超声波测距传感器(硬件件篇)

超声波测距传感器(硬件件篇)
超声波测距传感器(硬件件篇)

自制一个由你掌控的

—— 超声波测距传感器(硬件篇)

一、背景

四年多前,我曾尝试自己制作一个超声波测距传感器。

当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。

为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。

前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。

本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。

现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。

二、需求分析

?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外;

?可以提供给大学生和爱好者 DIY,具有学习功能;

?方便自己随时修改程序,使学习的作用得以充分发挥;

?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。

三、概要设计

总体设计参照 SensComp公司(https://www.360docs.net/doc/12874524.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。

TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。

TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。

如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。

所以,本次设计的主要改变就是用单片机替换6500模块的TL851。

单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

从6500模块解剖中还有一个收获就是搞清了超声波发射的驱动细节。

以往资料上多数是直接用门电路驱动,最多接一级三极管放大。我第一次试制时就发现功率无法增加,导致测距范围有限。仔细看超声波发射器的要求:大多需要10V以上驱动,而且是正弦波信号。压电陶瓷(超声波发射器多为此材料制造)功率增加只有通过提高电压,在单5V供电下无法实现,而增加12V供电又不实用。

6500模块驱动是通过变压器升压的,并且通过电容匹配,使次级与发射器构成谐振回路,这样既提高了驱动电压,又使得波形接近正弦波。

6500模块工作是收发一体模式,所以其接收回路自然也是谐振回路,一方面增加了灵敏度,同时还排除了其它频率波的干扰,因为只对谐振频率敏感。

为了便于初学者理解,本次设计改为收、发分体模式,发送回路借鉴6500模块,接收回路使用电感与接收器构成谐振回路。

之所以单片机采用3.3V供电,是为了增加一级稳压,以降低发射超声波带来的电源干扰,提高可靠性。

因为上述需求的第二条和第四条略有冲突,考虑到实用价值,偏向了第四条。设计上为了体积合适,采用了部分表面安装(SMD)器件,但是一些调试时可能需要改变参数以及一些可能损坏的器件选用了直插式,以方便读者优化或观察改变器件参数的效果。

采用UART口输出数据、设置参数。因为UART口可以使用中断模式,读取软件开销较小,且UART是目前MCU中配置最普遍的,虽说会占用一个串口,但是现在多串口MCU越来越多,特别是ARM系列,如ST的STM32系列就有2 – 3个UART口。

四、详细设计

设计分硬件和软件两部分,本篇重点介绍硬件设计,软件留待下一篇详述。

4.1 硬件设计

超声波传感器由以下部分构成:

图1 工作原理框图

框图中,单片机为核心控制部分,根据设定的工作方式,产生40kHz 方波,经过驱动电路驱动超声波发生器发出一簇信号。单片机此时开始计时。

接收回路为谐振回路,将收到的微弱回波信号检出,送信号放大电路放大,收到产生脉冲输出送单片机中断端,单片机收到中断信号后停止计时,计算出距离值,保存等待读出或直接经UART 送出。接收过程中,单片机定时控制放大电路的增益,逐渐提高,以适应距离越远越弱的回波信号。

核心器件为STC12LE4052、TL852、16mm 超声波收、发器。

采用5V 供电,因为5V 是最常见的工作电压,便于日后将传感器应用于装置中。

为了减小干扰,选用了3.3V 供电的单片机,使用目前常用的1117-3.3三端稳压器将5V 降到3.3V,减小电源扰动的影响,增加可靠性。

下面分步介绍各个部分的电路原理。

首先是超声波发射部分。

超声波发射器 超声波接收器

图2 超声波发射驱动电路

图中,Send_Ctrl、Cut_Off端由STC12LE4052控制。此单片机的I/O口可设置为推挽输出模式(这是经典51不具备的),拉电流、灌电流均可达20mA,保证了D882有足够的驱动能力和快速的通断性能。

变压器的次级电感与发射器(发射器为容性,一般为2400p左右)构成谐振回路,好处是提高了发射效率,但副作用是发射后的余波时间较长,导致近距离的回波被淹没。所以电路中设计了2种余波抑制电路。一个是R6,通过增加谐振回路的损耗加速余波结束,这种方式不需要控制,但由于同时也消耗了发射的功率,所以阻值不能太小,导致衰减效果不明显(此部分读者可自行试验)。

