与函数有关的新定义题型

与函数有关的新定义题型
与函数有关的新定义题型

与函数有关的新定义题型

1.(2016长沙25题10分)若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.

(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值; (2)若某“路线”L 的顶点在反比例函数y =6

x 的图象上,它的“带线”l 的解析式为y =2x -4,

求此“路线”L 的解析式;

(3)当常数k 满足1

2≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,

y 轴所围成的三角形面积的取值范围.

2.(2015长沙25题10分)在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点......称之为“中国结”.

(1)求函数y =3x +2的图象上所有“中国结”的坐标;

(2)若函数y =k

x (k ≠0,k 为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与

相应“中国结”的坐标;

(3)若二次函数y =(k 2-3k +2)x 2+(2k 2-4k +1)x +k 2-k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

3.(2014长沙25题10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(2,2),…都是“梦之点”,显然,这样的“梦之点”有无数个.

(1)若点P (2,m )是反比例函数y =n

x (n 为常数,n ≠0)的图象上的“梦之点”,求这个反比

例函数的解析式;

(2)函数y =3kx +s -1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由; (3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足-2

48,试求t 的取值范围.

4.(2013长沙25题10分)设a ,b 是任意两个不等实数,我们规定:满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.

(1)反比例函数y =2013

x 是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;

(2)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式; (3)若二次函数y =15x 2-45x -7

5是闭区间[a ,b ]上的“闭函数”,求实数a ,b 的值.

5. (2017长沙25题10分)若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”. (1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;

(2)若M(t ,y 1),N (t +1,y 2),R (t +3,y 3)三点均在函数y =k

x (k 为常数,k ≠0)的图象上,

且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值;

(3)若直线y =2bx +2c(bc ≠0)与x 轴交于点A (x 1,0),与抛物线y =ax 2+3bx +3c(a ≠0)交于B (x 2,y 2),C (x 3,y 3)两点.

①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”; ②若a >2b >3c ,x 2=1,求点P (c a ,b

a )与原点O 的距离OP 的取值范围.

6.(2011长沙25题10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x -1,令y =0,可得x =1,我们就说1是函数y =x -1的零点. 已知函数y =x 2-2mx -2(m +3)(m 为常数). (1)当m =0时,求该函数的零点;

(2)证明:无论m 取何值,该函数总有两个零点;

(3)设函数的两个零点分别为x 1和x 2,且1x 1+1x 2=-1

4,此时函数图象与x 轴的交点分别

为A 、B (点A 在点B 左侧),点M 在直线y =x -10上,当MA +MB 最小时,求直线

AM 的函数解析式.

7.(2018长沙26题10分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.

(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;

②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD 交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;

①=;②=;③“十字形”ABCD的周长为12.

5. (2017雅礼实验中学月考)已知y 是关于x 的函数,若其图象经过点P(t ,t ),则称点P 为函数图象上的“bingo 点”,例如:y =2x -1上存在“bingo 点”P (1,1).

(1)直线____________(填写直线解析式)上的每一个点都是“bingo 点”;双曲线y =1

x 上的“bingo

点”是________;

(2)若抛物线y =12x 2+(13a +1)x -1

9

a 2-a +2上有“bingo 点”,且“bingo 点”A 、B (点A 和点B 可

以重合)的坐标为A (x 1,y 1),B (x 2,y 2),求x 21+x 2

2的最小值;

(3)若函数y =1

4x 2+(n -k +1)x +m +k -1的图象上存在唯一的一个“bingo 点”,且当-2≤n ≤1

时,m 的最小值为k ,求k 的值.

6. (2018原创)在平面直角坐标系内,若点P (x ,y)满足2x +y =0,则称点P 是“反倍点”,例如点P(2,-4)就是一个反倍点.

(1)已知点A 是第二象限的一个“反倍点”,且点A 到x 轴的距离为2,求经过点A 的反比例函数y =k

x

的解析式;

(2)已知“反倍点”B 在一次函数y =mx +2图像上,且点B 的纵、横坐标均为整数,求点B 的坐标;

(3)已知二次函数y =-(x -h)2+c 的顶点D 是“反倍点”,当抛物线与y 轴的交点C 的纵坐标y C 取得最大值时,在抛物线上及抛物线内共有几个“反倍点”,并求出这些点的坐标.

