动平衡实验报告

动平衡实验报告
动平衡实验报告

硬支承动平衡实验报告

实验目的:

1.了解硬支承动平衡机的结构、控制面板、性能及操作方法。

2.验证、巩固和加深对基本理论的理解,培养实验动手能力。

3.掌握基本的机械实验方法、测量技能及用实验法以及培养学生踏实细致、严肃认真的科学作风。

实验设备:

1、硬支承动平衡机

2、台式钻孔机、钳工工作台

3、线切割滚丝筒

4、标定加重螺栓。

实验原理:

根据《机械原理》所述的回转体动平衡原理知:一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡重和(它们的质心位置分别为和;半径大小可根据数值、的不同变化)所产生的离心力。动平衡的任务就是在这两个任选的平面(称ω为平衡基面)内的适当位置(和)加上两个适当大小的平衡重和,使它们产生的平衡力与当量不平衡重产生的不平衡力大小相等,而方向相反,即:

2

b 2b 22

222b 1b 1211ω

r ωr ωr ωr G G G G =-=-

半径

越大,则所需的就越小。

通过平衡补偿回转体达到力和矩平衡,从而达到动平衡。 硬支承动平衡机工作原理简图如下所示:

实验步骤:

1)将两平衡平面处于原始位置,系统处于静平衡但动不平衡状态,在两支承处加润滑油。

2)按D 参数键,选定转子号,回车;

3)进入D1页,输入平衡转速540转,平衡配重的半径R ,回车; 4)进入D2页,输入A,B,C 参数,可测量,A 为第一平衡面距第一支承中心的距离,B 为两平衡面间距离,C 为第二平衡面和第二支承点的距离;输入支承方式HE-1,按存储键;

5)进入显示,测量页面;

6)启动电机,启动高速运转;

7)待系统稳定后,屏幕上会显示平衡配重的质量和相位;

8)按停止按钮,依据显示数值,在两平衡平面上安装平衡配重,并记录相关数值;

9)启动系统,重复步骤7),直到平衡配重显示精度标准为止,记录每一步数据;

10)关闭电源,拆除平衡配重,结束实验。

实验数据:

采样次数= 5次取平均值

实验设定参数为:

A=68.0mm B=65.0mm C=177.0mm Rpm=540.0mm

测量数据如下表:

实验结果讨论及心得:

1、对于不平衡量比较大的滚丝筒,一般先加重,再去重。

2、滚丝筒的规格比较小,要求动平衡的精度也比较高,在打孔的时候需要格外注意孔的位

置和深度,这样可以减少平衡的次数。

3、在钻螺纹的时候得反向旋转,并且在钻具上得先添点油防止钻孔过程中的屑末会流入物

体从而导致加重误差变大。

思考题:

1、为什么偏重太大要先进行静平衡?

答:若偏重太大,直接进行动平衡,有可能会因为产生的离心力过大而导致轴类零件变形、损坏工件或导致动平衡机的损坏。

2、画记号有什么作用,怎样保证在实际操作中不产生位置误差?

答:记号用以在转动过程中产生短暂遮蔽信号,光电传感器捕捉此信号用以计数;同时记号可以标记需增减质量的位置,方便打孔或是加质量。在确定重量调节位置时,可通过“角度二分法”逐步逼近所显示相位,并进行标记。

如有侵权请联系告知删除,感谢你们的配合!

《转子动平衡——原理、方法和标准》

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过任选的二个平面得以平衡。 对于挠性转子,当在一个转速下平衡好后,在另一个转速下又会出现不平衡问题。当一个挠性转子首先在低于它的70%第一监界转速下,在它的两端平面内加配重平衡好后,这两个加好的配重将补偿掉分布在整个转子上的不平衡质量,如果把这个转子的转速提高到它的第一临界转速的70%以上,这个转子由于位于转子中心处的不平衡质量所产生的离心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而产生新的不平衡问题,此时在新的转速下又有必要在转子两端的平衡面内重新进行动平衡工作,而以后当转子转速降下来后转子又会进入到不平衡状态。为了能在一定的转速范围内,确保转子都能处在平衡的工作状态下,唯一的解决办法是采用多平面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

实验二机构运动简图测绘

《机械设计基础》实验指导书课程编号:02106220、02106420、02107220、02106520 课程名称:机械设计基础(A)、机械设计基础(B)、机械设计基础(C) 注:1、实验01和10可合并在一起,分两个单元进行; 2、实验03和04应根据学时和专业方向从中选择一个。 实验一机构认识实验 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 二、实验内容 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,增加对常用机构的结构、类型、特点的理解,培养对课程理论学习和专业方向的兴趣。 三、实验设备和工具 机构陈列室机构展柜和各种机构模型。 四、实验原理

(一)对机器的认识:通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 (二)平面四杆机构:平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 (三)凸轮机构:凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。 凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。 (四)齿轮机构:齿轮机构是现代机械中应用最广泛的一种传动机构。具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。 1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。 2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。 3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。 在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。 4.齿轮机构参数:齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。 在参观这部分时学生们一定要知道,什么是渐开线?渐开线是如何形成的?什么是基圆、发生线? 并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?