另一个电路由R4、R5、P1构成,由单片机控制,在发射完脉冲后将P1导通,强制短路变压器初级,快速消耗掉谐振能量,达到消除余波的目的,电阻R5越小,效果越好,但带来的问题是:如控制失灵,会导致短路,烧坏P1或N1。

所以在电路中设计了一个跳线器,在软件没有调试好之前断开,避免无谓的损耗。

变压器升压比设计为20倍,实际输出电压约为 50V峰值。

控制部分采用MCU,如下图所示:

图 3 单片机控制电路

STC12LE4052为一种改进型的51兼容单片机,指令集及主要架构与经典51相同,硬件资源略有增加:

1)增设了2通道PCA(可编程计数器阵列),弥补了经典51定时器功能“偏弱”的缺

陷。

2)I/O口改进为可设置方式,支持:51准双向、高阻输入、OC输出、推挽输出四种模

式,简化了外部硬件设计。

3)硬件SPI接口,本设计中暂未使用,但PCB上引出了,有兴趣者可尝试之。

4)指令速度大大提高了,将原来的12时钟为一个机器周期改进为 2 – 3个时钟周期,

指令速度平均提高为原来的8倍左右。

5)计时时钟保留12分频模式,新增了2分频模式,提高了计时精度。

后两点对于超声波测距应用有益,指令速度快可减少响应延时的不确定,计时精度高可提

高分辨率。

MCU端口资源分配如下:

P10 - P13 —— 控制TL852增益,设置为OC输出,852内部有上拉电阻(见图5) P14 - P17 —— 保留

P30(RXD)、P31(TXD) —— UART通讯

P32(INT0) —— 接SOUT端,作为超声波发射时的852输出抑制,置为OC输出。

P33(INT1) —— 超声波接收输入,设置为输入

P34 —— 产生超声波发射方波,设置为推挽输出模式

P3.5 —— 控制P1,用于衰减余波,设置为OC输出模式

P37 —— 工作指示灯,设置为OC输出模式

关于P32控制 SOUT端的作用,请阅读TL851资料。

图 4 接收回路和信号放大、检出电路

这个电路是超声波测距的核心。因为产生波形和计时都容易解决,而准确的检测出回波信号才是决定传感器是否成功的关键。为便于理解上图,将TL852 的内部原理框图列出:

图 5 TL852 内部功能框图

读者可对照TL852 数据手册分析其工作原理。从图中可以看出,图4中的R7、R8为运放的输入、反馈电阻,通过改变两者比值可方便的改变灵敏度,故将R7、R8设计为直插器件。

图6 TL852输出信号处理电路

图6所示电路是为了将TL852的输出转换为单片机需要的中断信号,U4A构成了一级同相跟随器,是为了隔离后级对C14积分电路的影响。U4B构成一个比较器,理解此部分可参阅下面的TL851框图。

图 7 TL851内部功能框图

图中,8脚应接在SOUT上,1.2V基准电压等效于图6中的2个1N4148串联,因为硅PN结的正向压降为0.6V。第9脚ECHO输出相当于图6中的U4B的第7脚输出。BLNK、BINH端子都是为了抑制发送时的信号,此部分在本设计中由单片机完成,单片机的P32口置为OC输出,就是为了替代图中接在8脚和3脚之间的三极管,实现对积分电容C14放电,为测量做准备。

如读者希望进一步了解这部分的工作原理,可对照6500模块的原理图和TL851、TL852 数据手册仔细研读。

4.2 器件选择和PCB设计

单片机前面已说明。TL852选用SOP16封装的,否则体积太大。

运放U4 选用LMV358,SOP8封装。LMV358为低电压满幅输出运放,额定工作电压为

2.7 — 5V,读者可对照LM358资料看两者的差别,因为单片机的工作电压为

3.3V,所以选用

LMV358,虽然成本略高,但性能得到保证。

超声波收、发器选用Φ16mm的,期望发射功率略大,测量距离可以远些。谐振频率为40kHz,国内基本上都是此频率。

因为超声波收、发器的电容值偏差较大,如读者希望精确匹配电感以提高性能,可能需要自己根据实测的电容量手工绕制,所以电感选用了8X10的工字磁芯,而变压器采用EE16,体积都比较大,便于手工绕制;读者如需优化性能,或体验其影响,可尝试自己制作,从而更好的掌握超声波测距的原理,为日后设计正式产品打下基础。

对外连接的端子采用XH-4A四芯插座,一根电源、一根地线、2根UART收发线,这样可方便的与其它设备连接,既给传感器供电,又可与传感器通讯,获取数据。

PCB设计尺寸约为 42X43 mm,设置了2个安装孔,孔距和GP2D12相同,便于替换原来使用GP2D12的场合。

PCB板图如下:

