正弦型函数的周期

正弦型函数的周期
正弦型函数的周期

正弦型函数()?

ω+

)

(的周期

f sin

A

=x

x

一、教学目标

1.通过学习,让学生掌握正弦型函数周期的推导过程,进而会求解正弦型函数的周期.

2.通过学习,让学生体会到整体代换的方法在数学中的重要性,使学生能够熟练并灵活运用它.

3.通过正弦函数周期公式的推导过程,让学生感受到数学的美,从而加强学习数学的兴趣.

二、教学重难点

重点:1.正弦型函数周期的推导过程.

2.正弦型函数周期的计算公式.

3.整体代换的数学方法.

难点:正弦型函数周期的推导过程.

三、教学过程

1.复习旧知,引入新课

师:通过前面的学习我们知道,如果一个函数)(x

f的周期为a

=a

T,则它应该满足怎么样的关系呢?

(≠

)0

生:满足)

x

=.

f

f+

(a

(

)

x

(设计意图:通过复习,使学生在后面的式子)2()(ω

π+=x f x f 清楚的里得出周期)

师:学习三角函数时,我们首先学习了正弦函数x x f sin )(=和余弦型函数x x f cos )(=,通过描画它们的图像得知,它们的周期都是π2=T ,根据上面的周期公式式子,它们应该满足什么关系呢? 生:满足()π2sin sin +=x x 、()π2cos cos +=x x .

(设计意图:为后面推导正弦型函数的周期奠基基础)

师:上一节课我们学习了正弦型函数

()?ω+=x A x f sin )(

)且为常数(其中R x A A ∈,0,0≠,,,>ω?ω,通过学习我们知道,它与正弦函数x x f sin )(=有着密切的联系,那么正弦型函数有没有周期呢?,如果有,它该怎么样求解呢?所以本节课我们在正弦函数x x f sin )(=基础上来讨论一下它的周期.

(设计意图:让学生知道这两个函数之间的联系,为后面整体代换方法的应用提供依据)

2.教师讲解,学习主题

首先我们写出正弦型函数

()?ω+=x A x f sin )(,R x ∈.

师:我们如何把它转化为我们熟悉的正弦函数了?大家还记得我

们在解方程012-24=+y y 时是如何解得?

生:我们令t y =2,使方程变成我们熟悉的一元二次方程012-2=+t t 来求解的.

(设计意图:让学生复习整体代换的数学方法,为下面把正弦型函数转化为正弦函数提供基础)

师:我们如何把()?ω+=x A x f sin )(转化成我们熟悉的正弦函数? 生:令 ?ω+=x z ,R z ∈

(设计意图:让学生感受到成功的喜悦,增强学习的自信心) 师:上面一步我们运用了数学一个非常重要的方法整体代换的方法,可见,通过这种方法会把不熟悉的东西变成我们熟悉的东西,通过代换则有z A x f sin )(=即变成了我们非常熟悉的正弦函数.

(设计意图:让学生再次体会整体代换的方法,为得出结论做出铺垫)

师:我们知道正弦函数的周期为π2=T ,那么我们能得到什么式子?

生:())2(2sin sin )(ππ+=+==x f z A z A x f

师:我们再把它还原过来,有

()()π?ω?ω2sin sin )(++=+=x A x A x f

为了和()?ω+x A sin 保持一致,我们把()π?ω2sin ++x A 写成()?πω++2sin x A .

师:我们知道()?ω+=x A x f sin )(中函数的自变量为x ,那么()?πω++=2sin )(x A x f 中函数的自变量是什么?

生:是ωπ2+x .

(设计意图:为得出最后结论而做铺垫,为学生自己得出总结而理清思路)

师:于是有 ()()π?ω?ω2sin sin )(++=+=x A x A x f

()

?πω++=2sin x A

()[]?ωωπ++=2sin x A )2(ωπ+=x f . 即有)2()(ωπ+=x f x f ,那么它的周期应是多少?

生:是ωπ

2.