动平衡计算

单缸发动机的平衡: 一.1.单缸发动机的旋转惯性力为:2r r P m r ω= 往复惯性力:2(cos cos2) j j P m r t t ωωλω=+ 一阶往复惯性力: 2cos j j P m r t ωω=Ⅰ 二阶往复惯性力:2cos2j j P m r t ωω=Ⅱ 一般忽略二阶往复惯性力。 对于单缸内燃机的平衡一般采用过量平衡法。 过量平衡法: 过量平衡法又称转移法,是采用在曲柄臂的配重完全平衡掉旋转质量惯性力后再加一部分平衡重,这部分平衡重用来平衡部分一阶往复惯性力。由于这部分平衡重虽然平衡掉了部分气缸中心线方向的往复惯性力,但同时也在气缸中心线的垂直方向产生了一新的惯性力,所以这种方法也叫转移法,即指将气缸中心线方向的惯性力转移到了与之垂直的方向上。 采用过量平衡法,往复惯性力在x 与y 轴方向的力为(不考虑二阶惯性力): 22cos cos()x j j r F m r t fm r t ωωωωθ=-+ 2sin()y j r F fm r t ωωθ=-+ 其中 r j f m m = 经过一些列的数学变化,可以证明此方程为一个椭圆方程。

主轴倾角θ:发动机不平衡力F 随曲柄转角变化,在某一角度F 达到最大,该角度和X 方向的夹角定义为主轴倾角,主轴倾角表示最大惯性力方向。 对于卧式发动机机,其f 值一般控制在0.2~0.3的范围内效果最好,f 值小于0.2时,惯性力椭圆就会变得过于细长,如果发动机在车架上的安装角度稍有偏差,也会在垂直方向上产生较大的振动,这种对安装角度偏差过于敏感的f 值也不适应批量生产;若f 值大于0.3,发动机运转时就会在垂直方向产生较大的惯性力,引起垂直方向产生较大的振动,骑乘的舒适性就会就变差。要减小发动机的振动,除了控制f 外,控制θ也至关重要,θ它表明了惯性力矢端椭圆长轴与气缸中心线方向的关系。总的原则是,发动机在车架上安装好后,其曲柄连杆机构的惯性力矢端的椭圆的长轴应与水平方向接近。 j m :往复运动的总质量 1r m :完全平衡掉旋转惯性力后额外的平 衡质量 由于是非对称布置,1r m 与曲柄方向的之 间的夹角为r θ。

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

动平衡校正的计算公式

动平衡校正的计算公式 This model paper was revised by the Standardization Office on December 10, 2020

不平衡量的简化计算公式: m=9549MG/r×n M——转子质量单位(kg) G——精度等级选用 r——校正半径单位(mm) n——工件的工作转速单位(rpm) m——不平衡合格量单位(g) 允许不平衡量的计算公式为: 式中mper为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为级,转子的重量为0.2kg,转子的转速为1000rpm,校正

半径20mm, 则该转子的允许不平衡量为: 因电机转子一般都是双面校正平衡,故分配到每面的允许不平衡量为0.3g。 在选择平衡机之前,应先考虑转子所要求的平衡精度。 转子允许不平衡量的计算 允许不平衡量的计算公式为: 为允许不平衡量,单位是g; 式中m per M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为级,转子的重量为0.2kg,转子的转速为1000rpm,校正 半径20mm, 则该转子的允许不平衡量为: 因电机转子一般都是双面校正平衡,故分配到每面的允许不平衡量为0.3g。 在选择平衡机之前,应先考虑转子所要求的平衡精度。

全息动平衡实验报告

柔性转子全息现场动平衡实验报告 一、实验目的 ◆巩固转子动平衡知识,加深转子动平衡概念的理解; ◆掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备及工具 柔性转子现场动平衡实验台,其中包括PC机及其相关采集分析软件,数据采集箱,试重 块若干,传感器信号连接线等 三、实验原理步骤与方法 本实验应用西安交通大学智能仪器与监测诊断研究所自行研制的对称转子全息动平衡系统对平衡转子实验台进行现场数据采集的基础上,进行试重的添加,测试和计算得出不平衡位置所要求添加的不平衡质量和加重位置,然后通过添加配重完成转子动平衡的实验过程。实验步骤如下: 1.在平衡转速下测量原始失衡状态的转子振动,获取振动的原始数据及信息; 2.停车后在转子左右加重盘上添加试重质量,启动转子到平衡转速,测量并获取添加试重后转子的振动数据及信息; 3.停车后除去添加的试重; 4.根据前两步测量的振动数据和添加试重大小、方位等信息,计算转子实际平衡配重的大小和方位; 5.按照计算结果分别在左右平衡盘上添加平衡配重; 6.启动转子到平衡转速,验证平衡效果。 注:试验截图便于叙述的情况下,请酌情加入截图在本报告后面给出! 结果简要分析及结论: 本实验将影响系数法和全息动平衡法相结合,在原始平衡转速下,由不平衡质量产生的离心力引起较强烈的强迫振动响应,基于原始振动数据和初次添加的振动质量,进行影响系数法计算后,再次配重结果如下图所示: 1测量面X、Y振动峰峰值配重前后比分别为1.90:1,1.99:1; 2测量面X、Y振动峰峰值配重前后比分别为3.91:1,2.12:1。

