地图投影

地图投影
地图投影

世界地图常用地图投影知识大全

在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。

一、世界地图常用投影

1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)

普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。

等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。

通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。该投影的经纬线形状和上一个投影相同,其经线间隔从中央经线向东西两侧按与中央经线经差的正切函数递减。该投影属于角度变形不大的任意投影,角度无变形点位于中央经线和纬度±44o的交点处,从无变形点向赤道和东西方向角度变形增大较慢,向高纬增长较快。面积等变形线大致与纬线方向一致,纬度±30o以内面积变形为10%-20%,在±60o处增至200%。总体来看,世界大陆轮廓形状表达较好,我国的形状比较正确,大陆部分最大角度变形均在6o以内;大部分地区的面积变形在10%-20%以内。我国常采用该投影编制世界地图。

2.古德投影(Goode Projection)

从伪圆柱投影的变形情况来看,中央经线是一条没有变形的线,离开它越远,变形越大。因此,为了更大程度地减小投影变形,同时使各部分的变形分布相对均匀,1923年美国地理学家古德(J.Paul Goode)提出了一种对伪圆柱投影进行分瓣的投影方法,即古德投影。

古德投影的设计思想是对摩尔维特等积伪圆柱投影进行“分瓣投影”,即在整个制图区域的几个主要部分,分别设置一条中央经线,然后分别进行投影。投影的结果,全图被分成几瓣,各瓣通过赤道连接在一起,地图上仍无面积变形,核心区域的长度、角度变形和相应的伪圆柱投影相比明显减小,但投影的图形却出现了明显的裂缝,这种尽量减少投影变形,而不惜图面的连续性是古德投影的重要特征(图2-29)。

回味古德投影的设计思想,不难看出:尽可能地减小投影变形,而不惜图面的连续,是该投影设计的重要思路。

3、摩尔维特投影(Mollweide Projection)

摩尔维特投影是一种经线为椭圆曲线的正轴等积伪圆柱投影。该投影的的中央经线为直线,离中央经线经差±900的经线为一个圆,圆的面积等于地球面积的一半,其余的经线为椭圆曲线。赤道长度是中央经线的两倍。纬线是间隔不等的平行直线,其间隔从赤道向两极逐渐减小。同一纬线上的经线间隔相等(图2-28)。

摩尔维特投影没有面积变形。赤道长度比n0=0.9。中央经线与南北纬

40 = 0 \* Arabic 04 4′11.8″的两个交点是没有变形的点,从这两点向外变形逐渐增大,而且越向高纬,长度、角度变形增加的程度越大。

摩尔维特投影常用来编制世界,大洋图,由于离中央经线经差±900的经线是一个圆,且圆面积恰好等于半球面积,因此,该投影也用来编制东、西半球地图。

4、桑逊投影(Sanson Projection)

桑逊投影是一种经线为正炫曲线的正轴等积伪圆柱投影,又称桑逊-弗兰斯蒂德(Sanson- Flamsteed)投影。该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线(图2-27)。中央经线长度比为1,即m0=1,且n=1,p=1。

桑逊投影为等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。因此,该投影中心部分变形较小,除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等。

5、空间斜轴墨卡托投影(Space Oblique Mercator Projection)

这是美国针对陆地卫星对地面扫描图像的需要而设计的一种近似等角的投影。这种投影与传统的地图投影不同,是在地面点地理坐标(λ,φ)或大地坐标(x,y,z)的基础上,又加入了时间维,即上述坐标是

时间t的函数,在四维空间动态条件下建立的投影。空间斜轴墨卡托投影(简称SOM投影),是将空间圆柱面斜切于卫星地面轨迹,因此,卫星地面轨迹成为该投影的无变形线,其长度比近似等于1。这条无变形线是一条不同于球面大圆线的曲线,其地面轨迹迹只所以是弯曲的,是因为卫星在沿轨道运行时地球也在自转,卫星轨道对于赤道面的倾角,将卫星地面轨迹限制在约±810之间的区域内(图2-26)。