3.得出结论

一般地,正弦型函数

()?ω+=x A x f sin )( 的周期为ω

π2=T )且为常数(其中R x A A ∈,0,0≠,,,>ω?ω. 4.例题讲解,深化主题

求下列函数的周期.

(1)43sin 2x y =,

R x ∈; (2)()

432sin π+=x y ,R x ∈; (3)ππ3sin cos 3cos sin x x y +=,R x ∈;

(4)x x y cos sin +=,R x ∈.

5.课堂小结,巩固反思

本节课我们学习了正弦型函数的周期求解公式以及它的推导过程,再次体会了一类非常重要的数学方法,整体代换的方法,为以后的数学学习奠定基础.

《正余弦函数最小正周期的求法》进阶练习(三)

《正余弦函数最小正周期的求法》进阶练习 一、选择题 1.已知函数的最小正周期为,则该函数的图象() A.关于直线对称 B.关于点对称 C.关于直线对称 D.关于点对称 2.在函数① y=cos|2 x|,② y=|cos x|,③ y=cos(2 x+,④ y=tan(2 x-中,最小正周期为π的所有函数为() A.②④ B.①③④ C.①②③ D.①③ 3.已知函数的最小正周期为 ,则该函数的图象( ) A.关于点对称 B.关于点对称 C.关于直线对称 D.关于直线对称 二、填空题 4. 若的最小正周期为,则的最小正周期为__ 5. 关于下列结论中成立的序号为 __ (1)若是第一象限角,且,则 . (2)函数在区间上单调递增; (3)函数图象关于点成中心对称图形; (4)函数的最大值为7 (5)函数的最小正周期是 . (6)函数是奇函数;

参考答案 1.A 2.C 3.B 4. 5.(2)(3)(4)(5) 1. 【分析】 本题主要考查正弦函数的最小正周期的求法和对称性,属于基础题. 【解答】 解: 则该函数的图象关于直线对称, 故选A. 2. 【分析】 本题主要考查三角函数的周期性及求法,属于基础题. 【解答】 解:∵函数①y=cos丨2x丨=cos2x, 它的最小正周期为=π, ②y=丨cosx丨的最小正周期为 =π, ③y=cos(2x+)的最小正周期为 =π, ④y=tan(2x-)的最小正周期为, 故选C. 3. 【分析】 本题考查正弦函数的图象与性质,基本知识的考查. 通过函数的周期求出ω,利用正弦函数的对称性求出对称轴方程,得到选项.【解答】

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为

所以函数的最小正周期为。 例6. 求函数的最小正周期。 解:因为 其中, 所以函数的最小正周期为。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和 的最小公倍数是。 所以函数的最小正周期为。 例8. 求函数的最小正周期。

解:因为的最小正周期,最小正周期,由于和的最小公倍数是, 所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期, sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1 由图1可知:函数的最小正周期为。

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦型函数的周期

正弦型函数()? ω+ ) (的周期 f sin A =x x 一、教学目标 1.通过学习,让学生掌握正弦型函数周期的推导过程,进而会求解正弦型函数的周期. 2.通过学习,让学生体会到整体代换的方法在数学中的重要性,使学生能够熟练并灵活运用它. 3.通过正弦函数周期公式的推导过程,让学生感受到数学的美,从而加强学习数学的兴趣. 二、教学重难点 重点:1.正弦型函数周期的推导过程. 2.正弦型函数周期的计算公式. 3.整体代换的数学方法. 难点:正弦型函数周期的推导过程. 三、教学过程 1.复习旧知,引入新课 师:通过前面的学习我们知道,如果一个函数)(x f的周期为a =a T,则它应该满足怎么样的关系呢? (≠ )0 生:满足) x =. f f+ (a ( ) x

