/ t (5)

式中K2 = (2hI/ mg)1/2是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I。

实验仪器:刚体转动仪,滑轮,秒表,砝码

刚体转动仪:包括:

A.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。

B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。与A 和配重物构成一个刚体。

C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。

此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分。

滑轮:双击滑轮支架上的旋钮,会弹出滑轮高度调节窗口,在滑轮高度调节窗口的

旋钮上点击鼠标左、右键,可以调整滑轮高度。

实验内容:

1.调节实验装置:调节转轴垂直于水平面:

调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响:

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。

实验结果:

配重物分别在1、3、5位置处时,测得下落时间为:

T3=371s T1=331s T5=432s

配重物越远,砝码下落时间越大,而转动惯量又随着配重物的位置变远而变大,故下落时间越大,转动惯量越大。

3.测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个 5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。

实验数据记录如下:

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量:

I=1.92817E(-3)千克*平方米

4.测量半径与下落时间关系:

测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。实验数据记录如下:

由测得的数据作图,从图上求出斜率,并计算转动惯量:

I=1.82697E(-3)千克*平方米

注意事项:

1.仔细调节实验装置,保持转轴铅直。使轴尖与轴槽尽量为点接触,使轴转动自如,

且不能摇摆,以减少摩擦力矩。

2.拉线要缠绕平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力。

3.把握好启动砝码的动作。计时与启动一致,力求避免计时的误差。

4.砝码质量不宜太大,以使下落的加速度a不致太大,保证a<

(1)本实验要求的条件是什么?如何在实验中实现?

答:绳与塔轮间无相对滑动,砝码的下落加速度a<

调节滑轮高度,使绳与塔轮在同一水平面上,使砝码质量远远小于刚体质量。

(2)试分析两种作图法求得的转动惯量是否相同?

答:第一种是通过固定半径改变砝码质量来求斜率的,第二种是通过固定砝码质量改变配重物半径来求斜率的,但两种方法的原理相同,故在实验条件下,两种方法所求的转动惯量是相同的。

(3)从实验原理,计算方法上分析,哪种方法所得结果更合理?

答:m –1/t2的作图方法更好一些。实验条件并不是完全满足,仍有一定的摩擦,此时,r 不是1/t的准确一次函数,而m却可以是1/t2的确切函数,故第一种更为准确一些。

2.课后思考题

(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距?

答:在实验条件不严格满足时,m=2hI/(g-a) r2*1/ t2-M/(g-a)r,故截距为摩擦力矩产生的。(2)定性分析实验中的随机误差和可能的系统误差。

答:随机误差有秒表计时等产生的误差;

系统误差有摩擦力矩、加速度等产生的误差。

刚体的转动惯量信计21 倪皓洋 2120602015 学院数统学院专业信计21 姓名倪皓洋学号2120602015

实验名称:刚体的转动惯量

一实验简介:

在研究摆的中心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有

关。

二实验目的:

1.用实验方法验证转动惯量,并求转动惯量。

2.观察转动惯量与质量的分布关系。

3.学习作图的曲线改直法,并由作图法处理实验数据。

三实验原理:

1. 刚体的转动定律

具有确定转轴的刚体,在外力矩作用下,将获得较加速度β,其值与外力矩成正比,与刚体的转动惯量成反比即有刚体的转动定律:

M=Iβ

利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量

如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg-t=ma,在t时间内下落的高度为h=at2/2。刚体收到张力的力矩为Tr和轴摩擦力力矩Mf。由转动定律可得到刚体的转动运动方程:Tr--Mf=Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:

m(g - a)r - Mf = 2hI/rt2 (2)

Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

mgr = 2hI/ rt2 (3)

式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验 1

刚体的转动惯量信计21 倪皓洋 2120602015

的方法求得转动惯量I。

3.验证转动定律,求转动惯量

从(3)出发,考虑用以下两种方法:

A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r

和砝码下落高度h,(3)式变为:

M = K1/ t2 (4)

式中K1 =2hI/ gr2为常量。上式表明:所用砝码的质量与下落时间t的平方成反

比。实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角

坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 =2hI/ gr2求得刚体

的I。

B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度

h为固定值。将式(3)写为:

r = K2/ t (5)

