重庆九龙电厂-火电厂介绍

重庆九龙电厂-火电厂介绍
重庆九龙电厂-火电厂介绍

实习报告

电厂概况

地理位置

重庆九龙电厂位于九龙坡区黄桷坪。隶属于中国电力投资公司,公司系统现有员工2400余人,年发电量超过60亿千瓦时。公司自上市以来,每年都保持着较好的赢利水平,公司资产总额稳步增长。九龙坡区位于重庆市主城区西南部,是长江和嘉陵江环抱的重庆渝中半岛的重要组成部分,与渝中区、沙坪坝区、璧山县和江津市接壤,与南岸区、巴南区隔江相望。九龙坡区是重庆市主城区之一,位于市区西南部,东接渝中区,南靠大渡口区,西邻江津市、壁山县,北与沙坪坝区接壤,区位优势十分明显。

二、企业发展公司现有装机容量1707.6MW(其中上市公司装机容量825.5MW),是重庆市的主要电源点之一。其中,公司重庆九龙发电厂为一台容量200MW的火力发电厂。

组成与流程

? 火力发电厂

现代化火电厂是一个庞大而又复杂的生产电能与热能的工厂。它由下列5个系统组成:①燃料系统。②燃烧系统。③汽水系统。④电气系统。⑤控制系统。在上述系统中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电装置一般装放在独立的建筑物内或户外,其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则安装在辅助建筑中或在露天场地。火电厂基本生产过程是,燃料在锅炉中燃烧,将其热量释放出来,传给锅炉中的水,从而产生高温高压蒸汽;蒸汽通过汽轮机又将热能转化为旋转动力,以驱动发电机输出电能。到80年代为止,世界上最好的火电厂的效率达到40%,即把燃料中40%的热能转化为电能。在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。

生产过程概述

火力发电厂的任务很单纯,就是发出一定规范的电(或供热+供电),要完成这个任务就必须装置一系列主要生产设备和附属设备。其生产过程简述如下:利用燃料中的化学能在锅炉中燃烧,转化为热能,这种热能被锅炉中的水吸收成为具有一定温度、一定压力的蒸汽,这种具有相当热量的蒸汽冲动汽轮机转动,使热能转化为动能——机械能,汽轮机借助于这个旋转的动能带动发电机旋转,而发电机将赋予的机械能转变为电能。我国近年建设的火电厂的发电机组至少为300WM机组,今后将大批安装600MW,1000MW超临界和超超临界机组。

三、锅炉部分

锅炉是火力发电厂的三大主机之一,它的作用是使燃料在炉膛中燃烧成很高温度的烟气,烟气从水管外面流通时,把大部分的热量传递给管内的水,使之成为饱和蒸气,然后继续过热成具有一定压力和温度的过热蒸汽,通过主蒸汽管道送入汽轮机。

锅炉有两个主要系统,一个是汽水系统,另一个是燃烧系统。

汽水系统由省煤器、汽包、下降管、水冷壁、过热器等设备组成。它的任务是使水吸收蒸发,最后成为具有一定参数的过热蒸汽。燃烧系统由燃烧器、炉膛、烟道及空气预热器等组成。

一、燃烧系统生产流程来自煤场的原煤经皮带机输送到位置较高的原煤仓中,原煤从原煤仓底部流出经给煤机均匀地送入磨煤机研磨成煤粉。自然界的大气经吸风口由送风机送到布置于锅炉垂直烟道中的空气预热器内,接受烟气的加热,回收烟气余热。从空气预热器出来约250左右的热风分成两路:一路直接引入锅炉的燃烧器,作为二次风进入炉膛助燃;

另一路则引入磨煤机入口,用来干燥、输送煤粉,这部分热风称一次风。流动性极好的干燥煤粉与一次风组成的气粉混合物,经管路输送到粗粉分离器进行粗粉分离,分离出的粗粉再送回到磨煤机入口重新研磨,而合格的细粉和一次风混合物送入细粉分离器进行粉、气分离,分离出来的细粉送入煤粉仓储存起来,由给粉机根据锅炉热负荷的大小,控制煤粉仓底部放出的煤粉流量,同时从细粉分离器分离出来的一次风作为输送煤粉的动力,经过排粉机加压后与给粉机送出的细粉再次混合成气粉混合物,由燃烧器喷入炉膛燃烧。二、汽水系统生产流程储存在给水箱中的锅炉给水由给水泵强行打入锅炉的高压管路,并导入省煤器。锅炉给水在省煤器管内吸收管外烟气和飞灰的热量,水温上升到300左右,但从省煤器出来的水温仍低于该压力下的饱和温度(约330),属高压未饱和水。水从省煤器出来后沿管路进入布置在锅炉外面顶部的汽泡。汽包下半部是水,上半部是蒸汽,下半部是水。高压未饱和水沿汽泡底部的下降管到达锅炉外面底部的下联箱,锅炉底部四周的下联箱上并联安装上了许多水管,这些水管内由下向上流动吸收炉膛中心火焰的辐射传热和高温烟气的对流传热,由于蒸汽的吸热能力远远小于水,所以规定水冷壁内的气化率不得大于40%,否则很容易因为工质来不及吸热发生水冷壁水管熔化爆管事故。

风烟系统:风分别通过一次风机、二次风机(循环流化床锅炉还有高流化风机)进入锅炉,进入锅炉前要通过空气预热器加热风温,以提高锅炉热效率。一次风机的风一般都作为燃料输送风,二次风机为助燃风,根据机组设计不同用途也不一样,我现在给你简单介绍下我厂的情况:作为循环流化床机组,我厂一次风作用有三,一是流化床料,二是作为给煤机播煤风,三是给煤机出口冷却风;二次风作用:助燃风和给煤机密封风;高流化风:流化返料器内床料,将其送回炉膛循环。当风进入炉膛后,煤燃烧过程将其转变成烟。烟气在炉膛流动,通过对流换热将部分热量传递给水冷壁后进入尾部烟道,尾部烟道有大量的换热器,如过热器、再热器、省煤器、空预器等,烟气自上而下从尾部烟道流过,将热量传导给这些换热器,从尾部烟道出来的烟气温度一般都很低了,一般在130——160℃间,烟气再通过除尘处理被排入大气。

汽机

汽轮机是将蒸汽的热力势能转换成机械能,借以拖动其他机械旋转的原动机。为保证汽轮机安全经济地进行能量转换,需配置若干附属设备。汽轮机及其附属设备由管道和阀门连成的整体称汽轮机设备。

汽轮机运行时,工作蒸汽先在其喷管内进行膨胀,压力降低而速度增大,形成一股高速流,此高速气流喷射到汽轮机动叶片上,动叶片安装在许多分离的圆盘上,而圆盘固定在汽轮机轴上,从而推动转子转动,使蒸汽所携带的热能转变为机械能。

汽轮机主要设备,一般包括汽轮机本体、附属设备及调速系统。

1、汽轮机本体

汽缸隔板轴承转子

2、汽轮机辅助设备

凝汽器凝结水泵和抽汽器除氧器加热器凝结水精处理装置

3、调速系统

由于外界负荷的变化频繁,汽轮机必须有一套自动调节装置,以便根据外界负荷变化来控制调速汽门的开度,及时改变汽轮机的进汽量,使其功率随时与外界负荷相适应,保证转速在很小范围内变化,这套自动调节装置称调速系统。

一、汽轮机相关系统简要概述

(一) 蒸汽系统

回热抽汽系统

用来加热进入锅炉的给水(主凝结水)。目前我国600MW等级的汽轮机组,采用8段回热抽汽。3段用于高压加热器的抽汽,1段用于除氧器的抽汽,4段用于低压加热器的抽汽。通常,用于高压加热器和除氧器的抽汽,由高、中压缸(或它们的排汽管)处引出,而用于低压加热器的抽汽由低压缸引出。理论上,回热抽汽的级数越多越好,但是考虑经济因素,不可能设置太多。

回热抽汽系统主要设备包括高压加热器、除氧器、低压加热器和轴封冷却器等。至今为止,汽轮机回热系统大多数采用表面式回热加热器。表面式回热加热器从结构上可分为两种,联箱-盘香管式和管板-U型管(或直管)式。目前采用最多的是管板-U形管形式的回热加热器。布置方式主要由立式布置和卧式布置

给水系统给水系统的主要功能是将除氧器水箱中的凝结水通过给水泵提高压力,经过高压加热器进一步加热之后,输送到锅炉的省煤器入口,作为锅炉的给水。此外,给水系统还向锅炉再热器的减温器、过热器的一、二级减温器以及汽轮机高压旁路装置的减温器提供减温水,用以调节上述设备出口蒸汽的温度。给水系统的最初注水来自凝结水系统,如图1-8。

我国目前已采用的600MW汽轮机组给水系统主要设备包括两台50%的汽动给水泵及其前置泵,驱动小汽轮机及驱动电机,电动给水泵、液力联轴器及其驱动电机,电动给水泵的前置泵及其驱动电机,8号、7号、6号高压加热器等设备以及管道、阀门等配套部件。600MW 汽轮机组的给水泵组,目前基本配置是:两台50%的纯电调汽动给水泵和一台25%-40%的液力调速的备用电动给水泵。一般汽动给水泵的小汽轮机的调速范围为2700~6000r/min,允许负荷变化率为10%/min;要求电动给水泵从零转速的备用状态启动至给水泵出口的流量和压力达到额定参数的时间为12~15s。