这种投影,是设想空间圆柱面为了保持与卫星地面轨迹相切,必须随卫星的空间运动而摆动,并且根据卫星轨道运动、地球自转等几种主要条件,将经纬网投影到圆柱表面上。在该投影图上,卫星地面轨迹为以某种角度与赤道相交的斜线,卫星成像扫描线与卫星地面轨迹垂直,并且能正确反映上述几种运动的影响,可将地面景像直接投影到SOM投影面上。

6、墨卡托投影(Mercator Projection)

墨卡托投影属于正轴等角圆柱投影。该投影设想与地轴方向一致的圆柱与地球相切或相割,将球面上的经纬线网按等角的条件投影到圆柱面上,然后把圆柱面沿一条母线剪开并展成平面。经线和纬线是两组相互垂直的平行直线,经线间隔相等,纬线间隔由赤道向两极逐渐扩大(图2-25)。图上无角度变形,但面积变形较大。

在正轴等角切圆柱投影中,赤道为没有变形的线,随着纬度增高,长度、面积变形逐渐增大。在正轴割圆柱投影中,两条割线为没有变形的线,离开标准纬线愈远,长度、面积变形值愈大,等变形线为与纬线平行的直线。

墨卡托投影的等角航线(斜航线)表现为直线。这一特性对航海具有重要意义。但球面上两点之间的最短距离是大圆航线,而不是等角航线,因此远洋航行,完全沿等角航线航行是不经济的。

墨卡托投影的等角性质和把等角航线表现为直线的特性,使其在航海地图中得到了广泛应用。另外,该投影也可用来编制赤道附近国家及一些区域的地图。

二、半球地图常用投影

1、横轴等积方位投影(Lambert,s Azimuthal Equivalent Projection)

又名兰勃特(https://www.360docs.net/doc/1111221784.html,mbert)方位投影,赤道和中央经线为相互正交的直线,纬线为凸向对称于赤道的曲线,经线为凹向对称于中央经线的曲线。该投影图上面积无变形,角度变形明显。投影时的切点为无变形点,角度等变形线以切点为圆心,呈同心圆分布。离开无变形点愈远,长度、角度变形愈大,到半球的边缘,角度变形可达38o37?。

横轴等积方位投影常用于编制东、西半球地图。东半球的投影中心为70oE与赤道的交点(图2-31);西半球的投影中心为110oW与赤道的交点。

2、横轴等角方位投影(Transverse Azimuthal Orthomorphic Projection)

横轴等角方位投影又名球面投影(Stereographic Projection)、平射投影,是一种视点在球面,切点在赤道的完全透视的方位投影(图2-32),又称赤道投影。经纬线网形状与横轴等积方位投影的经纬线网相同。在变形方面,该投影没有角度变形,但面积变形明显。赤道上的投影切点为无变形点,面积等变形线以切点为圆心,呈同心圆分布。离开无变形点愈远,长度、面积变形愈大,到半球的边缘,面积变形可达400%。

3、正轴等距方位投影(Postel’s Projection)

正轴等距方位投影又名波斯特尔(G.Postel)投影,纬线为同心圆,经线为交于圆心的放射状直线,其夹

角等于相应的经差。该投影的特点是经线方向上没有长度变形,因此纬线间距与实地相等。切点在极点,为无变形点。有角度变形和面积变形,等变形线均以极点为中心,呈同心圆分布,离无变形点愈远,变形愈大(图2-33)。

在世界地图集中,正轴等距方位投影多用于编制南、北半球地图和北极、南极区域地图。

三、分洲、分国地图常用投影

分洲、分国地图采用的投影以方位投影、圆锥投影和伪圆锥投影为主。

1、斜轴等积方位投影(Oblique Equal-area Projection)