式中K2 = (2hI/ mg)1/2是常量。上式表明r与1/t成正比关系。实验中换用不同

的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应

是直线。即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出

刚体的I。

四实验仪器:

刚体转动仪,滑轮,秒表,砝码

其中刚体转动仪包括:

A.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。

B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯

量。与A和配重物构成一个刚体。

C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。

此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分

双击刚体转动仪底座下方的旋钮,会弹出底座放大窗口和底座调节窗口,在底座

调节窗口的旋钮上点击鼠标左、右键,可以调整底座水平。在底座放大窗口上单

击右键可以转换视角。(如下图)

2

刚体的转动惯量信计21 倪皓洋 2120602015

滑轮(如图)

双击滑轮支架上的旋钮,会弹出滑轮高度调节窗口,在滑轮高度调节窗口的旋钮上点击鼠标左、右键,可以调整滑轮高度。

(秒表)

五实验内容:

1.调节实验装置:调节转轴垂直于水平面

调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。(本项实验只作定性说明,不作数据计算。)

3.测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个

3

刚体的转动惯量信计21 倪皓洋 2120602015 5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系

测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。由测得的数据作图,从图上求出斜率,并计算转动惯量。

六数据分析:

A测量m – 1/t2关系

m – 1/t2数据表

数据处理

4

刚体的转动惯量信计21 倪皓洋 2120602015

结论:转动惯量I=1.93914E(-3)千克*平方米

B测量r-1/t关系

r-1/t数据表

数据处理

5

刚体的转动惯量信计21 倪皓洋 2120602015

结论:转动惯量I=1.98838E(-3)千克*平方米

七小结

结论:两次实验虽然结果略有不同,但都客观上反应了刚体的特征,他与刚体的质量,质量相当于转轴的分布有关。通过本次实验,我们更能清楚地认识到刚体的转动惯量,并用实验方法验证刚体转动定律。

误差分析:在实验中用了一些忽略计算,例如M与张力纸币可以忽略,砝码质量m比刚体质量小的时候有a<

注意事项:测量m – 1/t2关系时r不要取得太小,导致不易观察。

八思考题

1.课前思考题:

(1)本实验要求的条件是什么?如何在实验中实现?

砝码质量比刚体质量小得多时有a<

(2)试分析两种作图法求得的转动惯量是否相同?

不相同。考虑误差的话实际公式是不一样的。

(3)从实验原理,计算方法上分析,那种方法所得结果更合理?

m – 1/t2图像更合理

2.课后思考题

(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距?实验仪器之间的摩擦、空气阻力等。

(2)定性分析实验中的随机误差和可能的系统误差

随机误差:秒表计时不准确。

高度测量不准确。

细线和底座不完全水平。

系统误差:砝码质量太大一直下落的加速度a太大不能满足a<

6

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

电力电子电路分析与仿真实验报告模板剖析

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

测试装置动态特性仿真实验报告

测试装置动态特性仿真实验 班级:7391 学号:2009301828 姓名:张志鹏 一、实验目的 1、加深对一阶测量装置和二阶测量装置的幅频特性与相频特性的理解; 2、加深理解时间常数变化对一阶系统动态特性影响; 3、加深理解频率比和阻尼比变化对二阶系统动态特性影响; 4、使学生了解允许的测量误差与最优阻尼比的关系。 二、实验原理 1、 一阶测量装置动态特性 一阶测量装置是它的输入和输出关系可用一阶微分方程描述。一阶测量装置的频率响应函数为: 式中:S S 为测量装置的静态灵敏度;τ为测量装置的时间常数。 一阶测量装置的幅频特性和相频特性分别为: 可知,在规定S S =1的条件下,A (ω)就是测量装置的动态灵敏度。 当给定一个一阶测量装置,若时间常数τ确定,如果规定一个允许的幅值误差ε,则允许测量的信号最高频率ωH 也相应地确定。 为了恰当的选择一阶测量装置,必须首先对被测信号的幅值变化范围和频率成分有个初步了解。有根据地选择测量装置的时间常数τ,以保证A (ω)≥1-ε 能够满足。 2、二阶测量装置动态特性 二阶测量装置的幅频特性与相频特性如下: 幅频特性202220)/(4))/(1(/1)(ωωξωωω--=A 相频特性2200))/(1/()/(2()(ωωωωξφ--=arctg w Α(ω)是ξ和ω/0ω的函数,即具有不同的阻尼比ξ的测试装置当输入信??????ωτ+ωτ-ωτ+=ωτ+=ω22s s )(1j ) (11S j 11S )j (H ()()2 11 A ωτ+=ω()ωτ -=ωφarctan