说明合理配重后,转子不平衡振动情况得到了明显改善。同时,采用影响系数法进行计算分析,可以以较少的试重起车次数获得较好的配重结果。 另外,采用全息动平衡法,消除了信号中的噪音,轴心轨迹较为清晰。同时,我们观察到轨迹上有许多突变的尖点,说明有可能存在动静碰面。 实验注意事项: 1)检验传感器安装和数据线是否正确,以及所有电源是否已经打开。 2)检验加重块是否安置正确,加重用的螺丝刀是否放置完好。 3)启车时,首先启动右侧的启车按钮,然后再选择升速,注意,右侧有三个档位依次: 盘车、启车和停车。 4)升速和减速时,速率不能过小,以便与快速冲过临界转速; 5)本转子的临界转速为2000r/min,实验转速不宜选择太接近; 6)停车时,先减速至盘车转速,再停车,不能直接停车。 7)加重时,必须带上手套,并在转子平衡后添加,注意加重块的角度和质量; 8)实验完成后,检验加重块是否取下,放置好加重块。清洁好实验台,盖好台布。 三、试验记录及结果 试验记录及分析结果: 1

第09章 动平衡计算

9.1 动平衡机理概述 众所周知,不平衡是旋转机械最常见的振动原因,并且其它一些故障,如不对中和碰摩等,也可以通过改善机组的平衡状态而予以减轻或消除,因此现场找平衡就成为消除机组振动的重要措施之一。 由振动理论知,振动的振幅不仅正比于静不平衡的离心力Meω2,而且还与动力放大因子R有关。动力放大因子R是转子转速的单值函数,转速确定后,R 的值也将确定。滞后角φ表明振动的幅值滞后于不平衡激励力Meω2的角度,并且随转速的改变而改变,当转速确定后,滞后角也为定值。因此,只要系统符合线性假设,即物性参数(如支撑刚度,阻尼等)和特性参数(如固有频率和阻尼率等)不因振动大小而发生改变,则相同转速下轴承的振动正比于转子不平衡质量的大小,并且振动滞后于不平衡离心力的相位也为定值,这就是转子平衡的理论基础。 平衡是通过检测和调整转子的质量分布,即在转子的适当位置上加上或减去一定大小的质量(称为校正质量或配重),来减小转子的惯性主轴与旋转轴线的偏离,使机组的振动降到允许范围内。平衡的作用是减少转子的挠曲,减低机组的振动并减少轴承及基础的动反力,保证机组安全,平稳,可靠地运行。 9.2 动平衡软件使用说明 平衡计算模块为一通用的平衡 软件(图9.2-1),系统提供了最小二 乘法影响系数计算、最小二乘法影 响系数动平衡、谐分量法影响系数 计算、谐分量法影响系数动平衡、 三点定位定量法动平衡、矢量加 减运算和估算剩余振动等多种功 能,可以迅速方便地找出最佳的合 理配重。它可以对多平衡面、多测 振点同时进行平衡。图9.2-1

影响系数法只有当知道影响系数后才能使用,由于各机组实际情况不同,各机组的影响系数也大不相同。它一般由技术人员根据经验得到的或通过多次试重得到。 最小二乘法影响系数计算模块通过试重可以自动计算出机组的最小二乘法影响系数。 进入最小二乘法影响系数计算模块后,选择对应的加重面和测振点(图9.2-2)后进入图9.2-3所示的对话框。用户必须输入各测振点原始振动的振幅和相位(由于本软件为通用软件,故用户可以从前面的信号分析中得到一倍频振幅和相位,并人工输入)、试重后振动的振幅和相位以及试加重量的大小和角度,然后击一下计算按钮,即可得到计算结果,即该加重面对各测振点的最小二乘法影响系数。试加重量的大小可以根据经验或同型机组的统计结果确定,没有把握可以取小一些。 图 9.2-2 图9.2-3

转子试验台振动噪声测试综合实验

——转子实验台振动和噪声测试综合实验 机自22班第3组 组长:王蒙 组员:万旭任勇 邢欢李聪明 转子实验台振动和噪声测试综合实验 转子实验台振动和噪声测试综合实验 (1) 转子实验台振动和噪声测试综合实验 (1) 一、实验简介 (1) 1. 1 实验目的 (3) 1.2 实验仪器与设备 (3)