投影而与椭球面相切于极地与赤道之间的任一点(投影中心)。中央经线为直线,其余经线为凹向对称于中央经线的曲线;纬线为凹向极地的曲线。中央经线上,纬线间距从投影中心向南、向北逐渐缩短(图2-34)。该投影没有面积变形,中央经线上的投影中心无变形,长度和角度变形随着远离投影中心而逐渐增加,等变形线为同心圆,主要用于编制亚洲、欧洲和北美洲等大区域地图。中国政区图可采用此投影,投影中心通常位于300N,1050E。

类似投影斜轴等角方位投影(Oblique Conformal Projection)的经纬线形状和该投影完全相同,但投影条件按ω=0设计,中央经线上的纬线间距从中心向南、向北逐渐增加。

2、正轴等角圆锥投影(Labert Projection)

正轴圆锥投影的纬线为同心圆弧,经线为放射性直线。无论变形性质如何,只要是切圆锥投影,相切的纬线就是标准纬线,其长度比等于1,其它纬线的长度比均大于1;只要是割圆锥投影,相割的两条纬线为标准纬线,其长度比为1。在两条割线之内,纬线长度比小于1,之外长度比大于1。由于纬线长度比是不可变的,为了使圆锥投影具有等角性质,只能改变经线长度比。正轴等角圆锥投影就是通过改变经线长度比,并使经线长度比等于纬线长度比而得到的。两条标准纬线之外的纬线长度比大于1,为达到等角,经线长度比必须相应同等增大;两条标准纬线之内,纬线长度比小于1,经线长度比也必须相应同等缩小,达到等角目的。

正轴等角圆锥投影又称兰勃特正形投影,应用很广。我国新编百万分之一地图采用的就是该投影。除此以外,该投影还广泛应用于我国编制出版的全国1:400万、1:600万挂图,以及全国性普通地图(图2-35 b)和专题地图等。

而正轴等积圆锥投影又称亚尔勃斯投影(Albers’ Projection),亦是在正轴圆锥投影的基础上,通过改变经线长度比而得来的,但其经线长度比与纬线长度比互为倒数,两条标准纬线之外的纬线长度比大于1,为达到等积,经线长度比相应同等缩短;两条标准纬线之内,纬线长度比小于1,为保持等积,经线长度相应同等增加,达到等积目的。

我国常用等积圆锥投影编制全国性自然地图中的各种分布图、类型图、区划图以及全国性社会经济地图中的行政区划图、人口密度图、土地利用图(图2-35 a)等。

3、彭纳投影(Bonne Projection)

彭纳投影是法国水利工程师彭纳(Rigobert Bonne)1752年设计的一种等积伪圆锥投影。该投影的中央经线为直线,其长度比等于1,其余经线为凹向对称于中央经线的曲线;纬线为同心圆弧,长度比等于1;同一条纬线上的经线间隔相等,中央经线上的纬线间隔相等,中央经线与所有的纬线正交,中央纬线与所有的经线正交,同纬度带的球而梯形面积相等。

彭纳投影无面积变形,中央经线和中央纬线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。该投影常用于中纬度地区小比例尺地图,如我国出版的《世界地图集》中的亚洲政区图(图2-36),

英国《泰晤士世界地图集》中的澳大利亚与西南太平洋地图,都采用的是彭纳投影。

四、地形图常用投影

各国地形图所采用的投影很不统一。在我国8种国家基本比例尺地形图中,除1:100万地形图采用等角圆锥投影外,其余都采用高斯-克吕格投影。

1、高斯-克吕格投影(Gauss-Kruger Projection)

高斯-克吕格投影是一种横轴等角切椭圆柱投影。它是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面(图2-37)即成。该投影是19世纪20年代由德国数学家、天文学家、物理学家高斯(Friedrich Gauss)最先设计,后经德国大地测量学家克吕格(Jihannes Vlriiger)补充完善,故名高斯-克吕格投影。

高斯-克吕格投影的中央经线和赤道为垂直相交的直线,经线为凹向对称于中央经线的曲线,纬线为凸向对称于赤道的曲线,经纬线成直角相交。该投影无角度变形;中央经线长度比等于1,没有长度变形;其余经线长度比均大于1,长度变形为正;距中央经线越远,变形越大;最大变形在边缘经线与赤道的交点上,但最大长度、面积变形分别仅为+0.14%和+0.27%(6°带),变形极小。