7. (2017雅礼实验中学一模)若直线l 与曲线L 相交于A 、B 两点,直线l 与y 轴交于点C ,且AC =2BC ,则称直线l 与曲线L 互为“倍数函数”,A 、B 两点间的水平距离为“倍长量”. (1)若直线l :y =ax +b 经过点C(0,1),与曲线L :y =k

x 其中一个交点为(1,2),那么直线l

与曲线L 是否互为“倍数函数”,请说明理由;

(2)若当k >1时,直线l :y =kx +1与曲线L :y =x 2+2kx +k 互为“倍数函数”,求直线l 的解析式;

(3)直线l :y =kx +d 与曲线L :y =2x 2+bx +c 互为“倍数函数”,且|b -k |=3,c ≠d ,AB 的“倍长量”是否为定值,若为定值,求出定值;若不为定值,说明理由.

8. (2018原创)在平面直角坐标系xOy 中,对于点P (a ,b )和点Q(a ,b ′),给出如下定义:若

b ′=?

????b ,a≥1-b ,a<1,则称点Q 为点P 的限变点.如点(2,3)限变点坐标是(2,3),点(-2,5)限

变点坐标是(-2,-5).

(1)若点A (-1,2)是函数y =a

x

图象上某一个点的限变点,求a 的值;

(2)若反比例函数y =p +2

x 和一次函数y =px +2(p≠0)同时过点B (p ,3)的限变点C ,求此时p

的值;

(3)若点P 在二次函数y =x 2+4x -1(-3≤x ≤k ,k ≥-3)的图象上,其限变点Q 的纵坐标b′的取值范围是-1≤b ′≤5,求k 的取值范围.

9. (2018原创)若抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,且△ABC 恰好是直角三角形,则称抛物线y =ax 2+bx +c 是“勾股抛物线”,其中较短直角边所在直线为“勾线”,较长直角边所在直线为“股线”.

(1)若“勾股抛物线”y =x 2+mx +n 的“勾线”经过点(1,1),求m 和n 的值;

(2)已知“勾股抛物线”y =-1

2x 2+bx +c 与x 轴的一个交点为(-1,0),其“股线”与反比例函数

y =k

x 的一个交点的横坐标是-2,求反比例函数解析式; (3)已知“勾股抛物线”y =

33

x 2

+bx -3c (b≠0)的“勾线”、“股线”及x 轴围成的三角形面积S 的取值范围是23≤S ≤43,设t =-2b 4+4b 2+3,求t 的最大值.

10. (2017雅礼教育集团期中考试)我们将自变量为x 的函数记作f (x),若点A (m ,n )和B (n ,t )都在函数f(x)的图象上,则称点B 是点A 在函数f(x )作用下的传承点.如点(1,3)是点(-1,1)在函数y =x +2作用下的传承点.

(1)求点(2,-1)在函数y =-x +1作用下的传承点的坐标;

(2)直线y =kx +2与双曲线y =k

x 交于C ,D 两点,且点D 是点C 在这两个函数作用下的传承

点,求直线与双曲线的解析式;

(3)抛物线y =ax 2+bx +c 与直线y =ax +d 交于抛物线对称轴两侧的E ,F 两点,点E 的横坐标为1,且点F 是点E 在这两个函数作用下的传承点,抛物线y =ax 2+bx +c 的对称轴是直线x =-1,二次函数y =ax 2+bx +c 在E ,F 两点之间的最大值与最小值之差为8,求E ,F 两点的坐标.

11. 已知y 是关于x 的函数,若其图象经过点P (t ,2t ),则称点P 为函数图象上的“偏离点”.例如:直线y =x -3上存在“偏离点”P(-3,-6). (1)在双曲线y =x

1

上是否存在“偏离点”?若存在,请求出“偏离点”的坐标;若不存在,请说明理由;

(2)若抛物线y =-12x 2+(23a +2)x -2

9a 2-a +1上有“偏离点”,且“偏离点”为A (x 1,y 1)和B(x 2,

y 2),求w =x 21+x 2

2-ka 3

的最小值(用含k 的式子表示); (3)若函数y =1

4x 2+(m -t +2)x +n +t -2的图象上存在唯一的一个“偏离点”,且当-2≤m ≤3

时,n 的最小值为t ,求t 的值.

12. 定义:若一次函数y =ax +b 与反比例函数y =-c x 满足a b =b

c ,则称y =ax 2+bx +c 为一次

函数和反比例函数的“等比”函数.