1.3 实验要求 (3) 二实验方案 (4) 1、准备阶段: (4) 2、实验阶段: (4) 3、总结分析及报告准备阶段: (5) 4、注意事项: (5) 三、测试系统搭建 (6) 3.1测试系统框架图 (6) 3.2 传感器的位置选择与搭建 (6) 3. 3 传感器通道连接 (9) 四、信号采集与分析 (10) 4.1 信号采集 (10) 4.2通道的连接、选择与初始化 (10) 4.3 转子轴心轨迹的测量 (12) 4.4 不同转速下转子振动的时域分析 (13) 4.5 不同转速下转子振动的频域分析 (17) 4.6 不同转速下噪声的时域分析 (21) 4.7 不同转速下噪声的频域分析 (23) 4.8 转子振动与噪声相干分析 (26) 4.9动平衡实验 (27) 五、实验总结 (37) 5. 1 实验结论 (37) 5.2 实验心得 (38)

一、实验简介 1. 1 实验目的 针对机械转子实验台,能够较熟练地掌握机械动态信号如振动、噪声等的测试系统设计、测试系统搭建、数据采集及信号处理的方法和技术。 1.2 实验仪器与设备 1.3 实验要求 1.针对转子实验台对象,按照机械动态特性测试要求,完成机械振动和噪声的计 算机测试系统设计。 2.选用合适的振动和噪声测试传感器及其信号调理装置 : 3. 构建计算机测试系统,掌握振动和噪声信号分析软件使用方法 : 4. 自主完成转子实验台振动和噪声的测量、信号采集 : 5. 通过信号分析,得出转子实验台在不同转速下的振动和噪声的时域波形、

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 一、 实验目的: 1. 掌握刚性转子动平衡的基本原理和步骤; 2. 掌握虚拟基频检测仪和相关测试仪器的使用; 3. 了解动静法的工程应用。 二、 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、 实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个 力偶M (等于力系对质心C 的主矩()∑== c i c m S m M )。如果转子的质心在转轴上且 转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量11010V ψ∠=V 和22020V ψ∠=V ,其中V 10和V 20是振动位移(也可以是

自平衡试验报告

(CMA章) ※※※※※※※※※※※工程 桩基自平衡试验报告 检测报告 工程名称:※ 工程地点:※ 委托单位:※(盖骑缝章)检测日期:※年※月※日 报告总页数:※(含此页) 报告编号:※ 合同编号:※ (报告专用章) ※※※※※※※※※※检测站 ※年※月※日

※※※※※※※※※※工程 ※※※桩自平衡试验检测报告 现场检测人员:※※※(1234) (上岗证号)※ 报告编写:※ (上岗证号) 校核: (上岗证号) 审核: (上岗证号) 技术负责人: 声明: 1、本检测报告涂改、错页、换页无效; 2.检测单位名称与检测报告专用章名称不符者无效; 3. 本报告无我单位“技术资格证书章”无效; 4. 本报告无检测、审核、技术负责人签字无效; 5.如对本检测报告有异议,可在报告发出后20 天内向本检测单位书面提请复议。 (报告专用章) ????? ※年※月※日 ??地址:邮政编码: ??电话:联系人:

一、工程概况 表1

二、试桩位置选择及工程地质条件 根据目前的施工进度和补勘资料显示的地质情况,拟定在35-4#桩和36-3#桩进行试桩试验,2根试桩均按端承桩设计。35-4#桩桩位对应的钻孔编号为BJ35-4,36-6#桩桩位对应的钻孔编号为BJ36-3,2根试桩桩位处地质钻孔参数如下表1.1、表1.2所示。 表1.1 试桩(35-4#)桩位处钻孔地质参数表 表1.2 试桩(36-3#)桩位处钻孔地质参数表

二、试验目的及参考依据 (1)试验目的 为了保证结构的安全可靠、施工的顺利进行,主要对桩基在各类土层中桩侧摩阻力、桩端承载力、桩基竖向位移、单桩极限承载力和成桩工艺等进行试验和验证,其主要目的为: 1) 2根试桩设计承载力为8500kN,验证基桩的承载力; 2) 实测桩侧土分层摩阻力和桩端阻力,侧阻及端阻的分担情况; 3) 实测桩身轴力、摩阻力分布; 4) 确定桩基沉降及桩身弹塑性变形; (2)试验参考依据 1)《公路桥涵地基与基础设计规范》(JTG D63-2007); 2)《广东省建筑地基基础设计规范》(DBJ-15-31-2003) 3)《基桩静载试验自平衡法》(JT/T 738-2009); 4) 肇花高速公路北江特大桥35-4#、36-3#钻孔地质资料; 5)《公路桥涵施工技术规范》(JTJ041-2000); 三、测试原理及试验方法 1.试验原理 自平衡测试法是利用试桩自身反力平衡的原则,在桩端附近或桩身某截面处预先埋设单层(或多层)荷载箱,加载时荷载箱以下将产生端阻和向上的侧阻以抵抗向下的位移,同时荷载箱以上将产生向下的侧阻以抵抗向上的位移,上下桩段的反力大小相等、方向相反,从而达到试桩自身反力平衡加载的目的。试验时,在地面上通过油泵加压,随着压力的增加,荷载箱伸长,上下桩段产生弹(塑)性变形,从而促使桩侧和桩端阻力逐步发挥。荷载箱施加的压力可通过预先标定的油泵压力表测得,荷载箱顶底板的位移可通过预先设置的位移棒(或位移丝),在桩顶(或工作平台)附近用位移传感器测得。由此可测得上