为控制投影变形,高斯-克吕格投影采用了6°带、3°带分带投影的方法,使其变形不超过一定的限度。

我国1:2.5万-1:50万地形图均采用6°带投影,1:1万及更大比例尺地形图采用3°带投影。6°分带法规定:从格林威治零度经线开始,由西向东每隔6°为一个投影带,全球共分60个投影带,分别用阿拉伯数字1-60予以标记。我国位于东经72°-136°之间,共包括11个投影带(13-23带)。3°分带法规定:从东经1°30′起算,每3°为一带,全球共分120带,图2-38表示了6°分带与3°分带的中央经线与带号的关系。

该投影的平面直角坐标规定为:每个投影带以中央经线为坐标纵轴即X轴,以赤道为坐标横轴即Y轴组成平面直角坐标系。为避免Y值出现负值,将X轴西移500km组成新的直角坐标系,即在原坐标横值上均加上500km,因我国位处北半球,X值均为正值。60个投影带构成了60个相同的平面直角坐标系,为区分之,在地形图南北的内外图廓间的横坐标注记前,均加注投影带带号。为应用方便,在图上每隔1km、2km 或10km绘出中央经线和赤道的平行线,即坐标纵线或坐标横线,构成了地形图方里网(公里网)。

地理坐标规定为:在大于等于1:25万比例尺地形图上,经纬线以内图廓线形式绘出(两条经线、两条纬线),并在图幅4个角的经纬线交点处标注经纬度值。为方便使用,在内外图廓线间以1’为单位标注出分度带短线。在1:50万地形图上,则直接绘出经纬线网。

高斯-克吕格投影在欧美一些国家也被称为横轴等角墨卡托投影。它与一些国家地形图使用的通用横轴墨卡托投影(Universal Transverse Mercator Projection,即UTM投影),都属于横轴等角椭圆柱投影的系列,所不同的是UTM投影是横轴等角割圆柱投影,在投影带内,有两条长度比等于1的标准线(平行于中央经线的小圆),而中央经线的长度比为0.9996。因而投影带内变形差异更小,其最大长度变形不超过0.04%。

2、等角圆锥投影(Conical Orthomorphic Projection)

我国1:100万地形图最早使用的是国际投影(改良多圆锥投影),1978年以后采用了国际统一规定的等角圆锥投影。

为了提高投影精度,我国1:100万地形图的投影是按百万分之一地图的纬度划分原则分带投影的。即从0°开始,每隔纬差4°为一个投影带,每个投影带单独计算坐标,建立数学基础。同一投影带内再按经差6°分幅,各图幅的大小完全相同,故只需计算经差6°、纬差4°的一幅图的投影坐标即可。每幅图的直角坐标,是以图幅的中央经线作为X轴,中央经线与图幅南纬线交点为原点,过原点切线为Y轴,组成直角坐标系。每个投影带设置两条标准纬线,其位置是:

Φ1=ΦS+30′

Φ2=ΦN-30′

该投影的变形分布规律:没有角度变形;两条标准纬线上没有任何变形;由于采用了分带投影,每带纬差较小,因此我国范围内的变形几乎相等,最大长度变形不超过±0.03%(南北图廓和中间纬线),最大面积变形不大于±0.06%(图2-39)。