(设计意图:通过复习,使学生在后面的式子)2()(ω π+=x f x f 清楚的里得出周期) 师:学习三角函数时,我们首先学习了正弦函数x x f sin )(=和余弦型函数x x f cos )(=,通过描画它们的图像得知,它们的周期都是π2=T ,根据上面的周期公式式子,它们应该满足什么关系呢? 生:满足()π2sin sin +=x x 、()π2cos cos +=x x . (设计意图:为后面推导正弦型函数的周期奠基基础) 师:上一节课我们学习了正弦型函数 ()?ω+=x A x f sin )( )且为常数(其中R x A A ∈,0,0≠,,,>ω?ω,通过学习我们知道,它与正弦函数x x f sin )(=有着密切的联系,那么正弦型函数有没有周期呢?,如果有,它该怎么样求解呢?所以本节课我们在正弦函数x x f sin )(=基础上来讨论一下它的周期. (设计意图:让学生知道这两个函数之间的联系,为后面整体代换方法的应用提供依据) 2.教师讲解,学习主题 首先我们写出正弦型函数 ()?ω+=x A x f sin )(,R x ∈. 师:我们如何把它转化为我们熟悉的正弦函数了?大家还记得我

周期函数的最小正周期-

中学代数研究 期末论文 周期函数最小正周期存在性及其应用 摘要 本文研究了周期函数最小正周期的若干问题. 对周期函数的最小正周期存在的充要和充分条件进行了探讨,也给出了说明结果的一些例子,并总结了些求最小正周期的方法,最后简要分析了高中生对最小正周期的认识。 全文分为五部份: 第一部分是关于最小正周期的一般理论, 得到了周期函数有最小正周期的充要条件和充分条件,; 第二部分讨论了周期函数的应用。如两个周期函数之和的最小正周期的问题, 和复合函数最小正周期问题; 第三部

分讨论了如何求最小正周期,其中三角函数最小正周期求法是我们所最常见的;第四部分讨论了高中对最小正周期的认识,发现其中问题,并给予了些意见。 关键词:周期函数最小正周期三角函数最小正周期的求法 引言 我们都知道一些周期函数在定义域上存在最小正周期,如sinx,cosx,tanx 等。但也有些周期函数并无最小正周期,例如常值函数、狄利克雷函数等。那么,什么样的周期函数一定存在最小正周期? 一.周期函数最小正周期存在性(洪,王,李) 1.1周期函数最小正周期的定义 定义:若函数f(x)为M上的周期函数,T称为函数f(x)的一个周期,如果在所有周期中存在一个最小正数'T,那么'T叫做f(x)的最小正周期或基本周期。 1.2周期函数最小正周期存在充要条件[1] 为叙述简洁,先就本文采用的符号作说明: R 周期函数的正周期集

0T 周期函数的正周期集J 的下确界 T* -周期函数的最小正周期(若最小正周期存在) 定理1 (i)周期函数f(x)存在最小正周期的充要条件是*=>T T T 00,0且。 (ii)f(x)无最小正周期的充要条件是0T =0。 其实,(i)和(ii)可相互作为推论而成立。这里仅对(i)予以证明。 证明 必要性显然成立。 充分性。已知00>T ,只要证明0T 是f(x)的一个正周期即可。利用反证法,假设f(x)不存在最小正周期,即0T 不是f(x)的正周期。由0T 的定义,存在f(x)的一正周期列 )(,:}{00∞←→>n T T T T T n n n .于是{n T }中总存在m T 和)(n m n T T T <,使. 0T T T m n <-,0>-m n T T 仍是f(x)的正周期,这与0T 的定义矛盾。所以f(x)必有最小正周期,且最小正周期0T T =*。(证毕) 推论1设f(x)为定义在M 上的周期函数,如果存在开区间M R b a \),(?,则f(x) 必存在最小正周期。事实上,如果M R b a \),(?。则00>-≥a b T 。 推论2无最小正周期的周期函数的定义域必是稠密集。 1.2周期函数最小正周期存在充分条件[2] 定理2 若R 上周期函数f (x )不恒为常数,且f(x)是连续的,则f(x)必有 最小正周期。 等价为 无最小正周期的连续周期函数一定为常值函 证明: 设E 为f(x)的正周期构成的一个集合,0为E 的一个下界,故E 有下确界,记为μ,