不平衡量计算方法

不平衡量的简化计算公式: M ----- 转子质量单位kg G ------精度等级选用单位 kg r ------校正半径单位mm n -----工件的工作转速单位 rpm m------不平衡合格量单位g -------m=风机动平衡的阐述 1、风机动平衡标准:如动平衡精度≤ G (指位移振幅6.3mm/s); 2、一般动平衡机采用350 rpm和720 rpm两种转速做动平衡测试;

3、一般动平衡机采用最大动平衡重量(Kg)命名型号; 4、动平衡方法:加重平衡和去重平衡; 平衡对象:轴,风轮,皮带轮和其它转子 6、平衡的原因:一个不平衡的转子将造成振动和转子本身及其支撑结构的应力(应力:材料内部互相拉推的力量,即作用与反作用力); 7、平衡的目的: A,增加轴承寿命; B,减少振动; C,减少杂音; D,减少操作应力; E,减少操作者的困扰和负担; F,减少动力损耗; G,增加产品品质; H,使顾客满意。 8、不平衡的影响 A,只有一个传动组件的不平衡会导致整个组合产生振动,在转动所引起的振动会造成轴承﹑轴套﹑轴心﹑卷轴﹑齿轮等的过大磨损,而减少其使用寿命; B,一旦很高的振动出现,则在结构支架和外框产生应力,经常导致其整个故障; C,且被支架结构吸收的能量会使得等效率的减低; D,振动也会经由地板传给邻近的机械,会严重影响其精确度或正常功能。 9、不平衡的原因: 不平衡为转子(风轮﹑轴心或皮带轮等)的重量分布不均匀。 一、叶轮产生不平衡问题的主要原因

叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损与叶轮的结垢。造成这两种情况与引风机前接的除尘装置有关,干法除尘装置引起叶轮不平衡的原因以磨损为主,而湿法除尘装置影响叶轮不平衡的原因以结垢为主。现分述如下。 1.叶轮的磨损 干式除尘装置虽然可以除掉烟气中绝大部分大颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 2.叶轮的结垢 经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。 二、解决叶轮不平衡的对策 1.解决叶轮磨损的方法 对干式除尘引起的叶轮磨损,除提高除尘器的除尘效果之外,最有效的方法是提高叶轮的抗磨损能力。目前,这方面比较成熟的方法是热喷涂技术,即用特殊的手段将耐磨、耐高温的金属或陶瓷等材料变成高温、高速的粒子流,喷涂到叶轮的叶片表面,形成一层比叶轮本身材料耐磨、耐高温和抗氧化性能高得多的超强外衣。这样不仅可减轻磨损造成叶轮动平衡的破坏,还可减轻氧化层产生造成的不平衡问题。 选用引风机时,干式除尘应优先选用经过热喷涂处理的叶轮。使用中未经过热喷涂处理的叶轮,在设备维修时,可考虑对叶轮进行热喷涂处理。虽然这样会增加叶轮的制造或维修费用,但却提高叶轮的使用寿命l~2倍,延长了引风机的大修周期。从而降低了引风机和整个生产系统的运行成本,综合效益很好。 2.解决叶轮结垢的方法 (1)喷水除垢:这是一种常用的除垢方法,喷水系统装在引风机的机壳上,由管道、3个喷嘴(1个位于叶轮出口处,2个位于进口处)及排水孔组成。水源一般为自来水,压力约。这种方法通常还是有效的。缺点是每次停机除垢的时间较长,每月需停机数次进行除垢。影响机组的正常使用。 (2)高压气体除垢:该系统采用与喷水系统相似的结构,但其管道为耐高压管道、专用的喷嘴和高压气源。这种装置对叶片的除垢是快速有效的,它可以在引风机正常停机的间隙,开启高压气源,仅用数十秒的时间即可完成除垢。由于操作简单方便,一天可以进行许多次,不但解决了人工除垢费力、费时的问题,还明显降低了整个机组的生产成本。问题是用户是否有现成的高压气源(压力在~之间,可以用压缩空气或氮气),否则,需要专用的高压压缩机设备。