凝结水系统

凝结水系统的主要功能是将凝汽器热井中的凝结水由凝结水泵送出,经除盐装置、轴封冷凝器、低压加热器输送至除氧器,其间还对凝结水进行加热、除氧、化学处理和除杂质。此外,凝结水系统还向各有关用户提供水源,如有关设备的密封水、减温器的减温水、各有关设备的补给水以及汽轮机低压缸喷水等。凝结水系统的最初注水以及运行时的补水来自汽轮机的凝结水储存箱。

凝结水系统设备主要包括凝汽器、凝结水泵、凝结水储存箱、凝结水输送泵、凝结水收集箱、凝结水精除盐装置、轴封冷凝器、低压加热器、除氧器以及水箱及连接上述各设备所需要的管道、阀门等

循环水系统

循环水系统的主要功能是向汽轮机的凝汽器提供冷却水,以带走凝汽器内的热量,将汽轮机的排汽(通过热交换)冷却并凝结成凝结水。此外,系统还为除灰系统还开式冷却水系统提供水源。由于电厂地理条件不同,循环水系统所采用的循环水将有所不同,可能是江河、湖泊的淡水,也可能是海水(如海边的电厂)。系统的设置分为开式和闭式两种。开式循环水系统将循环水从水源输送到用水装置之后,即将循环水排出,不在利用,这种方式用于水源充足的环境;闭式循环水系统将循环水从水源输送到用水装置之后,排水经冷却装置(凉水塔)冷却后再次循环使用,运行过程中只补充小部分损失掉的循环水。

循环水系统的设备主要包括取水头、进水盾沟、进水工作井、循环水泵房设备、循环水进水管道、凝汽器、循环水排水管(箱涵)、虹吸井、排水工作井、排水盾沟&排水头等部分。其中用于海边电厂的循环水系统设计的问题&设备以及辅助设备较多,

汽轮机油系统

润滑油系统的主要作用是可靠的向汽轮发电机组的各个轴承、盘车装置提供合适的润滑、冷却油。一般包括主机和小机润滑油系统、主机顶轴油系统。

各个动力厂的整体布置不同,所以润滑油系统的设置也有所不同。但是从必不可少的要求来看,润滑油系统主要由润滑油箱(及其回油滤网、排烟风机、加热装置、测温元件、油位计)、主油泵、交流电动(备用)油泵、直流电动(事故)油泵、冷油器、油温调节装置(或油温调节阀)、轴承进油调节阀、滤油装置、油温/油压检测装置以及管道、阀门等部件组成,典型润滑油系统图如1-10。

国产600MW机组的润滑油系统,其离心式主油泵由汽轮机主轴驱动。在额定工况下,主油泵向三方面供油,一路经射油器作为动力油,将主油箱的油抽出,并经过冷油器之后送往机组的各个润滑点、低压密封备用油管路和主油泵进口;一路送往机械式超速装置;一路送往电机的高压密封油系统。汽轮机组一般设置有顶轴油系统,主要是避免汽轮机组盘车时发生干摩擦,防止轴颈与轴瓦相互损伤。但是也有的机组不设置顶轴油系统,如浙江北仑港电厂#1机组。另外,为了保证汽轮机润滑油的正常工作,系统一般设置有润滑油净化系统。润滑油系统的主要作用是确保润滑油的理化性能和清洁度。

发电

汽轮发电机的作用是将汽轮机转动的机械能,转变成电能,通过母线输送到电网。

发电机工作的机理是通过励磁机对发电机转子产生磁场,通过转子的旋转,对静子线圈产生切割磁力线作用,从而在静子线圈上产生电流。发电机主要由转子、轴承、励磁机、密封油系统和发电机静子冷却水系统组成。

集控室,这里可以说是电厂里面环境最好的工作场地,没有房外的灰飞烟饶,没有机器的轰轰隆隆,而且没有外面的酷热。在集控室,最引人注意的就是正门对面的一排三台机器,上面布满了红线,红点,还有一些绿色的(我是基本上看不懂的,只能从表面上看看其线路图),据介绍就是控制电厂输煤系统的机器装备等等的流程图。现在基本上都是自动化了,室中心的几台计算机就是对他进行控制的,而工作人员的人数只需要几个了,只要控制计算机就可以确保机器的正常安全运行,比起原来的旧电厂,现在的自动化程度大大提高,所以电厂的技术人员越来越少了,当然对他们的要求也是越来越高,直接带来的就是效益的越来越好了。

变电站,改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,称为变电所、配电室等。

变电站起变换电压作用的设备是变压器,除此之外,变电站的设备还有开闭电路的开关设备,汇集电流的母线,计量和控制用互感器、仪表、继电保护装置和防雷保护装置、调度通信装置等,有的变电站还有无功补偿设备。变电站的主要设备和连接方式,按其功能不同而有差异。变压器是变电站的主要设备,分为双绕组变压器、三绕组变压器和自耦变压器即高、低压每相共用一个绕组,从高压绕组中间抽出一个头作为低压绕组的出线的变压器。电压高低与绕组匝数成正比,电流则与绕组匝数成反比。

变压器按其作用可分为升压变压器和降压变压器。前者用于电力系统送端变电站,后者用于受端变电站。变压器的电压需与电力系统的电压相适应。为了在不同负荷情况下保持合格的电压有时需要切换变压器的分接头。

按分接头切换方式变压器有带负荷有载调压变压器和无负荷无载调压变压器。有载调压变压器主要用于受端变电站。电压互感器和电流互感器。它们的工作原理和变压器相似,它们把高电压设备和母线的运行电压、大电流即设备和母线的负荷或短路电流按规定比例变成测量仪表、继电保护及控制设备的低电压和小电流。在额定运行情况下电压互感器二次电压为l00V,电流互感器二次电流为5A或1A。电流互感器的二次绕组经常与负荷相连近于短路,请注意:绝不能让其开路,否则将因高电压而危及设备和人身安全或使电流互感器烧毁。

开关设备。它包括断路器、隔离开关、负荷开关、高压熔断器等都是断开和合上电路的设备。断路器在电力系统正常运行情况下用来合上和断开电路故障时在继电保护装置控制下

自动把故障设备和线路断开,还可以有自动重合闸功能。在我国,220kV以上变电站使用较多的是空气断路器和六氟化硫断路器

隔离开关(刀闸)的主要作用是在设备或线路检修时隔离电压,以保证安全。它不能断开负荷电流和短路电流,应与断路器配合使用。在停电时应先拉断路器后拉隔离开关,送电时应先合隔离开关后合断路器。如果误操作将引起设备损坏和人身伤亡。

负荷开关能在正常运行时断开负荷电流没有断开故障电流的能力,一般与高压熔断丝配合用于10kV及以上电压且不经常操作的变压器或出线上。

为了减少变电站的占地面积近年来积极发展六氟化硫全封闭组合电器(GIS)。它把断路器、隔离开关、母线、接地开关、互感器、出线套管或电缆终端头等分别装在各自密封间中集中组成一个整体外壳充以六氟化硫气体作为绝缘介质。这种组合电器具有结构紧凑体积小重量轻不受大气条件影响,检修间隔长,无触电事故和电噪声干扰等优点,具有发展前765kV已在变电站投入运行。目前,它的缺点是价格贵,制造和检修工艺要求高。变电站还装有防雷设备,主要有避雷针和避雷器。避雷针是为了防止变电站遭受直接雷击将雷电对其自身放电把雷电流引入大地。在变电站附近的线路上落雷时雷电波会沿导线进入变电站,产生过电压。另外,断路器操作等也会引起过电压。避雷器的作用是当过电压超过一定限值时,自动对地放电降低电压保护设备放电后又迅速自动灭弧,保证系统正常运行。目前,使用最多的是氧化锌避雷器。

一、前言

进入大学三年级,我们将开始学习专业课,开学的前三周,便是认识实习。认识实习其实也不能完整的学到一些专业知识,但是作为一次大学生与实际环境的直接接触,而且是第一次,必将对以后的专业学习乃至个人发展都将有所帮助。于是,我们就先后来到了武汉高新电厂与供热公司,武汉锅炉厂,武汉汽轮机厂和华能阳逻电厂实习,其实从真正的意义上讲,就像华能阳逻电厂的游立言工程师所讲,这短短的参观也就仅仅是参观而已,谈不上实习,但是就当作参观,也未必不可,而且对我们也会有很大的帮助。从小到大一直是与课本打交道,这次能直接学习课本以外的知识,当然是不能错过,而且要好好的把握。

虽然只经过短短的参观认识,但是经过各电厂的介绍得知,在新中国成立之后的半个世纪中,中国的电力工业取得了迅速的发展,平均每年以10%以上的速度在增长,到2005年12月底,全国装机容量以突破5亿千瓦,无论在装机容量还是在发电量上都跃居世界第二位,仅次于美国。特别是进入上个世纪90年代以来,我国的电力平均每年新增装机容量超过17GW,使长期严重缺电的局面得到了基本缓解,国民经济和社会发展对电力的需求得到了基本满足。

但是,我们目前还存在一些问题,首先是全国发电设备平均年利用小时逐年下降。其次是我国的人均用电水平底,远远落后于发达国家,大约是加拿大的1/20,美国的1/4,法国的1/8,全国至今还有上千万人没有用上电,而且近几年中国电力供需十分紧张,不少地区拉闸限电,可见,电力的发展还远远不够。