4.3 软件设计(此篇略,见“软件篇”)

五、焊接和调试

5.1 焊接说明

加工好的PCB如下:

因为考虑做好后的传感器要具备一定的使用价值,所以体积略有控制,使用了一些SMD器件,给焊接带来了难度,但对于学习者而言,也提供了一个锻炼机会,因为SMD器件越来越多,很多MCU已无DIP封装。

焊接包含SMD器件的PCB也并非不可为之。

首先要有合适的工具,至少有尖头烙铁,30W即可;尖头镊子,用于抓取小器件。此外最好使用细焊锡丝,我使用的是0.3mm的。

其次要注意焊接顺序:先焊小的器件,本设计中为0603电阻、0805电容,之后焊接SOP 的IC,最后再按器件的高度从矮到高依次焊接直插器件,体积较大的器件最后焊接,如本设计中的超声波传感器、变压器等。

焊接0603电阻、0805电容时,可尝试以下方法:

先将器件的一个焊盘上锡(注意:如有一个是接大面积地线的,先给这个上锡,因为大面积地线的散热作用明显,会给后续焊接带来麻烦!):

然后用尖镊子拿住器件,先放在没有焊锡的焊盘上,再用镊子夹住(这样可保证器件贴着PCB)器件,同时用烙铁熔化上好锡的焊盘,平推器件到焊锡中,注意:为了方便另一个焊盘的焊接,可适当偏向已上锡的焊盘,为另一侧焊盘留下较大的空间。

焊好一端后,可参照我介绍过的焊接工艺:https://www.360docs.net/doc/12874524.html,/xgzl/2007-08-16/20.html)焊剩下的一端,焊的过程你就会体会到为什么要先焊地线端了。

焊SMD的IC时,可先给一个焊盘上锡,最好是地线(道理同上),然后将IC放上,用镊子调整好位置后,将此引脚焊上再把对角的那个引脚焊上。

然后用免清洗的助焊剂略涂一些(如没有,可尝试用无水酒精,我没用过,不知效果),用细焊锡丝逐脚焊接,方法和焊接直插器件类似,先放上烙铁头,略延时后将焊丝送上,只是

时间稍短,锡不要给的太多,以免连焊!

全部焊好后,可以用烙铁尖点IC引脚的端头,再次让焊点熔化一次,使焊锡更好的将引脚和PCB连接。

直插器件的焊接在此就不再赘述,圆梦小车的安装说明中已有详细交待。

因为空间问题,所以有几个器件是放置在超声波收发器之下的,焊接时注意,将收发器焊的和变压器一样高即可,不要太低!

两个调整增益的电阻R7、R8、一个控制余波的限流电阻R5如觉得需要自己改变,以观察效果,可焊接在反面。

用于减弱余波的R6和初级的余波抑制电路两部分选择一个,建议选用初级的回波抑制电路,效果好一些,缺点是需要程序配合,且调试时如不慎会短路导致三极管损坏。

如采用初级的余波抑制电路,建议在调试程序时将跳线器断开,调好程序后再接上。等一切就绪后如考虑传感器的可靠性,可将跳线器焊死。

在线路上设计了2组匹配电容,C7、C8组是为了调整发射回路已达到谐振状态的,C9、C10组是为了接收回路谐振的,需要通过测量使用的超声波收发器电容值以及相应的电感、变压器次级电感确定,因为超声波收发器的电容量差别较大,电感量也有些差异。

一般情况下将C7、C9 短路即可,C8、C10不用处理(配套器材时会给出实际的值供参考,如有需要会附上匹配电容)。

焊接完成如下图:(注意图中二极管的方向)

虽然设计是用UART作为输入、输出的接口,但由于MCU的SPI没有使用,所以在PCB 上引出了(由于空间限制,比较勉强),如有特殊需要或想学习SPI的使用,也可将SPI口作为与传感器交换数据的通道:

5.2 调试

调试分两步进行。首先是超声波发射部分。

先断开跳线器,检测单片机输出的波形是否正确,测量R3接MCU端的信号,保证波形的频率、占空比及脉冲的个数正确(符合你程序控制的要求,目前的程序是发送 10个脉冲):

然后测试余波减弱控制信号(如果你选择了初级余波减弱电路,并且在软件上设计了),检测R4接MCU的端子(设计欠考虑,没有留测点),注意不要短路了!最好有双通道的示波器,因为需要和发送脉冲匹配,此信号应该略延时于发送脉冲结束,我设计是约 28us(想想