(1)试判断(需写出判断过程)一次函数y =x +b 与反比例函数y =-9

x 是否存在“等比”函数?若

存在,请写出它们的“等比”函数的解析式;

(2)若一次函数y =9x +b(b <0)与反比例函数y =-c

x 存在“等比”函数,且“等比”函数的图象与

y =-c x 的图象的交点的横坐标为x =-1

3

,求反比例函数的解析式;

(3)若一次函数y =ax +b 与反比例函数y =-c

x (其中a >0,c >0,a =3b)存在“等比”函数,且y

=ax +b 的图象与“等比”函数图象有两交点A (x 1,y 1)、B(x 2,y 2),试判断“等比”函数图象上是否存在一点P (x ,y)(其中x 1

13. (2017青竹湖湘一二模)若将函数C 1的图象沿直线x =a 对折,与函数C 2的图象重合,则称函数C 1与C 2互为“镜面函数”,直线x =a 叫作函数C 1、C 2的“镜面直线”,如:函数y =

1

x 与函数y =-1

x

互为“镜面函数”,y 轴为它们的“镜面直线”;

(1)若“镜面直线”为x =1,求一次函数C 1:y =-1

2

x 的“镜面函数”C 2的解析式;

(2)若函数C 1:y =x 2+4x +3与x 轴交于A 、B 两点(x A >x B ),顶点为P ,射线P A 与双曲线y =6

x 交于点Q ,且Q 点在函数C 1的“镜面函数”C 2上,求函数C 1、C 2的“镜面直线”; (3)若“镜面直线”为x =1,函数L 2:y =-1

2x 2-x +c +4的“镜面函数”L 1与x 轴交于C 、D 两

点,C 点在D 点左侧,顶点为M ,与y 轴交于点E ,若ME ⊥DE ,求代数式OC·OE

OD 的值.

14. (2017长沙中考模拟卷八)对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值....在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.....特别地,当函数只有一个不变值时,其不变长度q 为零.例如,图中的函数有0,1两个不变值,其不变长度q 等于1. (1)分别判断函数y =x -1、y =1

x 、y =x 2有没有不变值?如果有,求出其不变长度;

(2)函数y =2x 2-bx .

①若其不变长度为0,求b 的值;

②若1≤b ≤3,求其不变长度q 的取值范围; (3)记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2.函数G 的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q ≤3,求m 的取值范围.

第14题图

15. (2017长沙中考模拟卷三)若y 是关于x 的函数,H 是常数(H >0),若对于此函数图象上的任意两点(x 1,y 1),(x 2,y 2),都有|y 1-y 2|≤H ,则称该函数为有界函数,其中满足条件的所有常数H 的最小值,称为该函数的界高.如图所表示的函数的界高为4. (1)若函数y =k

x (k >0)(-2≤x ≤-1)的界高为6,则k =________;

(2)若函数y =kx +1(-2≤x ≤1)的界高为4,求k 的值; (3)已知函数y =x 2-2ax +3a (-2≤x ≤1)的界高为25

4,求a 的值.

第15题图

16. (2017麓山国际实验学校二模)概念:P、Q分别是两条线段a、b上任意一点,线段PQ 长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.

(1)根据上述概念,当m=2,n=2时,如图①,线段BC与线段OA的距离是______;当m =5,n=2时,如图②,线段BC与线段OA的距离(即线段AB长)为________;

(2)如图③,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式;

(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.

①求出点M随线段BC运动所围成的封闭图形的周长;

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为点H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.

第16题图

17. (2017长沙中考模拟卷四)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:

若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.

例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).

(1)已知点A(-1

2

,0),点B 为y 轴上的一个动点,

①若点A 与点B 的“非常距离”为2,求满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线y =3

4

x +3上的一个动点,

①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图③,点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.