二、对火电厂的总体认识

第一次来到的就是武汉高新热电厂,当天上午,厂内工人向我们简单介绍了一下电厂的基本历史,还有就是发电的基本原理。然后我们就在一师兄的带领之下去参观了电厂的各个部分。电厂给人的第一感觉就是嘈杂,环境极为恶劣(至少对于我来说是这样的),对于师兄的介绍,讲解,如果站在一米外几乎就听不到说什么,很不幸,在厂房内,我没有能靠近师兄,当然也就不知所云,不过还好,经过了嘈杂的厂房后,我们来到了中央集控室,这里可以说是电厂里面环境最好的工作场地,没有房外的灰飞烟饶,没有机器的轰轰隆隆,而且没有外面的酷热,估计在这里面工作的职工的薪水也是最高的吧,后来问了师兄,果然是差不多。在集控室,最引人注意的就是正门对面的一排机器,上面布满了红线,红点,还有一些

绿色的(我是基本上看不懂的,只能从表面上看看其电路图),据介绍就是控制电厂的机器装备等等的电路图,现在基本上都是自动化了,室中心的几台计算机就是对他进行控制的,而工作人员的人数只需要几个了,只要控制计算机就可以确保机器的正常安全运行,比起原来的旧电厂,现在的自动化程度大大提高,所以电厂的技术人员越来越少了,当然对他们的要求也是越来越高,直接带来的就是效益的越来越好了。

这一点在阳逻电厂也可以鲜明的看得出来,我们在游立言工程师的导引之下,穿过了电厂的厂房,其中除了只看到机器设备之外就没有什么其他的,很难看到一个工人,偶尔看到的是几台可控机器,据游工介绍,只需要工人在上面设置好程序就可以不管了,机器的控制全部在集控室可以观测,所以只要电厂运行出了问题,就可以马上得知,一个电话过去,维修的就马上过去,使之尽快得到解决。

谈到自动化,我们在武汉锅炉厂也可以深深的感受到。在汽包制造分厂,汽包的一些辅助制造,比如汽包上面的钻孔,焊接等全部是自动进行,只要技术工人根据制造要求事先设计好程序,然后开动机器即可;在管子分厂,无数支管子的生产,如果仅仅是人为的打磨,那是不可能做到完全一样的,所以当然也利用机器的自动作业,工人只需要注意机器就可以了。对于锅炉,他有一个重要的组成部分就是水冷壁。水冷壁就是由许许多多的管子并排组成,管子之间都是焊接着,这些焊接也是有机器的自动完成,每次并排几只管子,调整好之间的位置,然后就是自动工作了。

现在火电厂的自动化程度都很高,人员数量必然就会减少,使得对工作的质量就会提高。据了解,火电厂的职工一般是五班三倒或者是四班二倒或者还有其他的,反正就是采用的轮流制度吧,每次只要是上班就是连续12个小时,在集控室工作的就必须严密注视着计算机,确保异常情况的出现能够被立即发觉;对于维修方面的,工作时间有有些不同,有一种开玩笑的说法,说维修工个个都患有“电话恐惧症”,只要电话一响,多半认为就是要工作了——电厂某些设备需要维修了,不管是寒冬还是酷暑,不管是白天还是黑夜,都必赶赴现场。当时我们听起来都很惊讶,心底里自然就想以后自己不要从事这种工作了,但是,中国有一句谚语——“我不入地狱,谁入地狱?”,如果以后真的是从事这种工作,当然是不会抱怨,更不会推却的了。但是话说回来,现在的科技如此发达,机器设备哪有那么容易坏掉呢,所以维修工人的情况也不像想象中的那么艰难。总之,在电厂工作的时间概念与一般的有些不同,典型的就是不会按照正常的星期计算,也不会有正常的“黄金周”,人家最闲的时候就是电厂最忙的时候,尽管如此,但是我认为这也没什么的,还不是都在地球上工作。

火电厂比起水电厂,它的地理位置那是热闹得多。一般在城市的周边建立火电厂,比如这次参观的高新电厂与供热公司和华能阳逻电厂,一个在武汉的关山二路,一个在武汉新州区的阳逻,都离武汉市中心很近。这是因为火电厂与水电厂不同,他不需要依赖于特别的地理环境,理论上讲,任何地方都可以建立火电厂。建在城市周边,为城市的输电带来了巨大的便利,不用拉很长的输电线,也不用超高的输电电压,这在输电成本上有巨大的节约,另外对城市的供电也很方便。

这次认识实习涉及到电厂的方方面面,当然也不会错过职工住宿薪资方面的问题。对于住宿,那是肯定很好的。游工介绍,阳逻的工人是住在武汉的竹叶山,如今,那可是武汉的繁华地带;高新的住在雄楚大街,也是黄金地带,都住的不错,那也是理所当然,谁让电厂的经济效益这么好?对于薪资方面,我没有顾面子,问了一些,但是几位都没有正面回答,但从住宿的介绍以及他们的表情看来(我观察了一下),应该还不错,这也是事实吧,当代的中国正在崛起,经济正在以爆炸式的方式增长,电力就是其中的最根本的基础保障,作为电力的源泉,电厂肯定是扮演着大佬的角色。

总之,火电厂给人的总体印象是工作环境不怎么样,工作时间不合大流,工作地点靠近城市,工作待遇还算不差,对国家的贡献无人能替,还有着巨大的发展!

五、总结

这次实习认识到了许许多多的实践知识,第一次直接面对电厂极其相关行业的制造厂,了解了火电厂的大致情况。在当今的这个经济迅猛发展中的中国,电力有着起不可动摇的地位。而随着知识经济的到来,科学技术日新月异,给各个方面都带来了巨大的变化与发展,当然也包括热力发电厂。仅就高新电厂与供热公司与华能阳逻电厂的装机容量相比而言,相差巨大:

岁月如梭,光阴似箭,转眼就过了半年,为了在2009年里把实习工作做的更好,我做为一名锅炉实习人员,以饱满的工作热情,努力学习专业技术知识,严格遵守各项运行规程,虚心求教,团结同事,不断提高工作能力,干好本职工作,现将半年来的工作加以总结:工作认真负责,敬业爱岗,以公司理念要求自己,诚信待人,踏实做事,服从领导安排,克服各种困难,始终以积极认真的心态对待工作。虚心向有经验的老师傅学习,积极提高自己操作技能。在工作之初,因为从未参加过锅炉工作,工作中出现很多困难,但我责任心强、有上进心、会虚心学习他人的长处,我平时对自身的要求甚严,做事一丝不拘。火力发电厂的生产过程实质上是四个能量形态的转换过程,首先化石燃料的化学能经过燃烧转变为热能,这个过程在蒸汽锅炉或燃汽机的燃烧室内完成;再是热能转变为机械能,这个过程在蒸汽机或燃汽轮机完成;最后通过发电机将机械能转变成电能。火力发电厂的原料就是原煤。原煤一般用火车运送到发电厂的储煤场,再用输煤皮带输送到煤斗。原煤从煤都落下由给煤机送入磨煤机磨成煤粉,并同时送入热空气来干燥和输送煤粉。形成的煤粉空气混合物经分离器分离后,合格的煤粉经过排粉机送入输粉管,通过燃烧器喷入锅炉的炉膛中燃烧。燃料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入磨煤机作干燥以及送粉之外,另一部分直接引至燃烧器进入炉膛。燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器净化后的烟气由引风机抽出,经烟囱排入大气。如电厂燃用高硫煤,则烟气经脱硫装置的净化后在排入大气。煤燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由排渣装置排入灰渣沟,再由灰渣泵送到灰渣场。大量的细小的灰粒(飞灰)则随烟气带走,经除尘器分离后也送到灰渣沟。锅炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。经过以上流程,就完了燃料的输送和燃烧、蒸汽的生成燃物(灰、渣、烟气)的处理及排出。由锅炉过热气出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀作功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体(主要是氧气)。经化学车间处理后的补给水(软水)与主凝结水汇于除氧器的水箱,成为锅炉的给水,再经过给水泵升压后送往高压加热器,偶汽轮机高压部分抽出一定的蒸汽加热,然后送入锅炉,从而使工质完成一个热力循环。循环水泵将冷却水(又称循环水)送往凝结器,吸收乏气热量后返回江河,这就形成开式循环冷却水系统。在缺水的地区或离河道较远的电厂。则需要高性能冷却水塔或喷水池等循环水冷设备,从而实现闭式循环冷却水系统。经过以上流程,就完成了蒸汽的热能转换为机械能,电能,以及锅炉给水供应的过程。因此火力发电厂是由炉,机,电三大部分和各自相应的辅助设备及系统组成的复杂的能源转换的动力厂。这次实习认识到了许许多多的实践知识,第一次直接面对电厂极其相关行业的制造厂,了解了火电厂的大致情况。在当今的这个经济迅猛发展中的中国,电力有着起不可动摇的地位。而随着知识经济的到来,科学技术日新月异,给各个方面都带来了巨