非正弦周期信号的分解与合成

实验五50H z非正弦周期信号的分解与合成 班级:信工 姓名:xx 学号:xxxxxxxxx 一、实验目的 1. 理解并掌握信号分解与合成的原理。 2. 观测50Hz非正弦周期信号的频谱,并与其傅立叶级数展开式中各项的频率与系数比较。 3. 观测基波和其谐波的合成。 二、实验设备 1.信号与系统实验箱:TKSS-C型; 2.双踪示波器。 三、实验原理 1.一个非正弦周期函数,只要符合狄里赫利条件,可以用一系列频率成整数倍的正弦函数来表示,其中,与非正弦具有相同频率的成分称为基波或一次谐波,其它成分根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.一个非正弦周期波也可以分解为无限个不同频率的谐波成分,相反,不同频率的谐波可以合成一个非正弦周期波。 3.一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1,方波频谱图如图1.1表示 四、实验内容及步骤 实验内容: 1、调节函数信号发生器,使其输出50Hz的方波信号,并将其接至信号分解实验模块BPF的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz成分BPF的输出幅度为最大。 2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 5、分别将50Hz单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 6、将50Hz单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相

求三角函数最小正周期的五种方法96233

求三角函数最小正周期的五种方法 spacetzs 关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手。本文将介绍求三角函数最小正周期常用的五种方法,仅供参考。 一、定义法 直接利用周期函数的定义求出周期。 例1.求函数y m x =-cos() 56 π (m ≠0)的最小正周期。 解:因为y m x =-cos()56 π =-+=+-cos( )cos[()] m x m x m 5625106π πππ

所以函数y m x =-cos()56 π (m ≠0)的最小正周期 T m = 10π || 例2.求函数y x a =cot 的最小正周期。 解:因为y x a x a a x a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最小正周期为T a =||π。 二、公式法 利用下列公式求解三角函数的最小正周期。 1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周 期T =2π ω|| 。 2.y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期 T = π ω|| 。 3.y x y x ==|sin ||cos |ωω或的最小正周期T =π ω|| 。

4.y x y x ==|tan ||cot |ωω或的最小正周期T =π ω|| 例3.求函数y x =|tan |3的最小正周期。 解:因为T ==π ωω|| 而3 所以函数y x =|tan |3的最小正周期为T =π3。 例4.求函数y n m x =-cot()3π的最小正周期。 解:因为T n m ==-πωωπ ||||而, 所以函数 y n m x =- cot()3π的最小正周期为 T n m m n = -=π π||||。 三、转化法 对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再用公式法求解。

1.2.1-正弦型函数的周期教案(高教版拓展模块)

1.2.1 正弦型函数的周期 一、教学目标 1.使学生理解函数周期性的概念。 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力。 二、教学重、难点 1. 教学重点:(1)周期函数的定义; (2)正弦、余弦函数、正切函数的周期性; 2. 教学难点:周期函数与最小正周期的意义。 三、教学设想: (一)情境导入: T:今天是星期一,7天之后星期几? S:星期一 T:14天之后呢? S:还是星期一 T:自然界还有许多类似的现象,比如每个星期都是从星期一到星期天。你能找到类似的实例吗? S:每年都有春、夏、秋、冬,地理课上的地球的自转,公转。。。 T:这些现象有什么共同特点呢? S:都给我们重复、循环的感觉 T:同学总结的很好,它们都可以用“周而复始”来描述,我们把这些现象叫做周期现象。

[设计思路:通过生活实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,激发学生的求知欲] 我们已经学习了正弦函数和余弦函数,在物理、电工和工程技术中,经常会遇到形如()sin y A x ω?=+的函数,这类函数叫做正弦型函数,它与正弦函数有着密切的联系。正弦函数的周期是2π,那么()sin y A x ω?=+的周期又是多少呢? (二)探讨过程: 1、我们先看函数周期性的定义. 定义 对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期. 需要注意的几点: ①T 是非零常数。 ②任意x D ∈,都有x T D +∈,0T ≠,可见函数的定义域无界是成为周期函数的必要条件。 ③任取x D ∈,就是取遍D 中的每一个x ,可见周期性是函数在定义域上的整体性质。 理解定义时,要抓住每一个x 都满足),()(x f T x f =+成立才行; ④周期也可推进,若T 是)(x f y =的周期,那么2T 也是)(x f y =的周期. ⑤对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期. 2、函数()sin y A x ω?=+的周期 ()()sin f x A x ω?=+(0)ω> ()()()sin sin 2f x A x A x ω?ω?π=+=++