转子实验台综合实验指导书

实验三十一转子实验台综合实验 一. 实验目的 通过本实验让学生掌握回转机械转速、振动、轴心轨迹测量方法,了解回转机械动平衡的 概念和原理。 二. 实验台简介 DRZZS-A型多功能转子试验台由:1 底座、2 主轴、3 飞轮、4 直流电机、5 主轴支座、6 含油轴承及油杯、7 电机支座、8 连轴器及护罩、9RS9008 电涡流传感器支架、10 磁电转速传感器支架、11 测速齿轮(15 齿)、12 保护挡板支架,几部分组成,如图 1 所示。 图1 DRZZS-A型多功能转子试验台传感器安装位置示意图 主要技术指标为: 可调转速范围:0~2500 转/分,无级 电源:DC12V 主轴长度:500mm 主轴直径:12mm 外形尺寸:640×140×160mm 重量:12.5kg 与DRVI软件平台结合,可以开设以下实验: 加速度传感器/速度传感器振动测量实验 磁电传感器/光电传感器转速测量 三点加重法转子动平衡实验

转子轴心轨迹测量实验 三. 实验内容 1、转子实验台底座振动测量实验 对于多功能转子实验台底座的振动,可采用加速度传感器和速度传感器两种方式进行测量。 将带有磁座的加速度和速度传感器放置在试验台的底座上,将传感器的输出接到变送器相应的端 口,再将变送器输出的信号接到采集仪的相应通道,输入到计算机中。 启动转子试验台,调整转速。观察并记录得到的振动信号波形和频谱,比较加速度传感器和 图 2、加速度和速度传感器振动测量 速度传感器所测得的振动信号特点。观察改变转子试验台转速后,振动信号、频谱的变化规律。 2、实验台转速测量 对于多功能转子实验台转速,可以分别采用光电转速传感器和磁电转速传感器进行测量。 1)采用光电传感器测量: 将反光纸贴在圆盘的侧面,调整光电传感器的位置,一般推荐把传感器探头放置在被测物体 前 2~3cm ,并使其前面的红外光源对准反光纸,使在反光纸经过时传感器的探测指示灯亮,反 光纸转过后探测指示灯不亮(必要时可调节传感器后部的敏感度电位器)。当旋转部件上的反光 贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。通过测出这个跳变频率 f ,就可知 道转速 n 。 编写转速测量脚本,将传感器的信号将通过采集仪输入到计算机中。启动转子试验台,调节 图 3 反射式光电转速传感器

《转子动平衡——原理、方法和标准》

技术讲课教案 主讲人: 罗仁波 培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。

内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡,如下图),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。 同时也要认识到转子是挠性的还是刚性的。 ● ●刚性转子与挠性转子

?对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 ?对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首先在低于它的70%第一监界转速下,在它的两端平面内加配重平衡好后,这两个加好的配重将补偿掉分布在整个转子上的不平衡质量,如果把这个转子的转速提高到它的第一临界转速的70%以上,这个转子由于位于转子中心处的不平衡质量所产生的离心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而产生新的不平衡问题,此时在新的转速下又有必要在转子两端的平衡面内重新进行动平衡工作,而以后当转子转速降下来后转子又会进入到不平衡状态。为了能在一定的转速范围内,确保转子都能处在平衡的工作状态下,唯一的解决办法是采用多平面平衡法。 ?挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么 可以在任意二个平面内进行平衡,使轴承的振动

转子动平衡实验报告

转子动平衡实验报告 实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解。 2.掌握刚性转子动平衡实验的原理及基本方法。 3.了解动平衡试验机的组成、工作原理,通过参数化和可视化的方法,观察转子动平衡虚拟实验的平衡效果。 二实验设备及工具 DPI—I型智能动平衡机结构如图一所示。测试系统由计算机, 数据采集器、高灵敏度有源压电传感器和光电相位传感器等组成。

三实验记录及结果 四思考题 1转子(试件)在什么情况下作静平衡?什么情况下作动平衡? 答:定义 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余 不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个校正面上同时进行校正平衡,校正后的 剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。 转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。其选择有这样一个 原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。

2作往复运动或平面运动的构件,能否用动平衡试验机将其不平衡惯性力平衡?为什么? 可以用动平衡试验机将其不平衡惯性力平衡 五收获和体会 做实验时虽然理论基础但同需要团队合作,操作时精度也需要很准确,即使只差1g也会对结果产生很大的影响

伏直 帮幻 尺寸怅fi C 伽J ^18.50 密壬丰甩 G.) I 左购 r E ? 1.1 J II ■■rrnaimBiarmai i -ri■ j 綴命肅鸞娠鱷j I 手动底卑I 停I 卜藩试I 馥据冗翼忧 S ■ 滚了平断甌 > i 打VF 试验结尿]干衙成量{立〕0.30 I C1 IOS FT^ 龙不平ig 量 晶示 】 ;£H 砖扮0.23呢 } 1 £H 站 FITS 芋 曲钿柬右 T 平緡a 晁示 S4D 3M 20 理匕二二、严 刑30 2SD J |^^E 55?^>L 100 他 A 1. ■ 1 C W 寸萇 fi 1(^.) CO 退出 aim [ £&? 4C0 2兀 ]ZD ££□ 、J . i4jj ___ £00 lan leo 0( J 220 LB 2D0 1 站 LBO 如「湘D 20 3OT 40 号 nn