大的变化与发展,当然也包括热力发电厂。另外,虚机团上产品团购,超级便宜

我国大气污染物排放标准对烟囱高度规定一览表

我国大气污染物排放标准对烟囱高度规定一览表

锅炉大气污染物排放标准 1 范围 本标准分年限规定了锅炉烟气中烟尘、二氧化硫和氮氧化物的最高允许排放浓度和烟气黑度的排放限值。 本标准适用于除煤粉发电锅炉和>45.5MW(65t/h)沸腾、燃油、燃气发电锅炉以外的各种容量和用途的燃烧锅炉、燃油锅炉和燃气锅炉排放大气污染物的管理,以及建设项目环境影响评价、设计、竣工验收和建成后的排污管理。 使用甘蔗渣、锯未、稻壳、树皮等燃料的锅炉,参照本标准中燃煤锅炉大气污染物最高允许排放浓度执行。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。 GB 3095-1996

GB 5468-91 GB/T 16157-1996 环境空气质量标准 锅炉烟尘测试方法 固定污染源排气中颗粒物测定与气态污染物采样方法 3 定义 3.1 标准状态 锅炉烟气在湿度为273K,压力为101325Pa时的状态,简称“标态”。本标准规定的排放浓度均指标准状态下干烟气中的数值。 3.2 烟尘初始排放浓度 指自锅炉烟气出口处或进入净化装置前的烟尘排放浓度。 3.3 烟尘排放浓度 指锅炉烟气经净化装置后的烟尘排放浓度。未安装净化装置的锅炉,烟尘初始排放浓度即是锅炉烟尘排放浓度,其数值也相同。

3.4 自然通风锅炉 自然通风是利用烟囱内、外湿度不同所产生的压力差,将空气吸入炉膛参与燃烧,把燃烧产物排向大气的一种通风方式。这种不采用鼓、引风机机械通风的锅炉,称之为自然通风锅炉。 3.5 收到基灰分 以收到状态的煤为基准,测定的灰分含量,曾称“应用基灰分”,用“Aar”表示。 3.6 过量空气系数 燃料燃烧时实际空气需要量与理论空气需要量之比值,用“α”表示。 4 技术内容 4.1 适用区域划分类别 本标准中的一类区和二、三类区系指GB3095-1996《环境空气质量标准》中所规定的环境空气质量功能区的分类区域。 本标准中的“两控区”系指《国务院关于酸雨控制区和二氧化硫污染控制区有关问题的批复》中所划定的酸雨控制区和二氧化硫污染控制区的范围。

烟囱高度的设计方法

烟囱高度的设计方法高架连续点源的典型代表就是孤立的高烟囱烟囱的作用除了利用热烟气与环境冷空气之间的密度差产生的自生通风力来克服烟气流动阻力向大气排放外,还要把烟气中的污染物散逸到高空之中,通过大气的稀释扩散能力降低污染物的浓度,使烟囱的周边的环境处于允许的污染程度之下1. 烟囱高度对烟气扩散的影响烟囱高度对扩散稀释污染物以及降低污染物的落地浓度起着重要作用由高斯扩散模式(4-23)可见,落地最大浓度与烟囱有效高度的平方成反比一个高烟囱所造成的地面污染物浓度,总是比相同排放强度的低烟囱所造成的浓度低,如图5-20所示其中,C(h2)<C(h1),即烟囱下风向高烟囱的地面烟气浓度小于低烟囱,只有当离开烟囱相当长的距离后烟气浓度曲线才逐渐接近此外,Xmax(h2)>Xmax(h1),Cmax(h2)<Cmax(h1),即低烟囱的污染物最大落地浓度Cmax位于离烟囱较近的距离Xmax处,而且数值上比高烟囱污染物的最大落地浓度要大得多因此,高烟囱的作用不是将高浓度的烟气由近处转移至远处,而是使下风处约10 km范围内的烟气浓度都降低了烟囱的设计应合理地确定烟囱高度,做到既减少污染又不浪费因为高烟囱虽然非常有利于污染物浓度的扩散稀释,但烟囱达到一定高度后,再继续增加高度对污染物落地浓度的降低已无明显作用,而烟囱的造价也近似地与烟囱高度的平方成正比因此,烟囱高度设计的基本要求是,在排放源造成的地面最大浓度不超过国家规定的数值标准下,使得建造投资费用最小2. 烟囱高度的设计方法烟囱高度应满足排放总量控制的要求目前,烟囱高度的计算一般采用按烟气在有效高度H处的正态分布扩散模式推导确定的简化公式,主要以地面最大浓度为依据,可以有以下两种计算方法:(1)按污染物的地面最大浓度计算的h若国家规定的排放标准浓度为C0,当地本底浓度为Cb,则烟囱排放污染物产生的地面最大允许浓度应满足CmaxC0-Cb如果设计有效高度为H的烟囱,当z/y=常数(一般取0.5~1.0)时,由式:(2)按污染物的地面绝对最大浓度计算的h 烟囱排放污染物产生的地面绝对最大允许浓度应满足可得烟囱高度:上述两种计算方法的差别在于风速取值不同式取用危险风速ucr计算h,这是考虑风速变化对地面最大浓度Cmax到的影响,当风速增加时,一方面使Cmax减小(见式5-26);另一方面,从烟流抬升公式烟流抬升高度h减小,则Cmax反而增大这双重相反影响的结果,定会在某一风速下出现地面最大浓度的极大值,称为地面绝对最大浓度Cabsm当出现绝对最大浓度时的风速即为危险风速ucr显然,风速取值不同,计算结果也不同将烟流抬升高度公式代入式中,便可得到式3. 影响烟囱设计高度的因素设计烟囱高度首先要考虑所用公式是否适当,能否代表实际的烟流扩散型式,其次是选择合理的计算参数烟囱高度设计中,选择适当的计算公式是准确确定烟囱高度的必要条件除了上述介绍的以外,还有一些计算公式这些公式对地形地貌及气象条件的依赖性很强,且计算结果差别也很大例如上述两种烟囱高度计算公式,按u=5m/s和ucr=15m/s分别计算,可达h=0.46hcr,即按u计算的烟囱高度还不到按ucr计算结果的一半设计时应结合当地实际状况,考虑可能出现的最不利的气象条件,以及地面最大浓度的数值出现的频率与持续时间,从而选择适合相应条件的计算公式近地面的风速是影响大气扩散和烟囱高度的重要因素如前所述,随着风速的增大,一方面增强了大气对污染物扩散稀释的能力,直接使地面最大浓度值减小;另一方面减小了烟流的抬升高度,降低了烟囱有效高度,反而使地面最大浓度值增大因此,当烟囱的几何高度一定时,地面最大浓度将随风速由小增大而出现最大值,如图5-21所示若按危险风速或地面绝对最大浓度要求设计烟囱高度,实际风速下地面浓度均不会超标,但烟囱高投资大;若按平均风速或地面最大浓度要求来设计,则烟囱较矮,可节省费用,但风速小于平均风速时,地面浓度可能超标因此对于不同的地区,应当考虑一个合理的计算风速通常是确定出一个地面浓度不会超标的保证率,以此确定用于烟囱高度设计的计算风速,即这个高度可保证在所确定的保证率内地面浓度不会超标对有抬升烟源的情况,用图5-21加以说明若规定地面污染浓度不超过0.9Cabsm,由曲线查得,当风速u/ u cr<0.52或u/ u cr>1.92时,Cmax<0.9 Cabsm 如果这两区间风速的累计出现频率为90%,此即为

火力发电厂的生产工艺流程分析介绍

一.火力发电厂的生产工艺流程分析介绍 1.1 火力发电过程中能量的转化过程 火力发电的过程涉及到五次能量的转换,每一次能量的转换都在不同的设备中完成。首先,火电厂中采用的原料〔煤),本身具备的是化学能,煤粉碎后被鼓风机吹入锅炉内进行烧烧,实现化学能向热能的转换。锅炉内煤燃烧产生的热能通过热传递被水吸收,水的温度升高并且汽化,在锅炉内产生温度和压力都非常高的水蒸汽,热能转变成水蒸汽的内能。高温、高压的水蒸汽在管道中被输送入汽轮机内,并在汽轮机的喷嘴中沿特定的方向膨胀,流动速度加快,压力降低,水蒸汽具有的内能转换为流动蒸汽动能。高速流动的水蒸汽在汽轮机内吹动动叶栅旋转,水蒸汽动能转变为汽轮机的旋转机械能。高速转动的汽轮机再次带动与其相连的发电机的转子旋转切割磁力线产生电能,电能经过变压器变压后被输送出去。经过上述五次能量形式的转换,将煤具有的化学能转化为电能输送出去。 1.2 火力发电厂的生产工艺流程 1.2.1 生产工艺流程简介:电厂以原煤、煤干石为原料,以水为工质,产生电能和热能。生产工艺流程主要包括输煤系统、破碎煤系统、锅炉系统、汽机系统、电气系统、热工系统、化学水处理系统、除灰渣系统等。燃煤(煤研石和原煤)运进储煤场存放,之后经两级破碎成循环流化层所需要的粒径后,贮藏在煤仓内。在锅炉负荷调整好后,将其与储存在石灰粉仓内的石灰石粉按一定的比例一起送入燃烧室。空气经送风机升压并在空气预热器内预热,一次风被送入风箱,二次风送入燃烧室。燃烧气体经过各热交换器吸热后进入旋风分离器,然后进入尾部烟道,经布袋除尘器除尘后,通过引风机烟囱排入大气。炉底的灰渣落入渣斗内和除尘器收集的细灰一起被送入灰场或运至综合利用场所。锅炉系统的供水经过预处理和化学处理之后,由回热系统经省煤器预热后进入汽包。水在燃烧室四周的水冷壁内吸热产生蒸汽,再经过加热器生成过热蒸汽。过热蒸汽进入汽轮机膨胀做功,带动发电机发出电能。同时,汽轮机泛汽经凝汽器凝结成水,进入回热系统循环利用,而发电机发出的电能经升压站升压后送入电网。 1.2.2 主要工艺系统简介 1.运煤系统 输煤系统是电力生产工艺中很重要的一部分,输煤系统包括以下几个子部分: 1) 受卸装置:受卸装置用来收受和卸空发到电厂的装煤铁路车皮,在某些情况下还用 来在其煤斗〔地槽)中短期贮存所卸下来的煤。