为什么图中是接近 44us):

出。驱动波形测量D882 的C端,也就是跳线器上。次级波形可直接检测超声波发射器两端。

注意右侧的波形,峰值电压超过50V,所以你能够听到发射器发出的“啪啪”声。

如果有兴趣,可以检测一下有无余波消除的差别,因为要和余波控制信号同时观察,所以用驱动信号代替输出,由于变压器的偶合作用,信号是一样的,只是幅值不同。

注意,上图中左侧余波实际上远不止388us,由于变压器的升压作用,很小的驱动信号都可以产生接收器能感受的超声波,因为收、发之间太近了!这样将使得近距离的回波淹没在余波中,导致测量范围缩小。

读者可以改变R5的数值观察一下右侧的效果的变化。

一个技巧:要想确定是否达到谐振状态,可检测没有余波抑制时的余波信号,此时的频率即为谐振频率(图中用余波抑制控制信号来指明后面的波不是由MCU产生的)。

从上图可以看出谐振频率是 40kHz。

至此,超声波发送部分基本完成。

超声波接收部分硬件比较简单,关键是软件上能控制好增益的变化,以及内部计时。

调试时首先检测一下C12上的信号,此处为TL852 的第一级放大输出,在信号较强时可以看到波形,以确定超声波接收器及回路是否正常,至少能看到一组波,即发射时的信号,如果有比较近的物体,应该可以看到接着有一组波形,此信号即回波。

接着看看4路增益控制有无变换,检测MCU输出给TL852的增益控制信号(其中三个连接有过孔,测量方便),而是否正确主要靠软件逻辑的检查,用波形来判断有些困难。

上图为增益控制最低位GCA的波形,注意图中光标所示的时间,对照TL851资料,看看能否解释清楚 : P

确定增益控制有效后,检测SOUT端(或者C14),可以看到输出。

注意:为了消除自己发射时收到的信号干扰测量,在发射时用MCU控制了SOUT端,使之处于对地短路状态(参见前述TL851的原理和说明),发射结束后释放。之后在收到回波

超声波传感器测距原理

芀一、超声波测距原理 肅超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的 同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S , 即: 膂S = v·△t /2 ① 芀这就是所谓的时间差测距法。 蝿由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: 螅V = 331.45 + 0.607T ② 芄 声 速 确 定

后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 薂二、系统硬件电路设计 腿图2 超声波测距仪系统框图 蒆基于单片机的超声波测距仪框图如图 2 所示。该系统由单片机定时器产生 40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机 是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单 片机复位,然后控制程序使单片机输出载波为40kHz 的10 个脉冲信号加到超声 波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后, 单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数, 这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 莅1 、超声波发射电路 螀超声波发射电路如图3所示,89C51 通过外部引脚P1.0 输出脉冲宽度为250 μ s , 40kHz 的10 个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发 射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远, 可对振荡信号进行功率放大后再加在超声波传感器上。 薈图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应 将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它 上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声 波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

超声波传感器的使用注意事项

探测范围和大小 要探测的物体大小直接影响超声波传感器的检测范围。传感器必须探测到一定声级的声音才可以进行输出。大部件能将大部分声音反射给超声波传感器,这样传感器即可在其最远传感距离检测到此部件。小部件仅能反射较少的一部分声音,从而导致传感范围大大缩小。 探测物体的特点 使用超声波传感器探测的理想物体应体积大、平整且密度高,并与变换器正面垂直。最难探测的物体是体积小且由吸音材料制成的物体,或者与变换器呈一定角度的物体。 如果液面静止且与传感器表面垂直,探测液体就很容易。如果液面波动大,可延长传感器的响应时间,从而取波动变化的平均值以获得更一致的读数。但是,超声波传感器还不能精确探测表面为泡沫状的液体,因为泡沫会使声音的传播方向发生偏离。这时可以使用超声波传感器的反向超声模式,探测形状不规则的物体。在反向超声模式下,超声波传感器会探测一个平整背景,如墙壁。任何穿过传感器和墙壁之间的物体都会阻断声波。传感器即可通过探测该干扰来识别物体的存在。 温度导致的衰减 传感器还设计了温度补偿功能,以调节环境温度的缓慢改变。但是,它不能调节温度梯度或环境温度的快速变化。 周围是否有振动 无论是传感器本身的振动还是附近机器的振动,都可能会影响测量距离时的精确度。可在安装传感器时用橡胶防振装置来减少这类问题。有时也可使用导轨来消除或降低部件振动。 环境导致的误测 附近的物体可能会反射声波。要准确探测目标物体,必须降低或消除附近声音反射表面的影响。为了避免误测附近物体,许多超声波传感器都装有LED指示灯,用于在安装时指示操作人员,以确保正确安装传感器并降低误测风险。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路