号频率相同时,应具有不同的幅值响应,反之,当不同的频率的简谐信号送入同一测试装置时它们的幅值响应也不相同,同理具有不同的阻尼比ξ的测试装置当输入信号频率相同时,应有不同的相位差。 (1).当ω=0时,Α(ω)=1;(2).当ω→∞,A (ω)=0;(3).当ξ≥0.707时随着输入信号频率的加大,Α(ω)单调的下降, ξ<0.707时Α(ω)的特性曲线上出现峰值点;(4)如果ξ=0,))/(1/(1))/(1(/1)(202 20ωωωωω-=-=A ,显然,其峰值点出现在ω=0ω处。其值为“∞”,当ξ从0向0.707变化过程中随着的加大其峰值点逐渐左移,并不断减小。 对以上二阶环节的幅频特性的结论论证如下: (1).当ω=0时A(ω)=1 (2).当ω→∞时,A(ω)=0 (3).要想得到A(ω)的峰值就要使202220)/(4))/(1(/1)(A ωωξ-ωω-=ω 中的202220)/(4))/(1(ωωξωω--取最小值。 令:t=20)/(ωω t t t f 224)1()(ξ+-= 对其求导可得t=1-22ξ时,f(t)取最小值.由于t=20)/(ωω≥0,所以1-22ξ≥0, 2ξ必须小于1/2时,f(t)才有最小值,即ξ>2/2时,A(ω)不出现峰值点;当ξ<2/2时4244)(ξξ-=t f ,f(t)对ξ求导得)21(82ξξ-,可以看出f(t): ξ属于[0, 2/2]时单调递增,于是得A(ω)的峰值点A 为4244/1)(/1ξξ-=t f ; 在ξ属于[0,2/2]递减。 (4).当ξ=0时 A=∞,t=20)/(ωω,ω/0ω=1,即ξ=0时A(ω)的峰值为∞,且必出现在ω/0ω=1时,当ξ=2/2时,t=0→ω=0,A(ω)=1. 还可以看出,在ξ属于[0,2/2]增大时t=1-22ξ就减小,即f(t)的峰值左平移。 (二)阻尼比的优化 在测量系统中,无论是一阶还是二阶系统的幅频特性都不能满足将信号中的所有频率都成比例的放大。于是希望测量装置的幅频特性在一段尽可能宽的范围内最接近于1。根据给定的测量误差,来选择最优的阻尼比。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

仿真实验报告

大学物理仿真实验报告一一塞曼效应 一、实验简介 塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。 塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的 电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。 塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据 洛仑兹(H.A?Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、 J汤姆逊(J、J ThomSOn)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑 兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。 塞曼效应被誉为继X射线之后物理学最重要的发现之一。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。 本实验通过观察并拍摄Hg(546.1 nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 二、实验目的 1?学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2?观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3?利用塞曼分裂的裂距,计算电子的荷质比 e m e数值。 三、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为E0,相应的总角动量量子数、轨道量子数、 自旋量子数分别为J、L、S。当原子处于磁感应强度为B的外磁场中时,这一原子能级将 分裂为2J 1层。各层能量为 E = E o MgJ B B(1) 其中M为磁量子数,它的取值为J , J -1 ,…,-J共2J 1个;g为朗德因子;J B为 hc 玻尔磁矩(A B= );B为磁感应强度。 4兀m 对于L-S耦合

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

交通仿真实验报告

土木工程与力学学院交通运输工程系 实 验 报 告 课程名称:交通仿真实验 实验名称:基于VISSIM的城市交通仿真实验 专业:交通工程 班级: 1002班 学号: U201014990 姓名:李波 指导教师:刘有军 实验时间: 2013.09 ---- 2013.10

实验报告目录 实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析实验报告三: 信号交叉口全方式交通建模与仿真分析 实验报告四: 信号协调控制对城市干道交通运行效益的比较分析实验报告五: 公交站点设置对交叉口运行效益的影响的仿真分析实验报告六: 城市互通式立交交通建模与仿真分析 实验报告七: 基于VISSIM的城市环形交叉口信号控制研究 实验报告成绩

