Takara RT-PCR Kit

Takara RT-PCR Kit
Takara RT-PCR Kit

Code No.:DRR019A

RNA PCR Kit (AMV) Ver.3.0

(100次量)

目录

内 容 页 码 ●制品说明 1

●制品内容 1

●保存 2

●RNA PCR原理 2

●试剂盒特点 3

●RNA样品制备 4

●使用注意 4

●引物选择 5 ●实验操作 5

●Q&A9

●参考文献 9

●制品说明

PCR(Polymerase Chain Reaction;聚合酶链式反应)是一种体外扩增DNA的简单而有效的方法。虽然原理上PCR法是扩增DNA,RNA不能直接被扩增,但是经过反转录酶的作用把RNA反转录成cDNA 后,PCR法便可应用于RNA的解析了。迄今为止,此方法已广泛应用于RNA的构造解析、cDNA的克隆及RNA水平上的表达解析等多种领域。

TaKaRa RNA PCR Kit Ver.3.0是使用AMV(Avian Myeloblastosis Virus)由来的反转录酶将RNA合成cDNA,然后在同一反应管中使用Hot Start PCR用TaKaRa Ex Taq HS DNA聚合酶扩增此cDNA的RT-PCR试剂盒。本试剂盒含有从RNA到cDNA,然后使用PCR法扩增此cDNA所需的全部试剂。 本试剂盒中的Oligo dT-Adaptor Primer的独特设计,大大地提高了Poly(A )+ RNA 3′端区域的cDNA合成效率。Hot Start PCR用DNA聚合酶TaKaRa Ex Taq HS的应用,大大地增加了本试剂盒的扩增性能。

●制品内容(100次量)

1. AMV Reverse Transcriptase XL(5 U/μl) 50 μl

(Avian Myeloblastosis Virus来源)

2. RNase Inhibitor(40 U/μl) 25 μl

3. Random 9 mers(50 pmol/μl) 50 μl

4. Oligo dT-Adaptor Primer(2.5 pmol/μl) 50 μl

5. RNase Free dH2O 1 ml

6. TaKaRa Ex Taq?HS(5 U/μl) 40 μl

7. M13 Primer M4(20 pmol/μl) 50 μl

8. 10×RT Buffer 1 ml

[100 mM Tris-HCl(pH8.3),500 mM KCl]

9. 5×PCR Buffer 1 ml

10. dNTP Mixture(各10 mM) 150 μl

11. MgCl2(25 mM) 1 ml

12. Control R-1 Primer(20 pmol/μl) 25 μl

(Positive Control RNA下游引物)

13. Control F-1 Primer(20 pmol/μl) 25 μl

(Positive Control RNA上游引物)

14. Positive Control RNA(2×105 copies/μl) 25 μl

(Transcribed poly(A)+ RNA of pSPTet3 plasmid)

【各种引物序列】

引物名称 各引物序列

Random 9 mers 5′-(P)NNNNNNNNN-3′

Oligo dT-Adaptor Primer 包含dT区域及M13 Primer M4序列。

Control F-1 Primer 5′-CTGCTCGCTTCGCTACTTGGA-3′

Control R-1 Primer 5′-CGGCACCTGTCCTACGAGTTG-3′

M13 Primer M4 5′-GTTTTCCCAGTCACGAC-3′

-1-

本试剂盒中的Control RNA是以pSPTet3质粒(质粒中的SP6启动子下游插入长约1.4 kbp的pBR322来源的DNA片段,其DNA片段上含有抗四环素基因)为模板由SP6 RNA聚合酶经体外转录而得到的。Control RNA(约1.4 kb)是带有30个A碱基的具有Poly(A)+ 尾的RNA。当把Control RNA经RT-PCR合成的双链cDNA插入质粒时,该质粒便可获得四环素抗性。Control RNA简图见图1。