超声波传感器及其测距原理

安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转 化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的

声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。 2.1 Polaroid 600系列传感器 此超声波传感器是集发送与接收一体的一种传感器。传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。 Polaroid 600超声传感器发送的超声波具有角度为30度的波束角[3],如图1所示:

高精度超声波测距系统设计

高精度超声波测距系统设计。 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差, 然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上, 给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播 的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于 1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在 1 mm的测量范围内。

超声波传感器测距仪设计报告(全)-张哲铭

单片机、传感器、印制电路板 课程整合实训 电子产品设计与制作 技术报告 (2013——2014 学年第二学期) 项目名称:超声波测距仪设计 指导教师:卢建声,曾庆波,代瑶 专业:微电子技术 班级:12微电子 组长:张哲铭 组员:高金阁,李雨泽,苏程龙黑龙江信息技术职业学院·电子工程系

目录 任务书...................................................................... 错误!未定义书签。 一、工作任务 ................................................................. 错误!未定义书签。 二、工作目标 (3) 三、主要设计内容 (3) 1.原理设计 (3) 2.原理框图 (3) 3原理图 (4) 4元件清单 (4) 五、提交成果 ................................................................. 错误!未定义书签。 一、原理设计与技术路线 .............................................. 错误!未定义书签。 1、原理图绘制......................................................... 错误!未定义书签。 2、PCB图绘制.......................................................... 错误!未定义书签。 3、单元电路设计..................................................... 错误!未定义书签。 4、整机设计 ............................................................ 错误!未定义书签。 (5) (6) 六、总结报告 (10) 附录 (13) 超声波测距仪设计

超声波测距传感器(硬件件篇)

自制一个由你掌控的 —— 超声波测距传感器(硬件篇) 一、背景 四年多前,我曾尝试自己制作一个超声波测距传感器。 当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。 为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。 前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。 本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。 现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。 二、需求分析 ?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外; ?可以提供给大学生和爱好者 DIY,具有学习功能; ?方便自己随时修改程序,使学习的作用得以充分发挥; ?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 三、概要设计 总体设计参照 SensComp公司(https://www.360docs.net/doc/12874524.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。 TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。 TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。 如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。 所以,本次设计的主要改变就是用单片机替换6500模块的TL851。 单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

超声波测距

总体方案 本设计主要是进行距离的测量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来。而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的。 超声波测距仪 超声波是一种超出人类听觉极限的声波即其振动频率高于20 kHz的机械波。超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片。超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传播等优点,而且超声波传感器的能量消耗缓慢有利于测距。在中、长距离测量时,超声波传感器的精度和方向性都要大大优于红外线传感器,但价格也稍贵。从安全性,成本、方向性等方面综合考虑,超声波传感器更适合设计要求。 综合上述三种测距仪的对比,本实验选着超声波测距仪。 系统方案 本系统选择52单片机作为控制系统核心,所测得的距离数值由4位共阴极数码管显示,与障碍物之间的不同距离利用蜂鸣器频率的不同报警声提示,超声波发射信号由52单片机的P1.0口送出到超声波发射电路,将超声波发送出去,报警系统由蜂鸣器电路构成。本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能避免干扰,可以很好的提高系统的可靠性。系统框图如下:

硬件设计 超声波测距模块 模块功能 该模块利用超声波测距仪,测试小车与障碍物之间的距离,当距离小于某一给定值时,利用程序,将信号传递给单片机的某个引脚。其他控制模块检测该引脚的电平高低,根据电平的高低,控制小车的行驶状态。 基本实现原理 超声波接收器 放大器 检波电路 显示模块 51单片机 放大电路 报警模块 超声波接收器

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波传感器测量距离

一、超声波测距原理 超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2 ① 这就是所谓的时间差测距法。 由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: V = 331.45 + 0.607T ② 声 速 确 定 后, 只 要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 二、系统硬件电路设计

图2 超声波测距仪系统框图 基于单片机的超声波测距仪框图如图2所示。该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 1 、超声波发射电路 超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远,可对振荡信号进行功率放大后再加在超声波传感器上。 图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