第17题图

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

函数的基本概念梳理以及题型.doc

⑴函数的定义 ①传统定义:在某一个变化的过程中,有两个变量兀和y,如果对于在某一个范围内的任意一个x 的值,都有唯一的值y与之对应,则称y是兀的函数。 ②现代定义:设A、B是两个非空数集,如杲按照某个确定的对应关系/,使对于集合A 屮任意一个数尢,在集合B屮都有唯一一个数/(x)和它对应,那么就称A T B为从集合A到集合B 中的一个函数,记作J =/(X)(XG A)其中兀叫做自变量,兀的取值集合A叫做函数的定义域;与兀的值对应的y的值叫做函数值,函数值的集合{/(X)\XE A}叫做函数的值域。 ⑵函数的理解: ①A、B都是非空数集(也就是限定了范围),因此定义域(或值域)为空集的函数不存在 ②若y = f(x)是从集合A到集合B的函数,则应紧扣它的“任意性”和“唯一性”,即 “任意性”一一对于A中的任意一个数X;“唯一性”一一在集合B中的都有唯一的确定的数/(兀)和它对应(还应该注意它的方向性、确定性) ③在现代定义域中B不一定是,函数的值域,如函数y = x2+l可以称为实数集到实数集的函数。 ④对应关系、定义域、值域是函数的三要素,缺一不可。英中对应关系是核心,定义域是根本,当 定义域和对应关系已经确定,则值域也就确定了。 探究:若y = f(x)是从A到B的函数,则集合A、B分别是函数的定义域与值域么? A定是值域,B可以是也可以不是,若函数y = f(x)的值域为C,则C是B的非空子集 ⑶函数符号/(兀)的含义:/(兀)表示一个整体,一个函数。而记号“厂可以看做是对“兀” 施加的某种法则(或运算),女U/(x) = x2-2x4-3 o当x = 2吋,课看做是对“2”施加了这样的运算法则:先平方,再减去它与2的积,再加上3;当x是某个代数式(或某一个函数符号)时,则左右两边的x都有同一个代数式(或函数符号)代替,如/(X)=(2X-1)2-2(2X-1)+3, /(g(x)) = [gS)]2—2[gS)] + 3等等,/(a)与/(x) 的区别就在于前者是函数值,是常数;而后者是因变量,是变量。 例题: 某商店将进价为8元的商品按每件10元售出,每天可售出100件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1 元其销售量就减少10件,则每天的销售利润是销售单价的函数吗?若是求它的定义域和对应法则若不是,则说明理由。

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

集合与函数概念测试题

新课标数学必修1第一章集合与函数概念测试题(1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题 目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2 +bx +c =0,a ,b ,c ∈R } B .{x |ax 2 +bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2 +bx +c =0|a ,b ,c ∈R } D .{ax 2 +bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+ = 的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0}

B .M={x |x <0且x ≠-1,或x >0}, N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0} ,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时 的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150) 5.20(,60t t t t D .x =? ????≤<--≤<≤≤) 5.65.3(),5.3(50150) 5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x , f [g (x )]=)0(122 ≠-x x x ,则 f (2 1)等于 ( ) A .1 B .3 C .15 D .30 8.函数y= x x ++ -1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题 (1)f(x)= x x -+-12有意义; (2)函数是其定义域到值域的映射; (3)函数 y=2x(x N ∈)的图象是一直线;

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 整理:河南省郸厂城县才源高中 王保社 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

集合与函数概念测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四) (内容:集合与函数概念 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分: 一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分) 1. 下列命题正确的是 ( ) A .很小的实数可以构成集合 B .集合{} 1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合 C .自然数集N 中最小的数是1 D .空集是任何集合的子集 2. 已知{}32|≤≤-=x x M ,{}41|>-<=x x x N 或, 则N M 等于 ( ) A. {}43|>≤=x x x N 或 B. {}31|≤<-=x x M C. {}43|<≤=x x M D.{}12|-<≤-=x x M 3. 函数2() = f x ( ) A. 1 [,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3 -∞- 4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( ) A .2 ()1,()1x f x x g x x =-=- B .()21,()21f x x g x x =-=+ C .2(),()f x x g x == D .0()1,()f x g x x == 5. 方程组? ??-=-=+122 y x y x 的解集是 ( ) A .{}1,1==y x B .{}1 C.{})1,1(|),(y x D . {})1,1( 6.设{} 是锐角x x A |=,)1,0(=B ,从A 到B 的映射是“求正切”,与A 中元素0 60相对应的B 中元素是 ( ) A .3 B . 33 C .21 D .2 2

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

抽象函数习题精选精讲1

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴ lg(1),0 ()lg(1),0x x f x x x +≥?=? --

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 1 11+ = 的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在 B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤) 5.65.3(),5.3(50150) 5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(12 2 ≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++ -19 12 是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题 (1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射; (3)函数y=2x(x N ∈) 的图象是一直线;