函数f(x)g(x)最小正周期的求法解读

函数f (x )±g(x )最小正周期的求法 若f (x )和g(x )是三角函数,求f (x )±g(x )的最小正周期没有统一的方法,往往因题而异,现介绍几种方法: 一、定义法 例1求函数y =|sin x |+|cos x |的最小正周期. 解:∵)(x f =|sin x |+|cos x | =|-sin x |+|cos x | =|cos(x + 2π)|+|sin(x +2 π)| =|sin(x +2π)|+|cos(x +2 π)| =)2 (π+x f 对定义域内的每一个x ,当x 增加到x +2 π时,函数值重复出现,因此函数的最小正周期是2π. 二、公式法 这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T =||2ωπ ,正余切函数T =| |ωπ. 例2求函数y =cot x -tan x 的最小正周期. 解:y =x x x x tan tan 1tan tan 12-=-=2·x x x 2cot 2tan 2tan 12=- ∴T =2 π 三、最小公倍数法 设f (x )与g(x )是定义在公共集合上的两个三角周期函数,T 1、T 2分别是它们的周期,且T 1≠T 2,则f (x )±g(x )的最小正周期T 1、T 2的最小公倍数,分数的最小公倍数=分母的最大公约数 分子的最小公倍数2121,,T T T T 例3求函数y =sin3x +cos5x 的最小正周期. 解:设sin3x 、cos5x 的最小正周期分别为T 1、T 2,则52,3221ππ== T T ,所以y =sin3x +cos5x 的最小正周期T =2π/1=2π. 例4求y =sin3x +tan 5 2x 的最小正周期.

非正弦周期信号汇总

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 章与其它章节的联系: 三相电路可以看成是三个同频率正弦电源作用下的正弦电流电路,对它的计算,第九章正弦电流电路中所阐述的方法完全适用。 §13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量

单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

求三角函数最小正周期的五种方法

所以函数 解:因为 求三角函数最小正周期的五种方法 、定义法 直接利用周期函数的定义求出周期。 y -cos (— x-―) 例1.求函数 "(m 产0)的最小正周期。 .m 琵、 y =cos (—x-—) 解:因为 " =曲(彳_彳+ 2町 T ^n . 10 、 洗、 =cos[—(A+ —^)--] 5 w 6 .m 琵、 y =cos (—x-—) "(m 产0)的最小正周期 x X = cot — = cot (— + 泥)=cot[ —+ a a a 二、公式法 利用下列公式求解三角函数的最小正周期。 1. sm (应 a 或丿=占8£(皿+朝+必的最小正周期 2.Ztan (曲+物H ■血野二宜sg + 前+矗的最小正周期 例2.求函数 y -cot — 总的最小正周期。 y- 所以函数 t x -的最小正周期为'=|/|

解: 尸二而少二3 因为 l J:I 所以函数■■ I1-1-"--的最小正周期为 解: 因为 丁=各而印=卜竺 |虫| m 所以函数的最小正周期为 T=— 3.一--、的最小正周期7。 T-— 4.- 的最小正周期-'I 例3.求函数''I1"1的最小正周期。 y =cot (3 -——x) 例4.求函数的最小正周期。 三、转化法 对较复杂的三角函数可通过恒等变形转化为》= "£曲(俪+ ") +心等类型,再用公式法求解。 例5.求函数「:/的最小正周期。 ■ 6 | 6 解:因为「汕」:

=(sin z + cos x)(sin x- xcos x + cos 或=(sin x+ cos 对-3sin JCOS A =1- — sin32z 4 -3 1— cos4x =1'- ?---------- 4 2 3 ” 5 8 8