高精度超声波测距系统设计

高精度超声波测距系统设计 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差,然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上,给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在1 mm的测量范围内。

超声波传感器及超声波测距

超声波传感器及超声波测距 摘要:介绍了一种基于AT89C52单片机的超声波测距系统,由555和运放及比较器配合超声波传感器有效组成了超声波的发射电路和接收电路。同时在数据处理,盲区消隐方面提出了有效解决方法! 从而提高了检测的精度及灵敏度,以及用LCD液晶显示器配合美妙的音乐进行显示。本文主要阐述了超声测距系统的硬件电路构成、工作原理及软件设计方法。该系统硬件结构简单、工作可靠,有良好的测量精度和灵敏度。 [关键字] 超声波测距 LCD液晶

前言 随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。这一设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。由于超声波指向性强,因而常于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人,汽车安全,海洋测量等上得到了广泛的应用。本设计提供一种液晶显示测距装置,该装置利用了发射接收一体化的超声波传感器和微处理器。采用超声波传感器分时工作于发射和接收,利用声波在空气中的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物到超声波测距器之间的距离。 距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。尽管测距有多种方式,比如,激光测距,微波测距,红外线测距和超声波测距等。但是,超声波测距不失为一种简单可行的方法。虽然超声波测距电路多种多样,甚至已有专用超声波测距集成电路。但是,有的电路复杂,技术难度大,有的调试困难,有的元件不易购买。本文介绍的电路,成本低廉,性能可靠,所用元件易购,并且利用测距原理,结合单片机的数据处理,使测量精度提高,电路实现容易,无须调试,工作稳定可靠。

超声波测距仪设计实验报告

超声波测距仪设计实验报告 课题设计目的及意义 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前 景的技术及产业领域。展望未来,超声波测距仪作为种新型的非常重要有用的工具在各方面 都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实 施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被 动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大 力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化 智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪 将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌 一新的测距仪将发挥更大的作用。 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统 也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城 市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建 筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市 给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的 自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核 心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得 非常重要了。这就是我设计超声波测距仪的意义。 实验原理 超声波在液体、固体中衰减小、穿透力强、对某些固体、穿透深度能达到几十米的范围;另外,超声波方向性好,能够定向传播。因此,可以作为物体探查和进行测量的可靠手段。 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波 在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍 物的距离(s),即:s=340t/2。 整体电路设计 整体电路的控制核心为单片机STC89C52。超声波发射和接收电路中都对相应信号进行 整形及放大,以保证测量结果尽可能精确。超声波探头接OUT口实现超声波的发射和接收。 整体结构图包括超声波发射电路,超声波接收电路,单片机电路,显示电路和语音提示电路等 几部分模块组成。而超声波发射与接收电路还要加入放大电路。在发射后把信号放大,接收 前也要把还再次放大。 整体电路结构图如图4-1。

超声波测距仪实验报告

课题名称:超声波测距仪 班级:应用电子0901 :吴星超 学号:0503090128 指导老师:文博 前言 随着人类社会从工业化社会到信息化社会的发展,视觉传达设计经历了商业美术、工艺美术、印刷美术设计、装潢设计、平面设计等几大阶段的演变,最终成为以视觉媒介为载体,利用视觉符号表现并传达信息的设计。对于每一位“为传达而设计”的设计者来说,如何正确、充分地传达信息是我们始终要面临的中心问题。但是,在当今社会,由于科技的进步,社会环境和社会秩序的更新,各种视觉媒介的充斥,影响着人们的思维、观念和感情,仅仅把传

达信息的关键词定位于正确和充分显然是不够的。鉴于时代的要求与设计本质的要求,必须要把视觉传达设计的创新重视起来,以创新为前提充分准确地传达信息。设计界存在着大量的抄袭、模仿之作,使得设计活动成为一种程式。比如一说到大学标志,就等于是篆书外加一个圆托印章;一谈到VIS设计,便是大量相同的模版拷贝;一说到数码的视觉符号,就是一大堆蚂蚁般的“1”+“0”;一谈到商品的广告,就是戴眼镜的博士或美女的推荐代言等等。人们无时无刻都被这些“东施效颦”的设计所侵犯和骚扰,这些设计给我们带来了视觉污染,人们不禁要问:设计究竟怎么了?面对这些,我们每一个设计师都责无旁贷。现在该是大力宣扬“设计创新”的时候了,因为这个时代比以往任何时期都更需要清晰而独创的视觉传达设计。那么,视觉传达设计的创新究竟体现在哪些方面? 目录 一、超声波测距仪的制作 (3) 1.1 超声波测距的原理 (3) 1.2 超声测距仪的硬件电路 (5)