实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 一、实验目的 熟悉交通仿真系统VISSIM软件的基本操作,掌握其基本功能的使用. 二、实验内容 1.认识VISSIM的界面; 2.实现基本路段仿真; 3.设置行程时间检测器; 4.设置路径的连接和决策; 5.设置冲突区 三、实验步骤 1、界面认识: 2、(1)更改语言环境—(2)新建文件—(3)编辑基本路段—(4)添加车流量 3、(1)设置检测器—(2)运行仿真并输出评价结果 4、(1)添加出口匝道—(2)连接匝道—(3)添加路径决策—(4)运行仿真 5、(1)添加相交道路—(2)添加车流量—(3)设置冲突域—(4)仿真查看 四、实验结果与分析

时间; 行程时间; #Veh; 车辆类别; 全部; 编号: 1; 1; 3600; 18.8; 24; 可知:检测器起终点的平均行程时间为:18.8; 五、实验结论 1、检测器设置的地点不同,检测得到的行程时间也不同。但与仿真速度无关。 2、VISSIM仿真系统的数据录入比较麻烦,输入程序相对复杂。 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析 一、实验目的 掌握十字信号交叉口处车道组设置、流量输入、交通流路径决策及交通信号控制等仿真操作的方法和技巧。 二、实验内容 1.底图的导入 2.交叉口专用车道和混用车道的设置方法和技巧 3.交通信号设置 4.交叉口冲突区让行规则设置

物流仿真实验报告

《物流仿真实验》 实验报告书 实验报告题目: 物流仿真实验学院名称: 管理学院 专业: 物流管理 班级: 物流1303 姓名: 孟颖颖 学号: 2 成绩: 2016年7月 实验报告 一、实验名称 物流仿真实验 二、实验要求 ⑴根据模型描述与模型数据对配送中心进行建模;

⑵分析仿真实验结果,进行利润分析,找出利润最大化的策略。 三、实验目的 1、掌握仿真软件Flexsim的操作与应用,熟悉通过软件进行物流仿真建模。 2、记录Flexsim软件仿真模拟的过程,得出仿真的结果。 3、总结Flexsim仿真软件学习过程中的感受与收获。 三、实验设备 (1)硬件及其网络环境 服务器一台:PII400/10、3G/128M以上配置、客户机100台、局域网或广域网。 (2)软件及其运行环境 Flexsim,Windows 2000 Server、SQL Server 7、0以上版本、IIS 5、0、SQL Server 数据库自动配置、IIS 虚拟目录自动配置 四、实验步骤 1 概念模型 1个Sink到操作区,如图:

第二步:连接端口 根据配送流程,对模型进行适宜的连接,所有端口连接均用A连接,如图: 第三步:Source的参数设置 为使Source产生实体不影响后面Processor的生产,尽可能的将时间间隔设置尽可能的小,并对三个Source做出同样的设定。 打开Source参数设置窗口,将时间到达间隔设置为常数1,同时为对三个实体进行区别,进行设置产品颜色,点击触发器,打开离开触发的下拉菜单,点击设置临时实体类型,设置不同实体类型,颜色自然发生变化。并对另外两个Source 进行同样的设置,如图:

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

电工电子学实验报告_实验三_三相交流电路.doc

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。 U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V 219218 220127 127127 表 3-1 (2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。 测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V 对称有中线124 124 124 0 负载无中线125 125 123 1 不对称有中线126 125 124

负载 无中线 167 143 78 50 表 3-2 2. 三相负载三角形联结 按图 3-3 连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用, 具体接法见图 3-4 所示。接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不 对称负载的开灯要求与表 3-2 中相同。 图 3-3 三相负载三角形联结 图 3-4 两瓦特表法测功率 测量值 线电流 (A) 相电流 (A) 负载电压 (V) 功率 (W) 负载情况 I U I V I W I UV I VW I WU UV VW WU 1 2 U U U P P 对称负载 213 212 215 -111 -109 不对称负载 220 217 216 表 3-3

(最新整理)交通仿真实验报告

(完整)交通仿真实验报告 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)交通仿真实验报告)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)交通仿真实验报告的全部内容。