图1. Positive Control RNA:使用各种引物所能扩增的DNA片段

●保 存: -20℃

●RNA PCR原理

本试剂盒使用AMV由来的反转录酶由RNA合成cDNA,并可在同一反应管中使用TaKaRa Ex Taq HS 扩增此cDNA。Random 9 mers、Oligo dT-Adaptor Primer或特异性下游引物等均可作为反转录引物用于cDNA合成。Oligo dT-Adaptor Primer同时适用于3′-RACE实验。

图2. RNA PCR原理

-2-

-3-

●RNA样品制备

本试剂盒是把RNA合成cDNA,然后再对此cDNA进行扩增的试剂盒。RNA的纯度会影响cDNA的合成量,而制备RNA的关键是要抑制细胞中的RNA分解酶和防止所用器具及试剂中的RNA分解酶的污染。因此,在实验中必须采取以下措施:戴一次性干净手套;使用RNA操作专用实验台;在操作过程中避免讲话等等。通过以上办法可以防止实验者的汗液、唾液中的RNA分解酶的污染。

【使用器具】

尽量使用一次性塑料器皿,若用玻璃器皿,应在使用前按下列方法进行处理。

(1) 用0.1% DEPC(焦碳酸二乙酯)水溶液在37℃下处理12小时。

(2) 然后在120℃下高压灭菌30分钟以除去残留的DEPC。

RNA实验用的器具和仪器建议专门使用,不要用于其它实验。

【试剂配制】

用于RNA实验的试剂,须使用干热灭菌(180℃,60 min.)或用上述方法进行DEPC水处理灭菌后的玻璃容器盛装(也可使用RNA实验用的一次性塑料容器),使用的无菌水须用0.1%的DEPC处理后进行高温高压灭菌。

RNA实验用的试剂和无菌水都应专用,避免混用后交叉污染。

【制备方法】

使用简单的RNA纯化方法即可获得满足于RT-PCR反应的RNA(只需少量的RNA便可进行RT-PCR 反应)。但为了保证实验的成功率,建议使用GTC法(异硫氰酸胍法)制备的高纯度RNA。

使用Catrimox-14TM RNA Isolation Kit Ver.2.11(TaKaRa Code DWA005)可从血液中快速提取高纯度的Total RNA。

使用本试剂盒进行RT-PCR反应时,每次反应所需的最适Total RNA量约为500ng。

●使用注意

以下为使用本试剂盒时的注意事项,使用前一定认真阅读。

1) 当同时需要进行数次反转录反应或PCR反应时,应先配制各种试剂的混合液 (Master Mix;其中包括RNase Free dH2O、Buffer、dNTP Mixture、MgCl2等),然后再分装到每个反应管中。这样,可使所取的试剂体积更准确,减少试剂损失,避免重复分取同一试剂。同时也可以减少实验操作或实验之间产生的误差。

2) 使用Reverse Transcriptase(AMV)、RNase Inhibitor、TaKaRa Ex Taq?HS酶等酶类时,应轻轻混匀,避免起泡;分取之前要小心地离心收集到反应管底部;由于酶保存液中含有50%的甘油,粘度高,分取时应慢慢吸取。

3) 酶制品应在实验前才从-20℃中取出,使用后也应立即放回-20℃中保存。

4) 为了防止Positive Control RNA分解,应尽量避免反复冻融。有条件的实验室最好保存于 -70℃~-80℃。

5) 分装试剂时务必使用新的枪头(Tip),以防止样品间污染。

6) 最佳的PCR条件,因PCR扩增仪的不同而不同,所以在使用您的样品之前最好先试做一下Control 反应,以确定最佳的PCR条件。

-4-

●引物选择

用于反转录的引物可视实验具体情况选择Random 9 mers、Oligo dT-Adaptor Primer或特异性下游引物。对于不具有Hairpin构造的短链mRNA,3种引物中的任何一种都可以使用,但一般应按以下方法进行选择。