1.2.1回流信号放大电路 (5) 1.2.2 信号检波电路 (6) 1.3超声波测距程序设计 (7) 二、总结: (20) 三、参考文献 (20) 一、超声波测距仪的制作 1.1 超声波测距的原理 根据相关的物理学知识,声音在介质中如空气和石头中传播时,其衰减特性与其频率相关,频率越高越不容易衰减,相应地其传播距离越远。当声音的频率在20KHz以上的围时,超出了人耳的听觉围,变成了超声波,可以传播较远的距离而不衰减,且其本身的信号频率特性不容易受环境噪音的干扰。我们可以利用超声波的这一特性进行

用51单片机设计超声波测距系统的设计原理和电路(附源程序)

基于51单片机的超声波测距仪说明书 引言 超声波测距仪,可使用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。利用超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制。 一、性能要求 该超声波测距仪,要求测量范围在0.08-3.00m,测量精度1cm,测量时和被测物体无直接接触,能够清晰稳定地显示测量结果。 二、工作原理及方案论证 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。用超声波传感器产生超声波和接收超声波,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器.超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(timeofflight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源和障碍物之间的距离。 根据要求并综合各方面因素,采用AT89C52单片机作为主控制

器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距仪的系统框图如下图所示: 图1 超声波测距仪系统设计框图 三、系统硬件部分 硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。 1.单片机系统及显示电路 单片机采用AT89C52来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.1引脚发射脉冲控制超声波的发送,然后单片机不停的检测外中断0口INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器和障碍物之间的距离。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管驱动。 单片机系统及显示电路如下图所示:

超声波测距实验报告

超声波测距系统实物设计报告 一.设计要求 1.测量距离不小于0.3米,数字显示清晰,无数字叠加,动态显示测量结果,更新 时间约为0.5秒左右。 2.测量精度优于0.1米,显示精度0.01米。 3.距离小于0.3米时,蜂鸣器发出”嘀嘀”报警。 4.测量距离超过1.0米时,指示灯显示超量程。 二.系统设计思路 1.原理框图 2.系统组成模块 (一)40KHZ 方波产生电路 1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过理论计算加上微调电阻和电容的值,得到所需频率的矩形波,当R2远大于R1时,矩形波的占空比接近50%,可近似为方波。 超声波振荡器 控制门 超声波放大器 闸门CP 信号(2Hz ) 计数开启 清零 计数 超声波放大滤波 正弦波前沿检测 超声波接收器 超量程灯光显示 小于0.3米蜂鸣报 计数显示电路 反射物 超声波发射器 17KHzCP

2、单元电路如下图; 3、参数计算: 4、仿真结果:

(二)2Hz时钟信号发生电路: 1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。其中占空比在70%以上。 2、单元电路如下所示: 参数计算:R1=710K欧,R2=375欧,C1=1微F

(三)17kHz时钟信号发生电路: 1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。 2、单元电路如下所示: 3、参数计算: R1=1K欧,R2=395欧,C5=47nf;

4、仿真 5、功能:数字显示的测量结果要求动态更新时间约0.5秒左右,所以要求一个 频率约2Hz的时钟信号来控制刷新数据,保证结果显示稳定不闪烁。 三,调试说明 首先要在示波器上稳定的出现5个波形,40khz的方波,17khz的方波,加上接收头之后的波形,经过347放大之后的正弦波,2hz经过非门整形之后的波形; 其中值得注意的就是40khz的占空比一定要精确的得到50%,这个和你测试的准确度和高度直接相关,我们在提高高度的过程中其中一个步骤就是回过头来再去调整40khz的准确度。 17khz的一定是占空比小于40%,这个最直接的影响是测试精度,我们尝试在17khz之后不接非门就是占空比大于50%,测试结果是不准确的。 如果说超声波测距最重要的是什么我会毫不迟疑的说出2hz的调试,其中包括参数计算和占空比,刚开始我们就相信别人和老师的数据,结果是错误的,最后我们一致下定决心自己搞出自己的特色,搞出自己的数据,我索性自己计算出了一组数据,结果证明是正确的。我们做出来之后接下来其他组就直接采用我们的数据了,所以我们的2hz数据才是原创。 还有就是正弦波的波形,这个波形反映了信号的强度以及杂波的情况,这个需要注意的就是放大倍数和滤波电容的选取,这个会在后面的叙述中详细。