燃煤电厂玻璃钢内筒套筒式烟囱设计

第40卷增刊2007年10月 武汉大学学报(工学版) Engineering Journal of Wuhan University Vol.40Sup.Oct.2007 作者简介:杨小兵(19782),男,工程师,主要从事电力土建结构设计工作. 文章编号:167128844(2007)S120451204 燃煤电厂玻璃钢内筒套筒式烟囱设计 杨小兵1,田树桐1,马 申1,张大厚2 (1.北京国电华北电力工程有限公司,北京 100011;2.中冶集团建筑研究总院,北京 100088) 摘要:为达到环保要求和节省成本,燃煤电厂常采用湿法脱硫不上GGH 工艺.文章基于作者设计的国内首座 大型玻璃钢内筒套筒式烟囱(180/Φ6.6m ),从结构总体布置、计算模型简化与计算、FRP 内筒结构设计、铺层与材料设计、试验验证、连接构造等方面系统的阐述了玻璃钢烟囱的设计方法,并对需要注意的问题进行了重点说明.可供有关工程技术人员参考. 关键词:燃煤发电厂;湿烟囱;玻璃钢;防腐;结构设计 中图分类号:TU 233 文献标志码:A Design of chimney with FRP Liners in coal 2f ired pow er plant YAN G Xiaobing 1,TIAN Shutong 1,MA Sheng 1,ZHAN G Dahou 2 (1.North China Power Engineering (Beijing )Co.Ltd.,BeiJing 100011,China ;2.Central Research Institute of Building and Construction ,MCC ,Beijing 100088,China ) Abstract :In order to protect environment and save co st ,The wet desulf urization wit hout GGH Process is always adopted in coal 2fired power plant.Based o n t he first large chimney wit h FRP Liners (180/Φ6.6m )designed by t he aut hors ,t he design met hod of t he fiberglass reinforced plastics (FRP )chimney is systematically elaborated from t he general st ruct ure layout ,simplification and calculation of t he mat he 2matical model ,design of FRP liners ,t he design of ply and materials ,test verification ,connection con 2struction etc.Also ,t he problems needing attention are explained in detail .The design met hod can be used for reference. K ey w ords :coal 2fired power plant ;wet chimney ;FRP ;st ruct ure design 当前普遍采用的湿法脱硫不加装烟气加热系统工艺,使排入烟囱的烟气温度在50℃左右,湿烟气在烟囱内结露形成冷凝酸液,对烟囱的腐蚀性大大加强,给烟囱结构型式和内衬材料防腐性能提出了更高要求.笔者在华能某电厂二期机组脱硫改造工程中,进行了180/Φ6.6m 整体缠绕式玻璃钢内筒套筒式烟囱的设计尝试. 1 烟囱结构总体布置 玻璃钢(Fiberglass Reinforced Plastic ,玻璃纤维增强塑料,缩写为FRP )是由增强材料玻璃纤维和基体树脂组成的复合材料,其特点是轻质、纤维 方向强度高、刚度小.玻璃钢的密度介于1500~2000kg/m 3,为普通碳钢的1/4~1/5,比普通混 凝土略低.玻璃钢的弹模较低,为3~30GPa ,是一般结构钢的1/100~1/10.包括玻璃钢在内的各种复合材料被广泛用于结构加固、组合结构、大跨和空间结构中[1]. 玻璃钢内筒一般分节在现场缠绕加工,缠绕时在环向或螺旋方向采用缠绕纱,轴向采用单向布增强,安装时再将各节手糊连接,节点处轴向抗拉强度往往难以保证,因此,结构布置时应尽量避免玻璃钢内筒轴向承受较大的拉力.考虑到以上特点,较高的玻璃钢内筒不宜采用整体自立式和整体悬

烟囱结构检测技术方案

山西鲁能河曲发电有限公司 240m钢筋混凝土烟囱结构检测 技术方案 项目名称: 240m钢筋混凝土烟囱结构检测 检测单位:河北省建筑科学研究院 Hebei Construction Science Research Institute

目录 一、技术方案 1. 工程概况 (03) 2. 检测项目 (03) 3. 检测目的和工作内容 (04) 4. 检测依据标准 (05) 5. 烟囱详细调查 (06) 6. 烟囱评估 (06) 7. 现场工作要求 (06) 8. 施工前准备 (06) 9. 取样部位 (07) 10. 取样种类 (08) 11.工期及保证措施 (08) 12. 检测人员计划 (12) 13. 主要检测设备表 (12) 14. 质量保证措施 (12) 15. 安全技术保证措施 (13) 16.现场安全文明施工保证措施 (14)

山西鲁能河曲发电有限公司 240m钢筋混凝土烟囱结构检测 1.工程概况 河曲电厂二期烟囱高度240米,烟筒出口内径为10.4米,底部内径为23.39米。结构形式是:单筒式钢筋混凝土结构。 钢筋混凝土筒壁贴OM涂料+玻璃丝布(两布五漆,其中面漆两遍,总厚度不小于2mm),内衬耐酸耐火砌砖和轻质玻化陶瓷砌体砖,筒壁与内衬之间80mm厚现浇发泡聚氨酯隔热层。 2013年3月5日对二期烟囱外侧筒壁漏点进行了观察和统计,现存大小共17处渗漏点。(7处漏点位于东侧约48米附近,2处漏点位于南侧约50米附近,2处漏点位于南侧约170米附近,2处位于西侧48米附近,4处漏点位于西侧155米平台下西侧位置),渗漏点有黑褐色液体渗漏至筒壁外侧。 为查明该构筑物混凝土构件、附属钢结构构件的现状腐蚀、损坏腐蚀情况,我单位计划对该烟囱外壁进行检测,并在外筒壁钻芯取样,了解烟囱筒壁结构、附属钢结构构件的腐蚀渗漏状况。为查明该构筑物能否继续安全使用,我院对该烟囱外壁进行详细的检测,根据检测结果提出合理性建议。 2.检测项目 为保证检测的全面准确,要求检测过程中包含以下检测项目: 1、初步调查

火力发电厂生产指标介绍

三、火力发电厂生产指标介绍 一、主要指标介绍 1、供电煤耗:指火力发电机组每供出单位千瓦时电能平均耗用的标准煤量。他是综合计算了发电煤耗及厂用电率水平的消耗指标。因此,供电标煤耗综合反映火电厂生产单位产品的能源消耗水平。 供电煤耗=发电耗用标准煤量(克)/供电量(千瓦时)=发电耗用标准煤量(克)/发电量X(1-发电厂用电率)(千瓦时) 2、影响供电煤耗的主要指标 1)锅炉效率:锅炉效率是指有效利用热量与燃料带入炉内热量的百分比。 2)空预器漏风率:是指漏入空气预热烟气侧的空气质量流量与进入空气预热器的烟气质量流量比。 3)主汽温度:主汽温度是汽轮机蒸汽状态参数之一,是指汽轮机进口的主蒸汽温度。 4)主汽压力:主汽压力也是汽轮机蒸汽参数状态之一,是指汽轮机进口的主蒸汽压力。 5)再热汽温:再热汽温度是汽轮机蒸汽参数状态之一,是指汽轮机进口的再热蒸汽温度。 6)排烟温度:排烟温度是指锅炉末级受热面(一般指)空气预热器后的烟气温度。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道烟气温度的算数平均值。 7)飞灰可燃物:是指锅炉飞灰中碳的质量百分比(%)。 8)汽轮机热耗率:是指汽轮机发电机组每发出一千瓦时电量所消耗的热量。以机组定期或修后热力试验数据为准。 9)真空度:是指汽轮机低压缸排气端真空占当地大气压的百分数。 10)凝汽器端差:是指汽轮机低压缸排汽温度与冷却水出口温度之差。 11)高加投入率:是指汽轮机高压加热器运行时间与机组运行时间的比值。 12)给水温度:是指机组高压给水加热器系统出口的温度值(℃)。