求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 令狐采学 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期 。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为 等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。例6. 求函数的最小正周期。解:因为

其中, 所以函数的最小正周期为 。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和的最小公倍数是。 所以函数的最小正周期为。 例8. 求函数的最小正周期。 解:因为的最小正周期,最小正周期,由于和的最小公倍数是,

所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期 , sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1 由图1可知:函数的最小正周期为。

实验一 非正弦周期信号的分解与合成

实验一非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较; 2.观测基波和其谐波的合成。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台 2.PC 机(安装“THBCC-1”软件) 3.双踪慢扫描示波器1台(选配) 三、实验原理 1.任何电信号都是由各种不同频率、幅值和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波的频率为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅值相对大小是不同的。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的电路上。从每一带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是50Hz 的方波。 2.实验装置的结构图 图4-1实验结构图 图4-1中LPF 为低通滤波器,可分解出非正弦周期信号的直流分量。BPF 1~BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 3.各种不同波形及其傅氏级数表达式 方波: ?? ? ??++++ sin7ωt 71sin5ωt 51sin3ωt 31sin ωt π4Um U(t)= 三角波: ?? ? ??-+- sin5ωt 251sin3ωt 91sin ωt π8Um U(t)=2 半波 ??? ??+--+ cos4ωt 151cos ωt 31sin ωt 4π21π2Um U(t)= 全波 ?? ? ??+--- cos6ωt 351cos4ωt 151cos2ωt 3121π4Um U(t)= 矩形波 ?? ? ??++++ cos3ωt T 3τπsin 31cos2ωt T 2τπsin 21cos ωt T τπsin π2Um T τUm U(t)= 四、实验内容及步骤

求三角函数最小正周期的五种方法

求三角函数最小正周期的 五种方法 This model paper was revised by the Standardization Office on December 10, 2020

求三角函数最小正周期的五种方法 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为

所以函数的最小正周期为。 例6. 求函数的最小正周期。 解:因为 其中, 所以函数的最小正周期为。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和 的最小公倍数是。

所以函数的最小正周期为。 例8. 求函数的最小正周期。 解:因为的最小正周期,最小正周期,由于和的最小公倍数是, 所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期, sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1

非正弦函数有效值

第十二章电路定理 一、教学基本要求 1、了解周期函数分解为傅里叶级数的方法和信号频谱的概念。 2、理解周期量的有效值、平均值的概念,掌握周期量有效值的计算方法。 3、掌握非正弦周期电流电路的谐波分析法和平均功率的计算,了解滤波器 的概念。 二、教学重点与难点 教学重点: 1、非正弦周期电流电路的电流、电压的有效值、平均值; 2、非正弦周期电流电路的平均功率 3、非正弦周期电流电路的计算方法 叠加定理、戴维宁定理和诺顿定理。 教学难点: 1、叠加定理在非正弦周期电流电路中的应用 2、非正弦周期电流电路功率的计算 三、本章与其它章节的联系: 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。非正弦周期信号可以分解为直流量和一系列不同频率正弦量之和,每一信号单独作用下的响应,与直流电路及交流电路的求解方法相同,再应用叠加定理求解,是前面内容的综合。 四、学时安排总学时:4 五、教学内容 §12.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波

2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 12.1 为一些典型的非正弦周期信号。 (a)半波整流波形(b)锯齿波(c)方波 图12.1 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。 §12.2周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算:

正弦型函数的周期

正弦型函数()?ω+=x A x f sin )(的周期 一、教学目标 1.通过学习,让学生掌握正弦型函数周期的推导过程,进而会求 解正弦型函数的周期. 2.通过学习,让学生体会到整体代换的方法在数学中的重要性,使学生能够熟练并灵活运用它. 3.通过正弦函数周期公式的推导过程,让学生感受到数学的美,从而加强学习数学的兴趣. 二、教学重难点 重点:1.正弦型函数周期的推导过程. 2.正弦型函数周期的计算公式. 3.整体代换的数学方法. 难点:正弦型函数周期的推导过程. 三、教学过程 1.复习旧知,引入新课 师:通过前面的学习我们知道,如果一个函数)(x f 的周期为)0(≠=a a T ,则它应该满足怎么样的关系呢? 生:满足)()(a x f x f +=. (设计意图:通过复习,使学生在后面的式子)2()(ωπ+=x f x f 清楚的里得出周期) 师:学习三角函数时,我们首先学习了正弦函数x x f sin )(=和余弦型函数x x f cos )(=,通过描画它们的图像得知,它们的周期都是π2=T ,