Random 9 mers

适用于长的或具有Hairpin构造的RNA。包括rRNA、mRNA、tRNA 等在内的所有RNA的反转录反应都可使用本引物。

用Random 9 mers合成的cDNA进行PCR反应时,必须使用特异 性引物。

Oligo dT-Adaptor 适用于具有Poly(A)+ Tail的RNA。(注意:原核生物的RNA、真核生 Primer 物的rRNA及tRNA以及某些种类的真核生物的mRNA不具有Poly

(A)+ Tail)。本Primer设计巧妙,反转录效率高。反转录反应后,可用

M13 Primer M4进行3′-RACE实验。

特异性下游PCR Primer 因其必须与模板序列互补,所以只适用于Target序列已知的情况。

(PCR时的下游引物)

●实验操作

1.使用Positive Control RNA时的RT-PCR实验例

① 合成cDNA的引物可结合实际情况从Oligo dT-Adaptor Primer、Random 9 mers或Control

R-1 Primer中任选一种。

① 按下列组成配制PCR反应液。

5×PCR Buffer 10 μl

灭菌蒸馏水 28.75 μl

TaKaRa Ex Taq?HS 0.25 μl

Control F-1 Primer 0.5 μl

Control R-1 Primer 0.5 μl

或特异性下

② 按以下条件进行反转录反应。

42

RNA(>

*5 PCR条件设定

■退火温度

可根据实际情况适当地提高或降低退火温度(50℃~65℃)。

■延伸时间

延伸时间因目的序列长度的不同而不同,通常TaKaRa Ex Taq?HS按1 kbp/min.设定延伸时间。

■循环次数

cDNA量较少时,循环次数可增加为40~50次。

④ 反应结束后,取PCR反应液(5~10 μl)进行琼脂糖凝胶电泳,确认PCR反应产物。如果此PCR

产物需用于以后实验,须将PCR产物冷冻保存。

3.3′-RACE法实验例

▲Sample RNA: Human HL60 Total RNA

▲Target cDNA: Transferrin receptor(TFR)

▲扩增DNA片段大小: 522 bp

图3. 对HL60全RNA使用3′-RACE法进行RT-PCR反应图解

A.反转录反应

按下列组成配制反转录反应液。

MgCl2 2 μl

10×RT Buffer 1 μl

RNase Free dH2O 3.75 μl

dNTP Mixture(各10 mM) 1 μl

RNase Inhibitor 0.25 μl

Reverse Transcriptase 0.5 μl

Oligo dT-Adaptor Primer 0.5 μl

HL60 Total RNA(500 ng/μl) 1 μl

oμl/Sample

tal 10

按以下条件进行反转录反应。

30℃ 10 min.

50℃ 30 min. 1 Cycle

99℃ 5 min.

5℃ 5 min.

B.PCR反应

按以下组成配制PCR反应液。

灭菌蒸馏水 28.75 μl

TaKaRa Ex Taq?HS 0.25 μl

M13 Primer M4 0.5 μl

TFR-1 Primer 0.5 μl

Total 40 μl/Sample

② 将B-①配制的40 μl PCR反应液加入至A-②的反转录反应管中。

③ 按以下条件进行PCR反应。

94℃ 30 sec.

55℃ 30 sec. 30 Cycles

72℃ 30 sec.

④ 反应结束后,取5 μl的PCR反应液进行琼脂糖凝胶电泳,确认PCR反应产物。目的片段的大小为

522 bp。

●Q&A

Q1. RT-PCR反应后,无PCR产物,怎么办?

A1. 首先应严格按说明书要求,进行Control反应。如Control反应情况正常,那说明实验操作方面没 有问题。应从您提取的RNA样品的纯度和添加量、引物的设计情况、参考文献的可信度以及RT-PCR 条件的设定等方面加以考虑;如Control反应不正常,应从实验操作的准确性、实验器具处理、PCR 仪的条件设定等方面加以考虑。

●参考文献

1)Kawasaki, E. S. and Wang, A. M. (1989) PCR Technology (Erlich, H. A. ed.), Stochton Press, 89-97.