13)发电补给水率:是指统计期内汽、水损失水量,锅炉排污量,空冷塔补水量,事故放水(汽)损失量,机、炉启动用水损失量,电厂自用汽(水)量等总计占锅炉实际总蒸发量的比例。 注:以上指标偏离设计值对煤耗的影响见附表 3、综合厂用电率:是指统计期内综合厂用电量与发电量的比值,即: 综合厂用电率=(发电量/综合厂用电量)×100%。综合厂用电量是指统计期内发电量与上网电量的差值,反应有多少电量没有供给电网。 辅机单耗:吸、送风机、制粉系统、给水泵、循环水泵、脱硫等。 4、发电燃油量:是指统计期内用于发电的燃油消耗量。 5、发电综合耗水率:是指发单位发电量所耗用的新鲜水量(不含重复利用水)。在统计耗水量时应扣除非发电耗水量。 6、100MW及以上机组A、B级检修连续运行天数:是指100MW及以上机组经A、B级检修后一次启动成功且连续运行天数,期间任何原因发生停机则中断记录。 7、等效可用系数:等效可用系数是指机组可用小时与等效降出力停运小时的差值与统计期日历小时的比值。 8、机组非计划停运次数:机组非计划停运次数是指机组处于不可用状态且不是计划停运的次数。 二、保证生产指标的措施 1、深入开展能耗诊断,认真落实整改措施,不断提高能耗管理水平。 2、不断深化对标管理,通过运行优化、设备治理、科技创新、节能改造等技术手段,不断提高机组经济运行水平。 3、深化运行优化,加强耗差分析,确定最优经济运行方案,合理调整运行方式; 4、全面推行经济调度,明确各台机组调度顺序,提升机组安全、经济运行水平;

我国大气污染物排放标准对烟囱高度规定一览表

烟囱设计标准 1. 环境空气质量功能区分类 一类区为自然保护区、风景名胜区和其它需要特殊保护的地区; 二类区为城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区; 三类区为特定工业区; 2. 环境空气质量标准分级 环境空气质量标准分为三级: 一类区执行一级标准 二类区执行二级标准 三类区执行三级标准

我国大气污染物排放标准对烟囱高度规定一览表 标准名称应用范围烟囱高度规定如何执行 火电厂大气污染物排放标准火电由环境影响评价确定烟囱高度不够即 造成全厂SO 2 排放 量超标 锅炉大气污染物排放标准锅炉①根据锅炉房总容量确定烟囱最低高度; ②要高出烟囱半径200m以内建筑物3m以上; ③锅炉>28MW时,根据环境影响评价确定,但不 得低于45m。 如达不到左栏第 ②项要求时,执行 排放标准时要加 严一级 工业炉窑大气污染物排放标准固体、液体、气体 燃料和电加热的工 业炉窑,不包括炼 焦、焚烧、水泥 ①最低允许高度为15m; ②要高出烟囱半径200m内建筑物3m以上; ③除执行上述两项外,还应符合环境影响报告书规 定。 如达不到左栏任 何一项时,执行标 准时,要加严50%。 炼焦炉大气污 染物排放标准 炼焦炉未明文规定/ 水泥厂大气污染物排放标准水泥行业按单机生产能力确定烟囱最低允许高度,并通过环 境影响评价确定。对一般水泥厂配套设备仅要求高 出屋面3m。 / 恶臭污染物排 放标准 最低允许高度为15m 大气污染物综合排放标准行业标准之外的大 气污染 要高出烟囱半径200m内建筑物5m以上如达不到烟囱高 度标准时,要加严 50%。 焚烧炉未明文规

火力发电厂烟囱及冷却塔技术标

目录

航空照明系统安装...............................................

文明施工管理制度............................................... 3.1在建工程项目及中标或分包工程统计表 .................................

1 施工组织设计及方案、措施 1.1 编制依据 本施工组织设计是根据《火力发电厂工程施工组织设计导则》、本标段工程施工招标文件、国家现行技术法规、施工规范、规程及验收标准编制的。由于招标文件提供的图纸及其它资料的深度限制,一些具体的施工方案是参照本公司施工过的同类型机组制定的,可能与实际情况有些差距,如我公司中标,我们将在施工前编制出内容详细、措施先进的单位、分部及分项工程施工方案及作业指导书,用于指导施工。 《火力发电工程施工招标程序及招标文件范本》; 《中国电力投资集团公司二○一一年度第三批集中招标施工招标文件·重庆合川双槐电厂二期扩建2×660MW超超临界燃煤发电机组工程·#2标段》; 《火力发电工程施工组织设计导则》。 《电力建设安全工作规程》DL5009.1-2002 国家电网公司《基建安全管理规定》(国家电网基建[2010]1020号) 《建设工程质量管理条例》(国务院令第279号) 《建设工程安全生产管理条例》(国务院令第393号) 《实施工程建设强制性标准监督规定》(建设部令第81号) 东电烟塔公司企业标准《质量、环境、职业健康安全管理手册》; 东电烟塔公司企业标准《质量、环境、职业健康安全管理程序文件》; 我公司现有施工机械、周转料具、施工人员、管理人员、流动资金等资源。 1.2 工程概况 1.2.1 工程特点 工程项目名称:重庆合川第二发电有限责任公司双槐电厂二期扩建2×660MW超超临界燃煤发电机组工程。 工程项目地址:重庆市合川区双槐镇。 工程建设单位:重庆合川第二发电有限责任公司。 工程项目规模:2×660MW超超临界燃煤发电机组工程。 工程项目范围:#2标段(烟囱、冷却塔区域建筑施工)。

烟囱高度的计算

烟囱高度的计算 确定烟囱高度,既要满足大气污染物的扩散稀释要求,又要考虑节省投资;最终目的是保证地面浓度不超过《大气环境质量标准》规定的浓度限值。烟囱高度的计算方法,目前应用最普遍的是按高斯模式的简化公式。由于对地面浓度的要求不同,烟囱高度的计算方法有几种,下面介绍按地面最大浓度的计算方法。 1按地面最大浓度的计算方法 该法是按保证污染物的地面最大浓度不超过《大气环境质量标准》规定的浓度限值来确定烟囱高度。若设C0为《大气环境质量标准》规定的某污染物的浓度限值,C b为其环境本底浓度,则由地面最大浓度的高斯模式得到烟囱高度计算公式: 若设为国家标准规定的浓度限值,为环境本底浓度,按保证 则由式(4-10) 从上面计算方法可见,按保证C max设计的烟囱高度较矮,当风速小于平均风速时,地面浓度即超标。因此提出对公式中的和稳定度取一定保证率下的值,计算结果即为某一保证率的气象条件下的烟囱高度。 烟囱设计中的几个问题 (1)上述烟囱高度计算公式皆是在烟流扩散范围内温度层结是相同的条件下;按锥形烟流高斯模式导出的。在上部逆温出现频率较高的地区,按上述公式计算后,还应按封闭型扩散模式校核。在辐射逆温较强的地区,应该用熏烟型扩散模式较核。

(2) 烟流抬升高度对烟囱高度的计算结果影响很大,所以应选用抬升公式的应用条件与设计条件相近的抬升公式。否则,可能产生较大的误差。在一般情况下,应优先采用“制订方法和原则”中推荐的公式。 (3) 为防止烟流因受周围建筑物的影响而产生的烟流下洗现象,烟囱高度不得低于它所附属的建筑物高度的1.5~2.5倍;为防止烟囱本身对烟流产生的下洗现象,烟囱出口烟气流速不得低于该高度处平均风速的1.5倍。为了利于烟气抬升,烟囱出口烟气流速不宜过低,一般宜在20-30m/s;排烟温度直在100 ℃以上;当设计的几个烟囱相距较近时,应采用集合(多管)烟囱,以便增大抬升高度。

火电厂三大系统简介

三大系统简介 一、燃烧系统 燃烧系统由输煤、磨煤、燃烧、风烟、灰渣等环节组成,其流程如图2所示。 (l)运煤。电厂的用煤量是很大的,一座装机容量4×3O万kW的现代火力发电厂,煤耗率按36Og/kw.h计,每天需用标准煤(每千克煤产生70O0卡热量)360(g)×120万(kw)×24(h)=10368t。因为电厂燃煤多用劣质煤,且中、小汽轮发电机组的煤耗率在40O~5O0g /kw·h左右,所以用煤量会更大。据统计,我国用于发电的煤约占总产量的1/4,主要靠铁路运输,约占铁路全部运输量的4O%。为保证电厂安全生产,一般要求电厂贮备 十天以上的用煤量。 (2)磨煤。用火车或汽车、轮船等将煤运至电厂的储煤场后,经初步筛选处理,用输煤皮带送到锅炉间的原煤仓。煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风烘干并带至粗粉分离器。在粉粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。 (3)锅炉与燃烧。煤粉由可调节的给粉机按锅炉需要送入一次风管,同时由旋风分离器送来的气体(含有约10%左右未能分离出的细煤粉),由排粉风机提高压头后作为一次风将进入一次风管的煤粉经喷燃器喷入炉膛内燃烧。 电厂煤粉炉燃烧系统流程图 目前我国新建电厂以300MW及以上机组为主。300MW机组的锅炉蒸发量为10O0t/h(亚临界压力),采用强制循环(或自然循环)的汽包炉;600MW机组的锅炉为200Ot/h的(汽包)直流锅炉。在锅炉的四壁上,均匀分布着4支或8支喷燃器,将煤粉(或燃油、天然气)喷入炉膛,火焰呈旋转状燃烧上升,又称为悬浮燃烧炉。在炉的顶端,有贮水、贮汽的汽包,内有汽水分离装置,炉膛内壁有彼此紧密排列的水冷壁管,炉膛内的高温火焰将水冷壁管内的水加热成汽水混合物上升进入汽包,而炉外下降管则将汽包中的低温水靠自重下降至下连箱与炉 内水冷壁管接通,靠炉外冷水下降而炉内水冷壁管中热水自然上升的锅炉叫自然循环汽包