土木工程与力学学院交通运输工程系 实 验 报 告 课程名称:交通仿真实验 实验名称:基于VISSIM的城市交通仿真实验 专业:交通工程 班级: 1002班 学号: U201014990 姓名:李波

指导教师: 刘有军 实验时间: 2013。09 -——- 2013.10 实验报告目录 实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析 实验报告三: 信号交叉口全方式交通建模与仿真分析 实验报告四: 信号协调控制对城市干道交通运行效益的比较分析 实验报告五: 公交站点设置对交叉口运行效益的影响的仿真分析 实验报告六: 城市互通式立交交通建模与仿真分析 实验报告七: 基于VISSIM的城市环形交叉口信号控制研究 实验报告成绩

实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 一、实验目的 熟悉交通仿真系统VISSIM软件的基本操作,掌握其基本功能的使用。 二、实验内容 1。认识VISSIM的界面; 2.实现基本路段仿真; 3.设置行程时间检测器; 4.设置路径的连接和决策; 5。设置冲突区 三、实验步骤 1、界面认识: 2、(1)更改语言环境—(2)新建文件—(3)编辑基本路段-(4)添加车流量 3、(1)设置检测器—(2)运行仿真并输出评价结果 4、(1)添加出口匝道—(2)连接匝道-(3)添加路径决策-(4)运行仿真 5、(1)添加相交道路—(2)添加车流量-(3)设置冲突域—(4)仿真查看 四、实验结果与分析

仿真实验报告经典案例概述

XXXXX 实验报告 学院(部)XX学院 课程名称生产系统仿真实验 学生姓名 学号 专业 2012年9月10日

《生产系统仿真》实验报告 年月日 学院年级、专业、班实验时间9月10日成绩 课程名称生产系统仿真 实训项目 名称 系统仿真软件的基础应 用 指导 教师 一、实验目的 通过对Flesim软件进一步的学习,建立模型,运用Flesim软件仿真该系统,观察并分析运行结果,找出所建模型的问题并进行改进,再次运行循环往复,直到找出构建该系统更为合理的模型。 二、实验内容 1、建立生产模型。 该模型生产三种产品,产品到达速率服从均值为20、方差为2的正态分布;暂存器的最大容量为25个;检测器的检测时间服从均值为30的指数分布,预制时间为10s;传送带的传送速率为1m/s,带上可容纳的最大货件数为10个。 2、运行生产模型。 3、对运行结果进行分析,提出改进方案在运行,直到找到更为合理的模型。 三、实验报告主要内容 1、根据已有数据建立生产模型。 将生产系统中所需实体按组装流程进行有序的排列,并进行连接如图1所示

图1 2、分别对发生器、暂存器、检验台和传送带进行参数设置。 (1)发生器的产品到达速率服从均值为20、方差为2的正态分布。如图2所示。 (2)暂存器的最大容量设置为25件。如图3所示。 (3)设置检验台的检测时间服从均值为30s的指数分布,预制时间为10s.如图4所示。 (4)传送带的传送速率为1m/s,最大容量为10件。如图5所示 图2 图3 图4 图5 3、对发生器及暂存器进一步设置。 (1)发生器在生成产品时设置三种不同类型的产品,通过颜色区分。如图6所示。 (2)暂存器在输出端口通过设置特定函数以使不同颜色的产品在不同的检验台检验。如图7所示。

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

HFSS波导仿真实验报告参考模板

《电磁场与电磁波》课程 仿真实验报告 学号U201213977 姓名唐彬 专业电子科学与技术 院(系)光学与电子信息学院2014 年12 月 3 日

1.实验目的 学会HFSS仿真波导的步骤,画出波导内场分布图,理解波的传播与截止概念。 2.实验内容 在HFSS中完成圆波导的设计与仿真,要求完成电场、磁场、面电流分布、传输曲线、色散曲线和功率的仿真计算。 3.仿真模型 (1)模型图形 (2)模型参数

(3)仿真计算参数 根据圆波导主模为TE 11, 1111 '=1.841 c f a p ==为半径, a=1mm,代入公式得截止频率f=8.8GHz,因此设置求解频率为11GHz,起始频率为9GHz,终止频率为35GHz。 4.实验结果及分析 4..1电场分布图