2)Lynas, C., Cook, S. D., Laycoch, K. A., Bradfield, J. W. B. and Maitland, N. J. (1989) J. Pathology, 157, 285-289.

3)Frohman, M. A., Dush, M. K., Martin, G. R. (1988) Proc. Natl. Acad. Sci. USA,85, 8998-9002.

酶切位点保护碱基表

酶切位点保护碱基-PCR引物设计用于限制性内切酶 酶切反应 来源:easylabs 发布时间:2009-11-08 查看次数:12704 本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,A flIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,Eco RI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,Pa cI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 单实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A 260 位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在20°C 条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), , 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。 10 mM MgCl 2 20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切

引物保护碱基列表--百度文库

11月13日 引物合成的详解 4.需要什么级别的引物? 答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。根据实验需要,确定订购引物的纯度级别。 应用引物长度要求纯度级别要求 一般PCR扩增<45 base OPC 一般PCR扩增>45 base PAGE 诊断PCR扩增< 40base OPC, PAGE DNA测序20base左右OPC 亚克隆,点突变等根据实验要求定OPC, PAGE,HPLC 根据实验要求定PAGE 基因构建(全基因合成) 反义核酸根据实验要求定PAGE PAGE, HPLC 修饰引物根据实验要求定 8.如何计算引物的浓度? 答:引物保存在高浓度的状况下比较稳定。引物一般配制成 10-50pmol/ul。一般情况下,建议将引物的浓度配制成50pmol/ul,加水的体积(微升)按下列方式计算:V (微升)= OD数*(乘)33 *(乘)*(乘)20000 / (除) 引物的分子量。引物的分子量可以从合成报告单上获得。如果需要配制成其他浓度,按上述公式换算。 注意:1 OD260= 33 ug/ml. 9.如何计算引物的Tm值? 答:引物设计软件都可以给出Tm,与引物长度、碱基组成、引物使用缓冲的离子强度有关。

长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T) 对于更长的寡聚核苷酸,Tm计算公式为: Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size 公式中,Size = 引物长度。 11.如何溶解引物? 答:干燥后的引物质地非常疏松,开盖前最好离心一下,或管垂直向上在桌面上敲敲,将引物粉末收集到管底。根据计算出的体积加入去离子无菌水或10mM Tris pH7.5缓冲液,室温放置几分钟,振荡助溶,离心将溶液收集到管底。溶解引物用的水一般不要用蒸馏水,因为有些蒸馏水的pH值比较低(pH4-5),引物在这种条件下不稳定。 12.如何保存引物? 答:引物合成后,经过一系列处理和纯化步骤,旋转干燥而成片状物质。引物在溶解前,室温状态下可以长期保存。溶解后的引物-20度可以长期保存。如果对实验的重复性要求较高,合成的OD数较大,建议分装,避免反复冻融。修饰荧光引物需要避光保存。 13.合成的引物5’端是否有磷酸化 答:合成的引物5’为羟基,没有磷酸基团。如果需要您可以用多核苷酸激酶进行5′端磷酸化,或者要求引物合成公司合成时直接在5′或3′端进行磷酸化,需要另外收费。 14.引物片段退火后不能连接到载体上是什么问题? 连接反应需要引物的5’磷酸基团。如果需要将合成的引物退火直接连

!!酵母双杂交操作步骤(中文翻译)