简述火力发电厂烟囱的设计

简述火力发电厂烟囱的设计 发表时间:2018-06-15T10:23:34.280Z 来源:《建筑学研究前沿》2018年第1期作者:夏亚运 [导读] 针对套筒和多管式钢筋混凝土烟囱而言,烟囱的作用方式主要包含多种类型。 中国联合工程有限公司浙江杭州 310052 摘要:在火力发电厂中,烟囱是最为重要的结构之一。当前,由于环保要求的增高,烟囱的高度不断增加,烟筒和多管式钢筋混凝土烟囱是应用最为广泛的烟囱类型。本文主要论述了套筒和多管式钢筋混凝土烟囱的设计方案,提出了需要注意的事项。 关键词:火力发电厂;套筒;多管式钢筋混凝土烟筒;设计方案;注意事项 针对套筒和多管式钢筋混凝土烟囱而言,烟囱的作用方式主要包含多种类型,分别为自立式、整体悬挂、分段悬挂、分段支承以及综合形式。其中,自立式钢内容具备受力明确、计算简单的特点,它属于长悬臂压弯构件的一种,存在稳定计算问题,一般而言,管壁比较厚,经济性能不高。整体悬挂和分段悬挂主要是以受拉为主要的方式,它可以防止表面失去稳定性,经济性能高,但是结构体系和荷载传递路径比较复杂。分段悬挂和分段支承膨胀节的个数比较多,在处理防腐位置的时候比较困难,存在着很大的安全隐患。 1、烟囱防腐 针对套筒和多管式钢筋混凝土烟囱,内筒的防腐内衬材料可以用于钛板内衬、耐酸钢以及防腐涂料以及泡沫玻璃砖内衬等,其中存在的特征主要表现在以下几个方面: 1.1钛钢复合板 钛钢复合板技术相对而言较为成熟,具备专业的标准准则,自身有着良好的防腐性能,但是焊接工艺复杂程度高,无法有效保证的焊接整体质量,并且输出成本高。 1.2尿酸钢+防腐涂料 在钢内筒中,一般采取JNS耐硫酸露点防腐蚀钢板,内涂的防腐涂料一般包含RHF烟囱专用的防腐涂料等。将RHF烟囱专用防腐涂料涂抹在JNS钢中,产生了良好的作用,这一涂料具备施工便利,能够保证施工整体质量等优势。当前,在国内用于设置的GGH工程居多。在湿法脱硫不设置GGH烟囱中出现的问题有很多,并且钢内筒受到了严重的腐蚀。 1.3内衬玻璃砖或者内衬泡沫玻化砖 一般来讲,排烟筒是使用Q235B或者JNS耐硫酸露点防腐蚀钢板作为钢内筒,在内部贴上泡沫玻璃砖或者泡沫玻化砖。其中,泡沫玻璃砖主要是通过泡沫硼硅玻璃结合人造橡胶技术制造而成的,将其应用到脱硫系统酸冷液环境中去,能够起到良好的抗腐蚀作用。而泡沫玻璃砖则是多项材料功能组合到一起的材料,比如集合高强度、耐热、耐酸碱、防水抗渗以及高效隔热保温等性能,自身具备良好的保温作用。泡沫玻化砖配合专门的防毒底漆和耐酸耐热弹性密封专用胶,优势广。 在整个防腐性能中,粘结料的防腐和耐久性是保证质量的关键。如果粘结料发生老化或者开裂现象,必行对整个内衬系统的防腐性能产生不利的影响。因此,在施工过程中,要注意砖缝和胶体之间的密封程度,加以固定。另外,温度过高或者过低的话也会造成防腐层开裂或者脱落,所以,必须加以维护,定期保养等。 1.4镍基合金内衬 镍基合金由于性能良好,其受到了广泛关注,这一材料和钛板防腐材料相比较而言,防腐性能更高一些,但是成本太高,所以在国内电厂还没有将镍基合金当做烟囱防腐内衬的案例。 1.5玻璃钢防腐 玻璃钢材料结合了玻璃纤维和合成树脂共同组合到一起的特征,自身具备质量轻型、强度性能高、耐化学腐蚀性强等一系列优势,比较是应用于采取湿法脱硫并且不假设GGH的烟囱中。这一方式在国外受到的应用面广,国内正在初步实施,但是在未来,必行成为烟囱防腐的主流形式。 2、混凝土外筒设计和需要注意的事项 2.1概念设计 ①首先,要做的便是合理辨别钢筋混凝土外筒刚度是否和标准相符合。在计算钢筋混凝土外筒建模的时候,一般是在初算之后查看第一振型周期T1,然后根据建筑结构荷载规范内容GB 50009-2012中F的烟囱基本自振周期公式来计算T1。如果T/1和T1之间差距过大的话,就说明刚度不具备合理性,需要对烟囱的坡度和壁厚加以调整和改进。根据相关实践表明,针对普通的混凝土烟囱,200m左右的烟囱要控制在2.5~4S,150m左右的烟囱控制在1.5~2.5,当然决定的因素还包含烟囱的筒首直径和坡度以及壁厚。根据公式可以看出,增加质量h 是不现实的,只有有效改变刚度K,改变半径,利用坡度来实现。 ②根据工程经验0.45、/055/0.70左右的基本风压分别和7度、7度半以及8度设防烈度大致对等。也就是说,在这一情况下,顺风产生的最大弯矩和地震产生的最大弯矩是一样的。如果从横向风振影响程度去考虑的话,那么地震和风都有可能起到控制的作用,风压较大则地震控制,地震烈度下降的情况下,则风荷载控制。当然,这仅仅是进行概念设计期间进行判断的,周围干扰因素比较多,需要以标准数据为主。 ③针对钢筋混凝土外筒,要根据以往经验,其含钢量是:筒壁大约是100~150kg/m3,基础大约是60~100kg/m3。 2.2计算风荷载 ①根据荷载规范顺风和横风组合的时候,顺风的组合值系数是0.6,但是烟囱设计规范GB50051顺风和横风组合的时候,顺风的组合值系数是1.0.两者之间产生了较大的差别,因此,设计期间,要当遵循烟囱规范标准内容加以计算。 ②根据某单位4x135mw电厂烟囱的试验数据可以得出以下几点: 首先,烟囱规范明确规定了整个高度体型系数一样,可是根据试验数据,其体型系数从0.2~1.3不相等,离散性大。烟囱外形较为规则,体型系数和曲率有着一定的联系性。此外,主厂房建筑对于烟囱形成的紊流对体型系数有着很大的影响。再者,在设计多个烟囱过程

火力发电厂烟囱防腐存在的问题及建议

火力发电厂烟囱防腐存在的问题及建议 0、引言 随着在电力行业落实国家环保政策力度的不断加大,燃煤发电机组必须限期加装湿法脱硫装置。 目前,各大火电集团均积极响应国家的环保政策,加大烟气脱硫力度,力争在规定期限内,使得各自电厂的排烟浓度达到国家规定的环保标准。 但是,由于我国火电行业以前均是排放高温烟气,这时烟气对烟道、烟囱的腐蚀较轻,再加上当时中国处于计划经济体制,国内电力行业(电厂、电力设计院)基本上不设置材料专业,更不必说防腐蚀材料专业了。现在面临着全行业的大规模脱硫工程,整个电力行业在随之而来的严重腐蚀面前,还缺乏对腐蚀危害的足够认识。在加装湿法脱硫装置的过程中,特别是在涉及到脱硫塔、烟道及烟囱防腐蚀材料及防腐蚀方案时,受种种原因的影响,往往不能正确地选择防腐蚀材料品种和生产厂商,仅仅听从一些上门推销的防腐蚀材料厂商的建议,然后从低价中标的角度来选择一些不具备足够的防腐蚀技术力量及生产经验的企业作为供货商,结果导致大量的烟囱防腐蚀项目出现质量问题,给电力行业带来严重的经济损失,并给电厂的安全生产留下严重的潜在危害。 笔者作为一家国内从事防腐蚀材料及工程技术研究历史最悠久的中央直属研究院的高级技术人员,早在10年前即参与火电行业防

腐蚀材料的仲裁检验,最近5年来更是多次应邀参加电力行业的设计方案、防腐蚀产品及防腐蚀工程招标等评审会,对火电行业防腐蚀现状有着深刻的体会,同时在心中也逐步积累起深深的忧虑。 本报告的目的,基于一个国有研究院防腐蚀技术人员的职业责任感,为降低火电电厂的运行成本、提高安全性,向电力主管机构提出个人建议,供电力行业主管领导参考。 一、湿法脱硫前后烟气腐蚀性的简要介绍 湿法脱硫前,燃煤机组排放的是未经脱硫的烟气,进入烟囱的烟气温度在125℃左右(出现事故时的短期烟气温度则可达150℃~180℃)。在此条件下,烟囱内壁处于干燥状态,烟气对烟囱内壁材料不直接产生腐蚀。 加装湿法脱硫装置后,排放的湿烟气。如果未经烟气换热器加热升温,进入烟囱的烟气温度在50±5℃,烟囱内壁有严重结露,沿筒壁有结露所产生的酸液流淌。酸液的温度在40℃~80℃时,对结构材料的腐蚀性特别强。以钢材为例,40℃~80℃时的腐蚀速度比在其它温度时高出约3~8倍【1】。 据北仑电厂的测试结果表明【2】,湿法脱硫后,当脱硫效率达到理论设计值95%时,烟囱内壁的酸性冷凝液的PH值为1. 9~2. 2,属于强酸性状态。此时湿烟气对于不同材质的腐蚀速率为:Q235A钢的腐蚀速率高达159.54mm/年~200.00mm/年; 10CrMnCuTi不锈钢的腐蚀速率也高达23. 9268mm/年!