函数的概念及其表示方法知识点及题型总结

函数的概念及其表示方法 一、函数的基本概念 (一)函数的有关概念 设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作 )(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((?B )叫做函数y=f(x)的值域。 函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . (1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →: 这里 A, B 为非空的数集. (2)A :定义域;B :值域,其中{}A x x f ∈|)( ? B ;f :对应法则 , x ∈A , y ∈B (3)函数符号:)(x f y = ?y 是 x 的函数,简记 )(x f (二)已学函数的定义域和值域 1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函x k x f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R 值域:当0>a 时,??????-≥a b ac y y 44|2;当0

函数定义域、值域经典习题及答案88322

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: 2) y = 1 + (2 x - 1)0+ 4 - x 2 1+ 1 x -1 2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______ 3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函 数 f (1 + 2)的定义域为 。 x 4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2] ⑶y =3x -1 x + 1 ⑷y = 3x -1 (x 5) x +1 三、求函数的解析式 1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。 2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。 ⑴y = x 2 -2x -15 x +3-3 y = 2x - 6 x +2

3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。 4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _ f(x)在R 上的解析式为 5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且 f(x)+g(x)=1,求f(x)与g(x) 的解析表达式 x - 1 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ y= x2+2x+3 ⑵ y = -x2+2x +3 ⑶ y = x2- 6x -1 7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是 8、函数y = 2-x的递减区间是;函数y = 2-x的递减 3x + 6 3x + 6 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ; x+3 ⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 , f (x) = 2x - 5。 A、⑴、⑵ B 、⑵、 ⑶ C 、⑷D、⑶、⑸ 10、若函数f(x)= x - 4的定义域为R ,则实数 m mx2+ 4mx + 3 的取值范围是 ( ) A、(-∞,+∞) 3 B 、(0,3 ] 3 C 、(3,+∞ ) 3 D 、[0, 3 ) 11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

集合与函数概念检测试题

数学必修一第一章检测试题(含答案) (集合与函数概念) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知集合}8,5,2{=M ,}10,9,8,5{=N ,则=N M (A ) A .}10,9,8,5,2{ B .}8,5{ C .}10,9{ D .}2{ 2.若集合{},,a b c 当中的元素是△ABC 的三边长,则该三角形是(C) A .正三角形 B .等腰三角形 C .不等边三角形 D .等腰直角三角形 3.集合{1,2,3}的真子集共有(C) A .5个 B .6个 C .7个 D .8个 4.设A 、B 是全集U 的两个子集,且A ?B ,则下列式子成立的是(C) A .C U A ?C U B B . C U A ?C U B=U C .A ?C U B=φ D .C U A ?B=φ 5.已知}19,2,1{2-=a A ,B={1,3},A =B }3,1{,则=a (C) A . 3 2 B . 2 3 C .3 2± D .2 3± 6.函数x x x y +=的图象是 (D) 7.如果集合A={x|ax 2+2x +1=0}中只有一个元素,那么a 的值是(B) A .0 B .0 或1 C .1 D .不能确定 8.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

函数的概念练习题及答案解析

1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数 D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2 x D .f (x )=x 2-9x -3 ,g (x )=x +3 解析:选、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1} 解析:选D.由? ???? 1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________. 解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3). 答案:(2)(3) 1.函数y =1x 的定义域是( ) A .R B .{0} C .{x |x ∈R ,且x ≠0} D .{x |x ≠1} 解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}. 2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y 解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( ) A .函数值域中每一个数在定义域中一定只有一个数与之对应 B .函数的定义域和值域可以是空集 C .函数的定义域和值域一定是数集 D .函数的定义域和值域确定后,函数的对应关系也就确定了 解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

集合与函数概念单元测试题经典含答案

第一章集合与函数概念测试题 一:选择题 1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 2、图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B =( ) A .{(,)1,2}x y x y == B .{13}x x ≤≤ C .{13}x x -≤≤ D .? 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .5 6、设A 、B 为两个非空集合, 定义{(,),}A B a b a A b B ⊕=∈∈,若{1,2,3}A =,{2,3,4}B =,则A B ⊕中的元素个数为 ( ) A .3 B .7 C .9 D .12 7、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50 C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 8、已知g (x )=1-2x, f [g (x )]=)0(12 2≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x = +- (2 )01(21)111 y x x = +-++ - 2、 _ _ _; 的定义域为________; 3、若函数(1)f x +(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4 、 已 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设 ()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵ y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸ 2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 ) 11、若函数 ()f x R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

相关文档
最新文档