各种SD培养基: 1)SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(? “四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的) ; 葡萄糖20g (即2%) 2)SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3)SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4)SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的) 葡萄糖 20g (即2%) 5)SD/-trp (1000 ml) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.74g ; (购买来就配好的) 葡萄糖 20g (即2%) 注意:YNB有两种,一种含有硫酸胺,另外一种不含硫酸胺。我们这用的是含硫酸铵的。(买来就加进去了的)。如果不含硫酸铵,那么要在终浓度0.17%的YNB中再加入0.5%的硫酸铵,即最终在1000 ml溶液中加入总量为6.7g的YNB与硫酸铵。 实际配制的方法是: 1.配制40%的葡萄糖贮存液(贮存在4℃),过滤除菌,待高压灭菌的溶液温度降至55℃ 以下时,再将50ml葡萄糖贮存液加入。(李博士经验这一步不高压,过滤即可使用)2.酵母氮源6.7g,加DO supplement 在920ml水中溶解,调PH至5.8(李博士的经验大 约加10M NaOH 200ul即可),之后补水至950 ml。 3.高压完后待温度降至55℃以下,加入50 ml40%葡萄糖。

酵母双杂交技术

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不能激活基因转录,单独的转录激活域也不能激活UAS 的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立为研究这一问题提供了有利的手段和方法。 缺点

保护碱基添加总结

酶切位点保护碱基表6

PCR引物设计原则 信息来源:本站原创更新时间:2004-12-21 0:44:00 PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在这一区域设计引物。现在可以在这一保守区域里设计一对引物。一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。 让我们先看看P1引物。一般引物序列中G+C含量一般为40%~60%。而且四种碱基的分布最好随机。不要有聚嘌呤或聚嘧啶存在。否则 P1引物设计的就不合理。应重新寻找区域设计引物。 同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。 引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特

异性影响不大。但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。 综上所述我们可以归纳十条PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。 ⑩引物3′端要避开密码子的第3位。 PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR 的成功,但遵循某些原则,则有助于引物的设计。

酵母双杂交H2Y和Y187系统protocol

目录 (一)介绍 4 (二)试剂盒物品清单 7 (三)额外附加物品列表9 (四)酵母菌株11 (五)酵母载体14 (六)方法简述:单杂交文库的构建和筛选16 方法简述:双杂交文库的构建和筛选17 (七)构建用于酵母单杂交的报告质粒载体18 (八)构建用于酵母双杂交的DNA-BD融合载体19 (九)构建生成cDNA文库21 (十)构建和筛选酵母单杂交和双杂交文库(简述)27 (十一)酵母单杂交文库的构建和筛选28 (十二)酵母双杂交文库的构建和筛选30 方法A:通过酵母配对(Yeast Mating)来筛选目的蛋白30 方法B:通过共转化的方法筛选目的蛋白35 (十三)分析阳性相互作用结果38 (十四)问题解决指南44 (十五)参考文献47 (十六)相关产品50 附录A: 双链 cDNA合成的典型结果51 附录B: 酵母感受态的制备—LiAc 法52 附录C:单杂交对照载体信息53 附录D:双杂对照载体信息54 表格列表 Table I. BD Matchmaker酵母菌株的基因型11 Table II. BD Matchmaker酵母菌株的表型11 Table III.单杂交系统的载体14 Table IV.双杂交系统的载体15 Table V.各BD-Matchmaker DNA-BD 载体的比较19 Table VI. RNA起始浓度和PCR扩增循环数之间的关系24 Table VII.单杂交共转化的对照实验的设置29 Table VIII.单杂共转化对照实验:期望的结果29 Table IX.双杂交转化的对照实验的设置33 Table X.双杂交配对筛选的对照实验的设置 Table XI.双杂交共转化的对照实验的设置 Table XII.双杂交共转化的对照实验:期望的结果 Table XIII.用于PCR筛选菌落的Assembling Master Mixs

限制性内切酶保护碱基表

PCR设计引物时酶切位点的保护碱基表

ApaI (类型:Type II restriction enzyme )识别序列:5'GGGCC^C 3' BamHI(类型:Type II restriction enzyme )识别序列:5' G^GATCC 3' BglII (类型:Type II restriction enzyme )识别序列:5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme )识别序列:5' G^AATTC 3' HindIII (类型:Type II restriction enzyme )识别序列:5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme )识别序列:5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme )识别序列:5' C^CATGG 3' NdeI (类型:Type II restriction enzyme )识别序列:5' CA^TATG 3' NheI (类型:Type II restriction enzyme )识别序列:5' G^CTAGC 3' NotI (类型:Type II restriction enzyme )识别序列:5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme )识别序列:5' GAGCT^C 3' SalI (类型:Type II restriction enzyme )识别序列:5' G^TCGAC 3' SphI (类型:Type II restriction enzyme )识别序列:5' GCATG^C 3'