图形分析:将垂直于Z周的两个圆面设为激励源,利用animate选项可以发现,两个圆面上的电场强度按图中的颜色由红变蓝周期性变化,图形呈椭圆形,且上底面中心为红色时,下底面中心为蓝色。即上底面中心的电场强度最大时,下底面中心的电场强度为最小。这是由于波的反射造成的。对于圆波导的侧面,由动态图可知电场强度始终处于蓝绿色,也就是一直较小。这说明电场更多的是在两底面,即两激励源之间反射,反射到侧面上的电场较少。 4..2磁场分布图

图形分析:根据电场与磁场的关系式——课本式(9.46)可知,电场的大小是磁场大小的c倍(c为真空中的光速),电场方向与磁场方向处处垂直,在图中也可看出,波导中磁场的最大值出现在侧面,两底面的中心的颜色为蓝绿色,且底面的两边为双曲线的形状,这就是磁场与电场相互垂直的结果。另一方面,根据图中各个颜色代表的场强大小也可以近似验证,电场与磁场的大小的确是c倍的关系。而且在导体中的电磁波,磁场与电场还存在相位差,这一点也可从两者的动态图中验证该结论。

计算机仿真实验报告实验

《计算机仿真》上机实验报告 姓名: 学号: 2012104021 专业:测控 班级: 12级

实验一常微分方程的求解及系统数学模型的转换一.实验目的 通过实验熟悉计算机仿真中常用到的Matlab指令的使用方法,掌握常微分方程求解指令和模型表示及转换指令,为进一步从事有关仿真设计和研究工作打下基础。 二. 实验设备 个人计算机,Matlab软件。 三. 实验准备 预习本实验有关内容(如教材第2、3、5章中的相应指令说明和例题),编写本次仿真练习题的相应程序。 四. 实验内容 1. Matlab中常微分方程求解指令的使用 题目一:请用MATLAB的ODE45算法分别求解下列二个方程。要求:1.编写出Matlab 仿真程序;2.画出方程解的图形并对图形进行简要分析;3.分析下列二个方程的关系。 1.2. 1.function fun=funl(t,x) fun=-x^2;

[t,x]=ode45('fun1',[0,20],[1]); figure(1);plot(t,x); grid 2.function fun=fun2(t,x) fun=x^2; [t,x]=ode45('fun2',[0,20],[-1]); figure(2);plot(t,x); grid

题目二:下面方程组用在人口动力学中,可以表达为单一化的捕食者-被捕食者模式(例如,狐狸和兔子)。其中1x 表示被捕食者, 2x 表示捕食者。如果被捕食者有无限的食物,并且不会出现捕食者。于是有1'1x x ,则这个式子是以指数形式增长的。大量的被捕食者将会使捕食者的数量增长;同样,越来越少的捕食者会使被捕食者的数量增长。而且,人口数量也会增长。请分别调用ODE45、ODE23算法求解下面方程组。要求编写出Matlab 仿真程序、画出方程组解的图形并对图形进行分析和比较。 1.ODE45

数控机床仿真实验报告模板参考

本科生实验报告

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左 右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准); 页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 。

实验一数控车床操作加工仿真实验 一、实验目的 1、掌握手工编程的步骤。 2、掌握数控加工仿真系统的操作流程。 二、实验内容 1、了解数控仿真软件的应用背景。 2、掌握手工编程的步骤。 3、掌握SEMENS 802Se T 数控加工仿真操作流程。 三、实验设备 1、AUTO CAD 2014。 2、南京宇航数控加工仿真软件。 四、实验操作步骤 1、实验试件 试件的形状、尺寸如图1-1所示 2、加工采用的刀具参数 刀具及相关参数如表1-1所示 3、工序卡片根据零件材料、加工精度、加工路线、刀具参数表和切削用量等内容,确定加 工工序卡,如表1-2所示。 4、程序 5、加工仿真操作步骤

五、加工视窗 Yhcnc 输出信息 消息模式 欢迎使用YHCNC, 更多资料请登录https://www.360docs.net/doc/106992884.html, 2017-03-29 15:20 。。。 评分模式 欢迎使用YHCNC, 更多资料请登录https://www.360docs.net/doc/106992884.html, 2017-03-29 15:20 。。。 六、思考题 1、数控加工中的误差来源有哪些? 答:

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

相关文档
最新文档