烟囱介绍

烟囱介绍 一、烟囱基本概论 用于排放工业与民用炉窑高温烟气的高耸构筑物统称为烟囱。烟囱的分类:砖烟囱、钢筋混凝土烟囱或钢烟囱。 烟囱的基本结构:烟囱由筒身和基础构成。

1)筒身是烟囱基础以上的部分,由外向内依次为筒壁、隔热层和内衬。 ●筒壁:烟囱筒身的最外层结构,用于保证筒 身稳定;筒壁材料可以是混凝土和砖。 ●隔热层:置于筒壁与内衬之间,使筒壁受热 温度不超过规定的最高温度;根据具体烟气温度隔 热层可采用空气隔热层或其他材料(如膨胀珍珠岩 等)。 ●内衬:分段支承在筒壁牛腿之上的自承重砌

体结构,对隔热层起到保护作用;内衬一般为砌体结构(普通烧结砖、耐酸砖、耐火砖等)。 说明:由于烟气具有一定的腐蚀性,内衬内表面有防水抗渗层或其他防腐层。 2)烟囱基础一般由以下几种形式: 板式基础:支承整个建筑或构筑物的大面积钢筋混凝土板基础,板式基础具体由圆形基础(平面外形为圆形的板式基础)和环形基础(基础平面外形为环形的板式基础) 第 3 页共38 页

●壳体基础:以壳体结构形成的空间薄壁基 础。 二、砖烟囱 砖烟囱一般高度不超过60米,下列情况不宜采用砖烟囱: ●重要的或高度大于60m的烟囱; ●地震设防烈度为9度地区的烟囱; ●地震设防烈度为8度时,Ⅲ、Ⅱ类场地的烟囱。

2.1、材料要求 1)筒壁 砖烟囱筒壁的材料应按下列规定采用:烧结普通粘土砖强度等级不应低于MU10,水泥石灰混合砂浆强度等级不应低于M5。 2)内衬 当烟气温度低于400℃时,可采用强度等级为MU10的烧结普通粘土砖和强度等级为M2.5的混合砂 第 5 页共38 页

电厂210米烟囱施工设计完整版

(此文档为word格式,下载后您可任意编辑修改!) 1 编制依据及工程概况 1.1编制依据 1.1.1已批准的施工组织总设计和土建专业施工组织设计。 1.1.2施工图《2108.2米烟囱外筒施工图》FA03021S-T0302 1.1.3《电力建设施工及验收规范》和《火电施工质量验收及评定标准》。 1.1.4《电力建设安全健康与环境管理工作规定》 1.1.5《烟囱工程施工及验收规范》(GB50078-2008) 1.1.6《电力建设安全工作规程》(DL5009.1-2002)和《电力建设安全管理规定》。 1.1.7公司质量体系文件及企业标准。 1.2工程概况 本工程为天富热电股份有限公司2×330MW新建电厂工程210m烟囱,中心坐标为A=385.405m,B=566.750m,±0.00绝对高程为388.5m,由新疆电力设计院设计,位于新疆石河子市石总场一分场六连,距市区约20km。烟囱为钢筋混凝土结构,结构结构安全等级一级,烟囱出口内直径为8.2m,工艺为烟气循环流化床(半干法)工艺。烟囱地基处理为ф800钻孔灌注桩,共计133根、桩长14.6米。烟囱基础埋深-5.0m。基础底板外半径16.1m,厚度2m;环壁下口宽1700mm,上口宽800mm,高度3000mm。烟囱内衬材料为普通型轻质釉面耐酸砖。本烟囱的主要技术参数:0米外半径11m,壁厚600mm;上口内直径8.2m,壁厚200mm。 1.3工程特点 该工程为全厂最高构筑物,是火力发电厂的标致性构筑物,搞好该工程的质量尤为重要。钢筋、模板和混凝土的工程量均较大,要求机械设备的垂直运输能力较强;内衬砌筑量较大,必须安排足够的劳力与混凝土筒壁同步施工。高空作业多,如何搞好安全生产和安全防护显得尤为重要,所以在安全设施的投入和管理上必须下大力气,狠抓严管安全生产工作。 2施工组织及部署 2.1施工顺序 本工程按先地下后地上,先主体后附属的原则进行施工。 2.2施工准备 2.2.1.施工技术准备

火力发电厂生产流程介绍

目录 一、火力发电厂概况............ 错误!未定义书签。 1、火电厂的分类............................. 错误!未定义书签。 2、火力发电厂的工作流程..................... 错误!未定义书签。 二、火力发电厂的工作原理...... 错误!未定义书签。 1、燃煤系统................................. 错误!未定义书签。 2、汽水系统................................. 错误!未定义书签。 3、电气系统................................. 错误!未定义书签。 三、火力发电厂对环境的影响.... 错误!未定义书签。

一、火力发电厂概况 1、火电厂的分类 (1)按燃料分类:①燃煤发电厂,即以煤作为燃料的发电厂;②燃油发电厂,即以石油(实际是提取汽油、煤油、柴油后的渣油)为燃料的发电厂;③燃气发电厂,即以天然气、煤气等可燃气体为燃料的发电厂;④余热发电厂,即用工业企业的各种余热进行发电的发电厂。此外还有利用垃圾及工业废料作燃料的发电厂。(2)按原动机分类:凝汽式汽轮机发电厂、燃汽轮机发电厂、内燃机发电厂和蒸汽-燃汽轮机发电厂等。(3)按供出能源分类:①凝汽式发电厂,即只向外供应电能的电厂;②热电厂,即同时向外供应电能和热能的电厂。 图1 火力发电厂总图 2、火力发电厂的工作流程 现代化火电厂是一个庞大而又复杂的生产电能与热能的工厂。它由下列5 个系统组成:①燃料系统。②燃烧系统。③汽水系统。④电气系统。在上述系统中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电装置一般装放在独立的建筑物内或户外,其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则安装在辅助建筑中或在露天场地。火电厂基本生产过程是,燃料在锅炉中燃烧,将其热量释放出来,传给锅炉中的水,从而产生高温高压蒸汽;蒸汽通过汽轮机又将热能转化为旋转动力,以驱动发电机输出电能。到80年代为止,世界上最好的火电厂的效率达到40%,即把燃料中40%的热能转化为电能。 在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。

锅炉烟囱高度计算手册

烟囱高度计算 1简介 烟囱的作用有二:一是产生自生通风力(抽力),克服烟、风道的流动阻力;二是把烟尘和有害气体引向高空,增大扩散半径,避免局部污染过重。高烟囱排放可使污染物在垂直方向及水平方向在更大范围内散布,因此对降低地面浓度的作用是很明显的。但不可忽视的是,建设过高的烟囱对企业投资是一种负担,因为烟囱的造价大体上与烟囱高度的平方成正比,况且过高的烟囱对周边的景观环境也会造成不协调影响。因此烟囱高度应设置在一个合理的范围内才能达到环境效益和经济效益的相统一。 2 烟囱高度计算 2.1 烟囱出口直径计算 烟囱出口直径计算公式: 式中:——烟气实际流量,m3/s ——燃料消耗总量,kg/s; ——标准状态下的烟气流量,Nm3/kg; ——烟囱出口处的烟气流速,m/s; ——烟囱出口处的烟气温度,K。 2.2按环保要求计算的烟囱高度 下面介绍按污染物地面最大浓度来确定烟囱高度的计算方法。该法是按保证污染物的地面最大浓度不超过《环境空气质量标准》规定的浓度限值来确定烟囱高度。 地面最大浓度的公式: 式中:——地面最大污染物浓度,mg/m3; Q——烟囱单位时间内排放的污染物,mg/s; u——烟囱出口处的平均风速,m/s; H e——烟囱的有效高度,m; 、——扩散系数在垂直及横向的标准差,m。 烟囱有效高度H e计算式:

式中:——烟囱的几何高度,m; ——烟囱的抬升高度,m。 若设为《环境空气质量标准》规定的某污染物的浓度限值,为其环境原有浓度,按保证,则由地面最大浓度的公式得到烟囱高度计算公式: 烟气抬升高度按下列公式计算: 当21000kW,且35K时: 城市和丘陵的烟气抬升高度: 平原和农村的烟气抬升高度: 当210021000kW,且35K时: 城市和丘陵的烟气抬升高度: 平原和农村的烟气抬升高度: 当2100kW,或35K时: 式中:——烟囱出口的烟气温度与环境温度之差,K; ——烟气的热释放率,kW; u——烟囱出口处的平均风速,m/s; ——烟囱出口处的实际烟速,m/s; d——烟囱的出口内径,m。 其中, 烟囱出口处烟气温度与环境温度之差 式中: ——烟囱出口处烟气温度,K,可用烟囱入口处烟气温度 按-5℃/100m递减率换算所得值; ——烟囱出口处环境平均温度,K,可用电厂所在地附近的气象台、站定时观测最近5a地面平均气温代替。 烟气热释放率 式中:P——大气压,一般取1013.25hPa; 烟气出口处环境风速u 式中:u——烟气出口处的风速,m/s; ——地面10m高度处的平均风速,m/s,采用电厂所在地最

相关文档
最新文档