酵母双杂交操作步骤(中文翻译)

(酵母菌储存在-70℃中,引物和质粒DNA储存在-20℃中) 概念: 1. 次序转化:指的是先将一种质粒转化进酵母中(常是DNA-BD/bait plasmid),在选择培养基中选择出阳性克隆,之后再将另外一个质粒(AD fusion library)转化进去。优点:就是比共转化使用更少的质粒DNA,也就是节约质粒DNA。 2. 共同转化:将两种质粒一起转化进酵母中。优点:比次序转化更容易操作。 pGBKT7----的选择物是:kanamycin(卡那霉素)? pGADT7----的选择物是:ampicillin (氨苄西林) ? 各种SD培养基: 1) SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(?“四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的); 葡萄糖 20g (即2%) 2) SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3) SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4) SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的)

酵母双杂交试验流程

4月4日划线配培养基TE/LIAC PEG/LIAC 配置培养基(YPD YPDA)取酵母细胞划线30°生长3天。 需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨 注:以下所有涉及菌的操作均需在超净台中完成。 4月6号星期三 (1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。 需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。 4月7号星期四 (2)吸取2.5-10ul酵母培养液,加入25mlYPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。 下午4点开始8号8点结束 Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。 4月8号星期五 (3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。 (4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。 (5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。8号8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。 (6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。 (8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。(9)将上述溶液转移到灭菌的1.5mlEP管中,高速离心15s。 (10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。 需要物品:50ml灭菌离心管、50ml 三角瓶、1.5ml EP管、5ml灭菌枪头、1ml灭菌枪头、灭菌ddH2O、YPDA液体培养基、1.1x TE/LIAC。 1.1x TE/LIAC10ML 10xTE 1.1ml 10xliac 1.1ml Dh2O8.8ml

(完整版)酵母双杂交原理

酵母双杂交系统原理 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

各种酶切位点的保护碱基引物设计必看

各种酶切位点的保护碱基引物设计必看 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

各种酶切位点的保护碱基酶不同,所需要的酶切位点的保护碱基的数量也不同。一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。在资料上查不到的,我们一般都随便加3个碱基做保护。 寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragments (oligonucleotides) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1 μg 已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCl2 , 5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

2.双酶切的问题 参看目录,选择共同的buffer。其实,双酶切选哪种buffer是实验的结果,takara公司从1979年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer完全是依据具体实验结果得到的。 有共同buffer的,通常按照常规的酶切体系,在37℃进行同步酶切。但BamH I在37℃下有时表现出star活性,常用30℃单切。 两个酶切位点相邻或没有共同 buffer的,通常单切,即先做一种酶切,乙醇沉淀,再做另一种酶切。 3.酶切底物DNA,切不开 1)底物DNA上没有相应的限制酶识别位点,或酶切位点被甲基化。 2)PCR引物的酶切位点前没有保护碱基或引物合成有误,致使没有正确的酶切位点存在。PCR产物酶切前尽量进行精制以更换buffer。由于PCR产物中带入的其它物质,会影响酶切,据报道,通常PCR产物的添加量占总反应体积25%以下没有问题。3)酶切条件的确认,包括反应温度和反应体系等。同样的DNA,同样量,用不同的限制酶切情况可能不同,由于DNA的空间结构造成的。同样的DNA,不同的反应体系,酶切效果也可能不同,由于一些空间因素或不可测因素造成的。