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

2.6地图投影的选择和变换

幻灯片1 地图投影的选择和变换幻灯片2 地图投影的选择和变换●本讲主要内容: ●一、地图投影的选择 二、地图投影的变换 幻灯片3 一、地图投影的选择 (一)投影选择的依据 1、制图区域的地理位置、形状和范围 制图区域的地理位置决定了所选择投影的种类 正轴方位投影 极地—— 赤道附近—— 横轴方位投影或正轴圆柱投影 正轴圆锥投影或斜轴方位投影 中纬地区—— 幻灯片4 制图区域形状直接制约地图投影的选择 中纬度地区: 沿纬线方向延伸的长形区域—— 单标准纬线正轴圆锥投影 沿经线方向略窄,沿纬线方向略宽的长形区域—— 双标准纬线正轴圆锥投影 沿经线方向南北延伸的长形区域—— 多圆锥投影 斜轴方位投影 南北、东西方向差别不大的圆形区域—— 低纬赤道附近: 沿赤道方向呈东西延伸的长条形区域—— 正轴圆柱投影 东西、南北方向长宽相差无几的圆形区域—— 横轴方位投影 幻灯片5 制图区域的范围大小也影响地图投影的选择 正轴圆柱、伪圆锥、广义多圆锥和某些派生的地图投影世界地图—— 东西半球:横轴等面积或等距离方位投影 水路半球:斜轴等距离或等面积方位投影 南北半球:正轴等角或等距离方位投影 半球地图—— 非洲:横轴等面积方位、横轴等角圆柱 其他洲:斜轴等面积方位投影

大洲地图—— 不同变形性质的正轴圆锥投影 大国地图—— 幻灯片6 2、比例尺 不同比例尺地图,对精度要求不同,投影选择不同。 大比例尺地形图,对精度要求高,宜采用变形小的投影,如分带投影。 中、小比例尺地图范围大,概括程度高,定位精度低,可有等角、等积、任意投影的多种选择。 幻灯片7 幻灯片8

幻灯片9

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影的选择、设计和变换

一、地图的用途和性质 这是最重要的因素。一旦确定,便可确定投影的性质。 等积投影:适用于经济、政治和自然地图 等角投影:适用于航行、军事和地形图 等距离投影:普通地图等各种变形具有同等重要意义的地图 任意投影:教学地图和各种科学一览图。 特种地图对投影有特殊的要求,如球心投影,等距离方位投影,时区图等等。 二、制图区域的形状和地理位置 可以确定投影的类型 圆形地区:方位投影 中纬度东西延伸地区:圆锥投影 赤道附近或沿赤道两侧东西延伸地区:正轴圆柱投影 南北延伸地区:横轴圆柱投影或多圆锥投影 斜向延伸地区:斜轴圆柱或圆锥投影 在小区域内,各种投影的影响均不大,此时可考虑用计算方便,格网简单的投影。 三、制图区域的大小 其影响表现在由于面积的增大,使投影的选择更为复杂化,要考虑的因素更多。 如大比例尺地图就不需要更多考虑区域的形状和地理位置。 实际工作中,凡面积不超过5-6百平方公里的区域,选择投影的变形为0.5%即可;面积在3.5-4.0千平方公里的区域,长度变形在2-3%即可;若是更大的区域,其长度变形往往超过3%。对于中等或不大的区域,投影选择一般只考虑几何因素,不必考虑地图的用途和性质。 ? 1.世界地图的投影 世界地图的投影主要考虑要保证全球整体变形不大,根据不同的要求,需要具有等角或等积性质,主要包括:等差分纬线多圆锥投影、正切差分纬线多圆锥投影(1976年方案)、任意伪圆柱投影、正轴等角割圆柱投影。 2.半球地图的投影 东、西半球有横轴等面积方位投影、横轴等角方位投影;南、北半球有正轴等面积方位投影、正轴等角方位投影、正轴等距离方位投影。 3.各大洲地图投影 1)亚洲地图的投影:斜轴等面积方位投影、彭纳投影。 2)欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 3)北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 4)南美洲地图的投影:斜轴等面积方位投影、桑逊投影。 5)澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 6)拉丁美洲地图的投影:斜轴等面积方位投影。 4.中国各种地图投影 1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方位投影、彭纳投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割圆锥投影。 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)。 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克吕格投影(解放以后)。

地图投影实验报告

淮海工学院 现代地图学A 实验报告 实验名称:专题地图制作 班级:测绘122 姓名:苏红飞 实验地点:测绘楼307 实验时间: 2013-12-02 实验成绩: 测绘工程学院测绘工程系