动平衡计算中影响系数的通解算法及其应用

动平衡计算中影响系数的通解算法及其应用 动平衡的质量,在动平衡计算方法上已作了大量的工作。自1964年Goodman将最小二乘法引入柔性转子的动平衡计算中后,影响系数算法一直是动平衡试验中最常用的方法。虽然这种方法有其固有的缺陷,但考虑的平衡面数、平衡转速数、“测点”数较多时具有一定的误差补偿能力。 按传统的影响系数算法,为求出各面的影响系数,需在每个加重面上分别单独加重,从而求得各面的单面影响系数。但是在现场的动平衡试验中,常常是多平面同时加重,需要解决一些特殊条件下的影响系数的计算及提炼问题,即采用非常规的影响系数计算方法。这些情形包括:(1)在熟知性能的机组上尝试一次加重或多面同时加重,当尝试的次数达到一定时,各加重平面的影响系数的分离计算。 (2)在多面同时加重时,若某些面的影响系数已知,加重次数足够时,未知面的影响系数的分离计算。 (3)包括试加重在内的加重次数超过了确定影响系数所必需的次数时,如何充分利用冗余的加重信息计算各面的影响系数。 对于以上的较为特殊的影响系数的计算问题,影响系数的分离计算在面数多于2个时,手工计算十分困难。而加重次数冗余时影响系数的计算遵循何种准则,如何计算又是一个值得探讨的问题。本文推导了涵盖以上3个方面特殊情形影响系数求解通式,它也适合于一般意义下的影响系数的求解。 1影响系数求解通式的推导 设在某次动平衡试验中,有m个加重平面,n个“测点”,同一测点不同转速情况亦视为一新的“测点”。对于多面同时试重的情形,须足够次的试(加)重后才能计算影响系数。一般对于具有m个平面、n个“测点”的平衡计算问题,至少需m次的试重确定各面的影响系数值,并且每次试重并不要求只在一个面加重,允许每次在可加重的m个平面上任意加重。 为了使推导的公式适用于一般情形,假设在总共m个加重平面中,有k(k≤m)个加重面的影响系数未知。另在试验中共有h次(试)加重,且加重次数满足h≥k。在这种条件下,加重次数多于唯一确定未知影响系数所需的加重次数,即有冗余的加重信息,此时可利用冗余的信息对影响系数进行提炼,取代一般的矢量平均的办法,充分利用加重信息。下面对这种条件下的影响系数的求解方法进行推导。

转子动平衡标准

转子动平衡标准文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

平衡精度等级考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以倍为增量,从要求最高的到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600刚性安装的大型二冲程发动机的曲轴驱动件 G630刚性安装的大型四冲程发动机的曲轴驱动件弹性安装的船用柴油机的曲轴驱动件 G250刚性安装的高速四缸柴油机的曲轴驱动件 G100六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 精密磨床的主轴;电机转子;陀螺仪 在您选择平衡机之前,应该先确定转子的平衡等级。 举例:允许不平衡量的计算 允许不平衡量的计算公式为: (与JPARC一样的计算 gys) 式中m per为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为级,转子的重量为0.2kg,转子的转速为1000rpm,校正半径20mm, 则该转子的允许不平衡量为: 因电机转子一般都是双面校正平衡,故分配到每面的允许不平衡量为0.3g。 目前T0转动部分重量大约为180Kg(包括电机转子、旋变转子、轴承等回转体)不包括为166Kg。 按照180Kg,转速3000rpm,标准,校正半径为220mm,