根据上面的周期公式式子,它们应该满足什么关系呢? 生:满足()π2sin sin +=x x 、()π2cos cos +=x x . (设计意图:为后面推导正弦型函数的周期奠基基础) 师:上一节课我们学习了正弦型函数 ()?ω+=x A x f sin )( )且为常数(其中R x A A ∈,0,0≠,,,>ω?ω,通过学习我们知道,它与正弦函数x x f sin )(=有着密切的联系,那么正弦型函数有没有周期呢?,如果有,它该怎么样求解呢?所以本节课我们在正弦函数x x f sin )(=基础上来讨论一下它的周期. (设计意图:让学生知道这两个函数之间的联系,为后面整体代换方法的应用提供依据) 2.教师讲解,学习主题 首先我们写出正弦型函数 ()?ω+=x A x f sin )(,R x ∈. 师:我们如何把它转化为我们熟悉的正弦函数了?大家还记得我们在解方程012-24=+y y 时是如何解得? 生:我们令t y =2,使方程变成我们熟悉的一元二次方程012-2=+t t 来求解的. (设计意图:让学生复习整体代换的数学方法,为下面把正弦型函数转化为正弦函数提供基础) 师:我们如何把()?ω+=x A x f sin )(转化成我们熟悉的正弦函数? 生:令 ?ω+=x z ,R z ∈

正弦型函数图像变换

1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计 贺力光 2008212004 教学目标: 知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种 图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使 学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 教学环境: 普通多媒体教室,电脑上需要装有几何画板软件,以及Flash播放器。 学情分析: 本节课在高一第二学期,学生进入高中学习已经有一学期了,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影

正弦型函数

正弦型函数)sin(?+=wx A y 徐丹 湖北省鄂南高级中学 教材:普通高中课程标准实验教科书(人教B 版)必修4 第一章第3节,P44—P50 教学对象:普通中学高中一年级普通班学生 时间:1课时(45分钟) 一、教学目标 1、知识与技能 (1)结合具体实例,了解)sin(?+=wx A y 的实际意义以及振幅、周期、频率、初相、相位的定义; (2)借助计算机课件,观察探索参数A 、ω、φ对函数图象的影响,并能概括出正弦 型函数各种图象变换的实质和内在规律; (3)会用“五点法”和图象变换得到函数)sin(?+=wx A y 的图象。 2、过程与方法 (1)通过对探索过程的体验,培养学生发现问题、研究问题的能力,以及探究、创 新的能力; (2)领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认 识的飞跃。 3、情感、态度价值观 (1)让学生感受数学来源于生活以及事物间普遍联系、运动变化的关系。 (2)渗透数形结合的思想; 二、教学重点、难点 1、重点 (1)理解振幅变换、周期变换和相位变换的规律; (2)熟练地对函数x y sin =进行振幅变换、周期变换和相位变换 2、难点 (1)理解振幅变换、周期变换和相位变换的规律; (2)发现与概括)sin(?+=wx A y 的图象的规律 三、教学用具 多媒体(PPT 和几何画板)、板书 四、教学方法 引导学生结合作图过程理解振幅变换、周期变换和相位变换的规律(启发诱导 式)。本节课采用讲授、学生参与、启发探究、归纳总结相结合的教学方法,运用现代化多媒体教学手段进行教学活动。首先按照由特殊到一般的认知规律,由形及数、数形结合,通过设置问题引导学生观察、分析、归纳,形成规律,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对正弦型函数图像变换的全面的体验和理解。

高中数学三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

相关文档
最新文档