实验一地图投影 一、实验目的与要求 1.学会MapInfo的最基本操作,如表、工作空间、图层等的操作。 2.掌握有关高斯-克吕格投影的知识。 3.学会根据地图上不同经纬网形态识别不同的投影类型。 二、实验步骤 (一)掌握MapInfo中地图投影的操作过程。

(二)绘制武汉市所在地区的高斯—克吕格投影6度带经纬网和方里网,绘图范围:东西范围由武汉市所在投影带决定,南北范围:北纬25o—35o。经线线距1,纬线线距1o。 1、打开MapInfo,出现如图1所示的对话框,点击ok键。 图 1

2、如图2-1所示,在File选项中选中open点击,打开“实验素材”(图2-2)。 图2-1 图2-2 3、再依次打开CHINA.TAB、CHINCAP.TAB、PROVINCE.TAB,打开后如图3所示。

图3 4、点击Layer Control,如图4-1所示。在Tools选项中单击Tool Manger...出现下图4-3中所示的对话框,选中Coordinate Extractor,将它后面的两个 小框打钩。 图4-1 图4-2 图4-3

5、在Tools菜单中单击Coordinate Extractor中的Extract Coordinates...选项出现如图5-2所示的对话框,在table name一栏中选择CHINCAPS,然后点击ok出现如图5-3所示的对话框,选择continue,即可看见如图5-4所示的窗口,在上面找到并记下武汉的地理坐标。 图5-1 图5-2 图5-3

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

地理信息系统常用的地图投影

地理信息系统常用的地图投影 1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。 高斯投影的条件和特点 ★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 高斯投影的条件★投影具有等角性质 ★中央经线投影后保持长度不变 ★中央子午线长度变形比为1,其他任何点长度比均大于1 ★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大 高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方 ★长度比的变形线平行于中央子午线 高斯投影6°和3 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。 6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度84度的范围内使用该投影。 3度分带法从东经1度30分算起,每3度为一带。这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。 高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制; ★径纬网和直角坐标的偏差小,便于阅读使用; ★计算工作量小,直角坐标和子午收敛角值只需计算一个带。 ★由于高斯-克吕格投影采用分带投影,各带的投影完全相同,所以各投影带的直角坐标值也完全一样,所不同的仅是中央经线或投影带号不同。为了确切表示某点的位置,需要在Y坐标值前面冠以带号。如表示某点的横坐标为米,前面两位数字“20”即表示该点所处的投影带号。 2、墨卡托投影---------- 等角正切圆柱投影 定义:假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 特性:墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。 墨卡托投影的用途 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

各种地图投影全解析

地图投影全解析 科技名词定义 中文名称:地图投影 英文名称:map projection 定义1:按照一定的数学法则,把参考椭球面上的点、线投影到可展面上的方法。 所属学科:测绘学(一级学科);测绘学总类(二级学科) 定义2:根据一定的数学法则,将地球表面上的经纬线网相应地转绘成平面上经纬线网的方法。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义3:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。 所属学科:地理学(一级学科);地图学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 地图投影是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。 目录

展开 定义 地图投影,Map Projection.把地球表面的任意点,利用一定数学法则,转换到地图平面上的理论和方法。 地图投影 书面概念化定义:地图投影就是指建立地球表面(或其他星球表面或天球面)上的点与投影平面(即地图平面)上点之间的一一对应关系的方法。即建立之间的数学转换公式。它将作为一个不可展平的曲面即地球表面投影到一个平面的基本方法,保证了空间信息在区域上的联系与完整。这个投影过程将产生投影变形,而且不同的投影方法具有不同性质和大小的投影变形。 由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面