超声波测距系统

超声波测距系统实验报告 一、实验目的 1、通过实验,初步体验传感器的使用。 2、熟悉超声波传感器的使用方法。 3、通过自行分析、设计、安装、调试简单的电子电路来掌握电子电路设计的一般思想与方法。 二、实验任务 利用给定的超声波传感器,设计一个超声波测距系统:基本要求: ①测量距离不小于0.5米,数字显示,动态更新测量结果,更新时间约 0.5秒; ②测量精度优于0.05米,显示精度0.01米; ③距离小于0.2米时,用蜂鸣片发出间歇式的嘀一嘀声响报警。 说明:超声波传感器的说明请参见教材9.8.1。 提高要求: 测量距离大于1.5米。 三、实验原理 实验中将距离S转化为时间差△t,计算超声波接收模块接收到信号的时间与发射模块发射时间之间的时间差△t,根据S=,可计算得到距离,其中为超声波在空气中的传输速度,为简单起见,在设计时按照340m/s考虑。

闸门脉冲源产生宽度为T的信号,开启控制门,使得超声波振荡器输出40KHZ的脉冲信号经过放大器传送给超声波发射器,同时闸门脉冲源产生清零信号,使计数器从零开始计数。脉冲信号经过一定的时间反射回来,被超声波接受器接受,成为电信号。将回波放大滤波后,回波检测电路检测出接收的第一个脉冲的前沿,电路输出使计数器停止计数,则计数器的值即为待测的距离。 四、模块设计 模块一波形振荡器 需要输出40KHZ的方波,开始利用一片555构成多谐振荡器,这样整个电路需要3片555, 为简便起见,可以利用施密特触发器构成多谐振荡器(《数字电子技术基础》)。电路图如下: 根据公式: 取C=10nF,R=1K,测得周期为9.16uS,根据比例关系,若取R=4k,则频率为39KHZ。 模块二闸门脉冲源的产生 利用一片555构成多谐振荡器,为保证刷新时间为0.5秒,可以选择频率为2HZ的脉冲源 电路图如下:

超声波传感器测距

US-100 超声波测距模块 1.概述 US-100 超声波测距模块可实现2cm~4.5m 的非接触测距功能,拥有2.4~5.5V 的宽电压输入范围,静态功耗低于2mA,自带温度传感器对测距结果进行校正,同时具有GPIO,串口等多种通信方式,内带看门狗,工作稳定可靠。 2.主要技术参数 工作电压:DC 2.4V~5.5V 静态电流:2mA 工作温度:-20~+70 度 输出方式:电平或UART(跳线帽选择) 感应角度:小于15 度 探测距离:2cm-450cm 探测精度:0.3cm+1% UART 模式下串口配置:波特率9600,起始位1 位,停止位1 位,数据位8 位,无奇偶校验,无流控制。

3.实物图 (自己拍的不是很清楚) 4.测量原理 选用超声波传感器来采集信号,超声波发射端和接收端在同一水平面上。首先发射端向目标发射超声波,并同时启动定时器计时,超声波在空气中传播的途中一旦遇到障碍物后就会被反射回来,当接收端收到

反射波后就会给负脉冲到单片机使其立刻停止计时。定时器能够准确的记录下超声波发射点至障碍物之间往返传播所用的时间t,设声速为c,可得距离测量值为:s=ct/2,由单片机控制定时器可测得t值,从而得到s 值。 5.程序源代码 本代码是基于C8051F120单片机,采用LCD液晶显示屏进行显示,经过多次调试可将误差缩小至1-2mm。 #include #include #include typedef unsigned char uchar; typedef unsigned int uint; extern uchar old_SFRPAGE; double n0=0,n=0; float M0, t,s; sbit D=P1^0;//连TX //输出高低电平 sbit Q=P1^1;//连RX uchar flag=0; uchar flag_0=1; void timer1_int() // 定时器1,产生中断 { old_SFRPAGE = SFRPAGE; SFRPAGE=0X00; TL1=0X00; TH1=0X00; TMOD|=0X90; //定时器1方式1,16位定时器功能, CKCON=0X00; //TCLK=SYSCLK/12; TCON|=0X40; //启动定时器1 ET1=1;EA=1; //允许定时器1中断 SFRPAGE = old_SFRPAGE; } void timer1_intr() interrupt 3

相关文档
最新文档