全宇宙最全的内切酶保护碱基表

内切酶碱基数目和酶 切活性(%) 1 2 3 4 5 AarI 20-50 50-100 AasI 50-100 AatII 0 0-20 20-50 50-100 Acc65I 0-20 50-100 AdeI 50-100 AjiI 50-100 AluI 0-20 20-50 50-100 Alw21I 50-100 Alw26I 50-100 Alw44I 0 20-50 50-100 ApaI 50-100 BamHI 50-100 BauI 0-20 20-50 50-100 BcnI 20-50 50-100 BclI 0 50-100 BcuI 50-100 BfiI 50-100 BfmI 50-100 BfuI 50-100

BglI 20-50 50-100 BglII 0 50-100 Bme1390I 20-50 50-100 BoxI 0 50-100 BpiI 50-100 Bpu10I 20-50 50-100 Bpu1102I 50-100 BseDI 0 50-100 BseGI 50-100 BseJI 0 50-100 BseLI 0 50-100 BseMI 0-20 50-100 BseMII 50-100 BseNI 0 50-100 BseSI 50-100 BseXI 20-50 50-100 Bsh1236I 50-100 Bsh1285I 0-20 50-100 BshNI 50-100 BshTI 20-50 50-100 Bsp68I 0 50-100

Bsp119I 50-100 Bsp120I 20-50 50-100 Bsp143I 50-100 Bsp1407I 20-50 50-100 BspLI 50-100 BspPI 0 50-100 BspTI 0 0-20 50-100 Bst1107I 0-20 50-100 BstXI 0 50-100 Bsu15I 50-100 BsuRI 0-20 20-50 50-100 BveI 0-20 50-100 CaiI 0 0-20 50-100 CfrI 0 50-100 Cfr9I 20-50 50-100 Cfr10I 20-50 50-100 Cfr13I 50-100 Cfr42I 50-100 CpoI 50-100 CseI 50-100 Csp6I 50-100

各种酶切位点的保护碱基

各种酶切位点的保护碱基 酶不同,所需要的酶切位点的保护碱基的数量也不同。一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。在资料上查不到的,我们一般都随便加 3个碱基做保护。 寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragments (oligonucleotides) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的 短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通 常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用Y[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A 260单位的寡核苷酸。取1 Q 已标记了的寡核苷酸与 20单位的内切酶,在20° C条件下分别反应2小时和20小时。反应缓冲液含 70 mM Tris-HCI (pH 7.6), 10 mM MgCI 2 , 5 mM DTT 及适量的 NaCl 或 KCI (视酶的具体要求而定)。20%的PAGE ( 7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现 发夹结构而降低。

2.双酶切的问题 参看目录,选择共同的 buffer。其实,双酶切选哪种 buffer是实验的结果,takara 公司从1979 年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer 完全是依据具体实验结果得到的。 有共同buffer的,通常按照常规的酶切体系,在37 C进行同步酶切。但BamH I在37 C下有时 表现出star活性,常用30 C单切。 两个酶切位点相邻或没有共同buffer的,通常单切,即先做一种酶切,乙醇沉淀,再做另一种酶

关于保护碱基

关于保护碱基 1.首先要明确什么是保护碱基 限制性内切酶识别特定的DNA序列,除此之外,酶蛋白还要占据识别位点两边的若干个碱基,这些碱基对内切酶稳定的结合到DNA双链并发挥切割DNA 作用是有很大影响的,被称为保护碱基。 2.添加保护碱基的目的 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。但实验证明,大多数限制酶对裸露的酶切位点不能切断。必须在酶切位点旁边加上一个至几个保护碱基,才能使所定的限制酶对其识别位点进行有效切断。因此在设计PCR引物时,为保护5` 端外加的内切酶识别位点,人为地在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高酶切时的活性,使酶切完全。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 3.添加保护碱基的原则 添加保护碱基,需要考虑两个因素:一是碱基数目,一是碱基种类。添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA段上。如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠

相关文档
最新文档