浅谈地图投影及其选择与应用

浅谈地图投影及其选择与应用 信息科学技术的进步,为现代地图学带来了全新的发展,数字化技术大大缩短了测绘地图周期,使快速成图变为现实,由4D 产品衍生的复合型地图成果也随之出现,但在地图投影选择、投影参数确定、地图数据叠加等方面凸显问题,从而使地图投影作为地图学的重要组成部分和建立地图的数学基础,再次引起广大科技工作者的重视。笔者就复合型地图以及运用多数据编制较小比例尺区域地图、专题地图、地图集等所涉及的地图投影谈谈自己的一点认识,供大家参考。 ?地图与地图投影概念 一幅现代地图必须是具备严密的数学基础,运用科学的制图综合方法,采用特定的地图符号、注记,表达出地面的三维信息和信息动态的图件。地图由此而产生的特性不同于地面写景图、照片或风景画,它是建立在一定数学基础之上的。 地图投影学正是研究建立地图数学基础的一门学科,即研究如何将地球椭球面(或圆球面)无裂隙、无重叠、平整地转换到平面(或可展曲面)上的理论与方法。因此,地图投影的实质就是建立地球椭球面地理坐标点(φ,λ)和平面直角坐标点(X ,Y )的函数对应关系,其数学表达式为: X =F 1 (φ,λ) Y =F 2 (φ,λ) 这种函数关系式必须是单值、有限而连续的。 众所周知,地球体面是一个不可展的曲面,无论采用何种地图投影法都不可能将地球体表面表示在平面上保持原样,都将产生变形或误差,其变形包括长度变形、面积变形和角度变形。一般情况下,三种变形同时存在,但在特殊情况下,或可保持角度无变形,或可保持面积无变形,或可保持某个特定方向上的长度无变形。相应地我们根据变形性质把投影分为等角投影、等面积投影和任意投影(包括等距离投影)三类,它们之间是相互联系相互影响的,其关系是: ?在等面积投影中,不能保持等角特性。 ?在任意投影中,不能保持等面积和等角特性。 ?在等面积投影中,形状变形比其它投影大;在等角投影中,面积变形比其它投影大。 根据投影的经纬线形状,我们也可把地图投影分为方位投影、圆锥投影、圆柱投影、伪方位投影、伪圆锥投影、伪圆柱投影、多圆锥投影和组合投影等。下面简要地介绍部分常用地图投影。 ?方位投影——假设将一平面相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到平面上。此时的纬线为同心圆,经线为同心圆半径,两经线间夹角保持不变。例如联合国徽标就是典型的方位投影世界地图。 ?圆柱投影——假设将圆柱内侧相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆柱面上,然后沿一母线切开并展成一矩形平面。此时纬线为平行直线,经线为垂直于纬线的另一组等距离直线,两经线距离与相应经差成正比。例如世界时区图。 ?圆锥投影——假设将一圆锥相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆锥面上,然后将圆锥面沿一母线切开并展成一扇形平面。此时纬线为同心圆弧,经线为同心圆弧半径,两经线间的夹角与相应经差成正比。例如中华人民共和国全图。 当然还有其它种类繁多的投影,在此不一一赘述。 ?地图投影选择与应用 在设计编制任何性质的地图或地图集时,选择一个适当的地图投影,不但能保证最适合于地图用途的要求,而且可根据需要选定其变形性质并限定变形大小,提高地图的使用精度。在此笔者仅就在实际工作中选择地图投影应考虑的几点作一浅述。

地图投影及其变换

地图投影及其变换 一、实验目的 1.掌握地图投影变换的基本原理与方法 2.熟悉ArcView中投影的应用及投影变换的方法、技术 3.了解地图投影及其变换在实际中的应用 二、实验准备 1.软件准备: ARCVIEW 2.资料准备: 三、实验内容及步骤、方法 1投影的应用 a.运行ArcView,打开一个视图(view),并向视图中添加数据。(数据可以从ArcView的安装目录如D:\ESRI\ESRIDATA中找到,比如我们打开一幅美国地图)。 b.从View菜单选择Properties菜单项 c.在出现的对话框中看是否已经为视图指定了投影(如果有投影,则会出现投影名称)。 如没有设置投影,注意要将MapUnits设置为decimal degrees(十进制度小数)。如已设置投影,就不要将MapUnits设置为decimal degrees。 d.单击图中的Projection按钮,将出现如下图对话框。 图中上部有两个单选按钮,默认选择是Standard。这是ArcView预设的一些标准投影。可以在Categeory下拉框中选择投影区域或投影面,在Type下拉框中选择相应的投影类型。例如:在Categeoy中选择Projections