多转子动平衡计算方法

多转子动平衡计算方法 【摘要】航空发动机转子多采用多转子套齿或端齿连接、拉杆压紧结构的转子结构,且转子装配要求不采用增加或减少重量的方式达到平衡要求,为此本文旨在从平衡理论着手通过计算进行多转子连接的动平衡技术研究,提供平衡方法。 【关键词】动平衡;静不平衡;动不平衡量 转子动平衡是在转子制成后采取的一种减振措施,通过转子上某些界面增加或减少质量,使转子的重心和其几何重心靠近及其一主惯性轴尽量和旋转轴线靠近,以减少转子工作时的不平衡力、力偶或临界转速附近的振动量。 实际转子在运转时,转子动不平衡量的惯性力将在运转中引起附加的动压力。这不仅会增大转子的内应力,降低机械效率和使用寿命,而且这些惯性力都将传到发动机的上,特别是由于这些惯性力的大小及方向一般都是周期性变化的,所以必将引起发动机产生强迫振动。为了完全地或部分地消除惯性力的不良影响,就必须设法将转子不平衡量所引起的惯性力加以消除或减小,这就是转子平衡的目的。转子的平衡是现代发动机的一个重要问题,尤其现在发动机的转速越来越高,更具重要的意义。 中小型航空发动机装配转子件由套齿或端齿连接、拉杆压紧结构,而且转子装配要求不采用增加或减少重量的方式达到平衡要求,与以往的平衡方式有很大的区别,为此应从动平衡理论着手通过计算找到最佳平衡的方式。 1 动平衡的基本理论 由于转子材料的不均匀、制造的误差、结构的不对臣等因素保存转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件,这是转子动平衡的力学条件:力平衡和力矩平衡。 在转子的设计阶段,尤其在设计高速转子及精密转子结构时,必须进行平衡计算,以检查惯性力和惯性力偶是否平衡。若不平衡则需要在结构上采取措施,以消除不平衡惯性力的影响,这一过程称为转子的平衡设计。转子的平衡设计分为静平衡设计和动平衡设计,静平衡设计指对于D/b≥5的盘状转子,近似认为其不平衡质量分布在同一回转平面内,忽略惯性力矩的影响。动平衡设计指径宽比D/b<5的转子(如航空发动机转子、汽轮机转子等),其特点是轴向宽度较大,偏心质量可能分布在几个不同的回转平面内,因此,不能忽略惯性力矩的影响。此时,即使不平衡质量的惯性力达到平衡,惯性力矩仍会使转子处于不平衡状态。由于这种不平衡只有在转子运动时才能显示出来,因此称为动不平衡。为避免动不平衡现象,在转子设计阶段,根据转子的功能要求设计转子后,需要确定出各不同回转平面内偏心质量的大小和位置,然后运用理论力学中平行力的合成与分

转子动平衡技术实验报告

广州大学学生实验报告 开课学院及实验室:526室2015年12月26日 学院 机械与电气 工程 年级、专 业、班 机械121姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称转子动平衡技术 指导 老师 郑文 一、实验目的 1、掌握振动幅值及相位测量方法,熟悉相关测量仪器; 2、掌握旋转机械动平衡的基本步骤及方法。 通过运用振动监测手段,完成转子不平衡特征的测量,从而提高学生进行数据采集、 转子振动分析及状态评估、动平衡校正等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器的名称、型号、用途等; 加速度传感器 光电式传感器,用于测量振动的相位 数据采集器 质量块、天平 2、振动试验台 实验台配有两个质量盘(如图所示),可以在轴的任意位置固定安装。本实验 要求完成单面动平衡试验,把两个质量盘分开安装,并且在某个质量盘上加上一个 M5的螺钉作为质量块,使得转子不平衡。 1、质量盘 2、夹紧法兰 3、转轴备用螺纹孔(16个)5、夹紧法兰螺钉孔

图质量盘结构示意图 三、实验要求 1.熟悉实验的整个过程 2.实验过程要注意安全,防止转子高速时质量块脱落伤人。 3.正确布置质量块位置,并要记下各个具体位置。 4.实验后分析各频谱图以及参数与转子动平衡的关系。 5、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、传动比、转速等。 6、画出测试系统的连接框图。 7、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 8、描述不平衡质量的施加方法。 四、实验操作过程 1、仪器连接,传感器安装; 2、贴反光带,启动试验台; 3、开始动平衡测量及校正过程,完成转子台初始振动测量、试重、校正重量计算及施 加等工作; 4、评价动平衡后的效果; 5、填写附表。 要求学生绘出测量对象的结构简图,列出主要结构参数;计算不平衡的特征频率;选择测试参数;测量各测点的时域波形、频谱等数据;参照有关标准,判断各点的测量值是否在正常范围内;分析频谱图中的主要频率成分,解释频谱峰值的来源及其与转子不平衡的对应关系;综合判断机器的运行状态及存在的不平衡问题; 完成转子现场动平衡测量与校正。五、实验结果及分析 下表是实验过程中测出的实验数据 动平衡数据表 振动值 Vibration μm(p-p) 相位 Phase 度(°) 重量 Weight 克g 角度 Angel 度(°)初始振动测量值 Initial Vibration 17 80 动平衡试重 Trial Weight 8 45 加试重后的振动值 Trail Running Vibration 15 60 第一次动平衡配重 1st Correcting Weight 8 135 第一次加配重后的振动值 1st Residual Vibration 7 50 第二次动平衡配重 2nd Correcting Weight 7 135 第二次加配重后的振动值 2nd Residual Vibration 2 200 转子转速n=800r/min 以下是实验结果频谱图 初始振动测量值频谱图 (a)在转盘外圆贴有一反光带作为起始原点,并在外缘随意安装一质量块(相对原点逆时针旋转45°的位置加上8克重物),使转盘存在偏心量,并记录频谱图

相关文档
最新文档