of the Unites States(美国区域的投影),而在Type中选择Lambert Conformal Conic(North America),(适于北美地区的兰伯特等角圆锥投影),就可以得到结果。 也可以选择自己定义投影参数,这时要选择Custom单选按钮,此时我们就可以在projection下拉框中指定投影类型,在Spheroid下拉框中指定椭球,并根据所选的投影修改投影参数。需要指出的是,这样的自定义投影只是在ArcView提供的投影类型中修改相应的参数,而并不是定义新的投影方式。尽管ArcView提供了许多投影方式和椭球,但并不是所有的投影类型和椭球都有,像我国常用的高斯-克吕格投影及80坐标系所使用的IAG-75椭球就没有。 e.上述的做法只是为视图(View)指定了投影,而数据并没有发生改 变。也就是说数据是在被添加到视图时才被投影,显示在屏幕上,当你关掉当前视图,重新建立一个视图,并将原来的数据添加进来时,你会发现它们并没有被投影,也就是说刚才的操作对数据并没有影响。如果你要将数据真正进行投影变换,就必须将数据重新存储,使新数据保有投影变换后的投影信息。这时可以这样做:选中要存储的数据层(单击窗口左边数据目录中的该层,使其处于激活状态);单击Theme菜单,选取Convert to shapeFile菜单项。将数据重新保存。 2 ArcView中的数据格式转换: 在ArcView中数据格式转换是依靠ArcView提供的一些工具软件和菜单命令来完成的。主要有以下一些: 在开始菜单中选取“程序/ESRI/ArcView Gis 3.2a”。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。 类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

地图投影的判别与选择

第五节地图投影的判别与选择 一、地图投影的判别 地图投影是地图的数学基础,它直接影响地图的使用。地图是地理工作者不可缺少的工具,有很多地理知识是从图上获得的。如果在使用地图时,不了解投影的特性,往往会得出错误的结论。例如在小比例尺等角或等积投影图上量算距离,在等角投影图上对比不同地区的面积,以及在等积投影图上观察各地区的形状特征等。目前,国内外出版的地图上大多数都注明地图投影名称,这对于使用地图,当然是很方便的。但是,也有一些地图不注明投影名称和有关说明,因此,我们必须运用地图投影的知识,根据不同投影的特征——经纬线形状,结合制图区域所在的地理位置、轮廓形状及地图的内容和用途等,综合进行分析、判断和进行必要的量算来判别它们。文档来自于网络搜索 地图投影的判别,主要是对小比例尺地图而言。大比例尺地图往往是属于国家地形图系列,投影资料一般易于查知。另外由于大比例尺地图包括的地区范围小,不管采用什么投影,变形都是很小的,在使用时可以忽略不计。文档来自于网络搜索 判别地图投影一般是先根据经纬线网形状确定投影种类,如方位、圆柱、圆锥等,其次是判定投影的变形性质,如等角、等积或任意投影。文档来自于网络搜索 (一)确定投影种类 对于常见的地图投影,一般还是比较容易确定它的种类的,表2-16列出一些常见投影,供判别时参考。 判别经纬线形状的方法如下:直线只要用直尺量度,便可确定。判断曲线是否为圆弧,可以将透明纸覆盖在曲线之上,在透明纸上沿曲线按一定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。判别同心圆弧与同轴圆弧,则可以量测相邻圆弧间的垂线距离,若处处相等则为同心圆弧,否则是同轴圆弧。文档来自于网络搜索 (二)确定投影的变形性质 当已确定投影的种类后,对有些投影的变形性质是比较容易判定的。例如已确定为圆锥投影,那么只须量任一条经线上纬线间隔从投影中心向南、北方向的变化就可以判别

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

相关文档
最新文档