柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型
柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型

1、喷油泵的速度特性

喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速增大,柱塞有效行程略有增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。

2、柴油机上为什么要安装调速器

喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。

要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器。

3、调速器的功用、形式

调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。

型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。

4、机械离心式调速器的工作原理

机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。

反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。

5、两速调速器

两速调速器适用于一般条件下使用的汽车柴油机,它只能自动稳定和限制柴油机最低与最高转速,而在所有中间转速范围内则由驾驶员控制。

柴油机电子调速器说明

天津恒康机械设备有限公司 HENGKANG Machinery Co.,Ltd

前言 EFC电子调速器用于PT(G)型燃油系统中。调速器可以调成同步运行,或有转速降的运行。调速器有常开和常闭两种系统。本书包括了发电机组或其驱动机上的康明斯电子调速器EFC 的安排、调整和故障诊断方面的操作规程。 内容 调速器EFC概况2~4 电磁传感器的安装4~11 电源12~13 执行器概况13~14 通过油泵的燃料流量15 执行器的鉴别16~18 EFC燃油泵壳体18 从EFC壳体中拆出执行器18~19 在EFC壳体中安装执行器19~26 系统调整—仪表板安装控制26~41 系统调整—远程安装控制41~42 负荷分配控制线路43 二台发电机组线路图44 图形标记45~46 零部件规格47~49 EFC故障诊断50~56 线路图英汉名词对照57~58

电子调速器概况 如下图,调速器包括电磁传感器、调速控制器、执行器和安装件。调速器具有常开或常闭两种调速器.

如下图,电磁传感器飞轮齿圈上感觉到发动机转速,并把交流电讯号送到调速控制器上。 如下图,调速控制器把来自电磁传感器的电讯号与现有的参考点相比较,如两个讯号不同,控制器将会改变送到执行器的电流。

如下图,改变执行器中的电流将使得执行器的轴旋转,当此轴旋转时,燃油流量和发动机的转速或功率将会改变。 电磁传感器的安装 如下图,电磁传感器是一个电磁铁装置。传感器装在飞轮壳上,有两种形式的电磁传感器。

如下图,从飞轮壳上拆下堵塞。它是和飞轮齿圈上的齿对正的,如果必要的话,转动飞轮,使一个齿的中心在电磁传感器孔之上。 如下图,如果飞轮壳上没有螺堵,就在飞轮壳上,在对正飞轮齿圈之处钻一个孔,攻丝。 注:必须从飞轮壳中去除铁屑。为了清理干净壳体的铁屑,可能需要拆下主电机。

船舶柴油机主推进动力装置832 第七章 柴油机的特性91题

第七章柴油机的特性91题 第一节船舶柴油机的工况和运转特性的基本概念11题 考点1:船舶柴油机的运转工况5题 1 发电机工况 电力传动的船舶主机和发电副机按发电机工况运行。在这种工况下,为了保持电网电压稳定和一定的电流频率,由调速器控制柴油机保持恒速运转。它的功率随着航行条件的变化或船舶用电量的变化,可以从零变化到最大许用值。因此,柴油机的发电机工况是转速不变而功率随时发生变化的工况。 2 螺旋桨工况 用来直接驱动螺旋桨的船舶主机是按螺旋桨工况运行的。在此工况下,柴油机按一定的转速将其功率通过轴系传给螺旋桨,螺旋桨在水中旋转产生推力克服船舶航行阻力使船保持航速。螺旋桨的吸收功率就等于主机发出的功率(忽略轴系的传递损失情况)。在螺旋桨工况下,柴油机发出的功率和其转速都是改变的。螺旋桨在工作时其吸收功率与转速的m次方成比例(P p=cn m)。通常在稳定运转时,螺旋桨吸收功率P p与转速n的三次方成比例,即P p∝n3。相应柴油机功率Pe 与转速的关系可写成Pe=cn3。我们把柴油机按此关系运转的工况称为柴油机的螺旋桨工况。 3 其他工况 柴油机在此类工况下运行时,它的功率与转速之间没有一定的关系。柴油机的转速是由工作机械所需的速度决定的,而功率则由运行中所遇到的阻力决定。比如驱动调距桨的主机是根据不同的调距桨叶的角度在某一转速下要求不同的功率;驱动应急救火泵或应急空压机的柴油机分别要求符合水泵或空压机的工况;即使直接驱动螺旋桨的主机,当航行条件和运行状态发生变化时(海面状况、气象条件、航区、装载、船舶污底以及船舶转向等),船舶阻力发生改变,通过螺旋桨影响主机的功率和转速。 A1.柴油机转速不变而功率随时发生变化的工况,称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急柴油机工况 B2. 柴油机的功率随转速按三次方关系而变化的工况,称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急柴油机工况 C3. 柴油机在同一转速下可有不同输出功率,在同一功率下可有不同转速,这种工况称为()。 A.发电机工况 B.螺旋桨工况 C.面工况 D.应急发电机工况

调速器的功能及工作原理

一、调速器功用及分类 调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。 在柴油机上装设调速器是由柴油机的工作特性决定的。汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。这时,惟有借助调速器,及时调节喷油泵的供油量,才能 汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。 按调速器起作用的转速范围不同,又可分为两极式调速器和全程式调速器。中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速范围内的任何转速起 二、两极式调速器 两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。 (一)RQ 通常调速器由感应元件、传动元件和附加装置三部分构成。感应元件用来感知柴油机转速的变化,并发出相应的信号。传动元件则根据此信号进行供油量的调节。

(二)RQ型调速器基本工作原理 1)起动 将调速手柄从停车挡块移至最高速挡块上。在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。 2)怠速 柴油机起动之后,将调速手柄置于怠速位置。这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于内弹簧座与安装飞锤的轴套

柴油机特性实验

柴油机特性实验 一、实验内容与要求 柴油机特性是指柴油机性能指标和工作参数随运转工况变化的规律称为柴油机特性。这种变化规律曲线形式称为柴油机特性曲线。 柴油机的最基本特性有速度特性、负荷特性和螺旋桨推进特性。其中,后两者为船用柴油机所用:即发电柴油机(n=常数)工况和船舶主机(螺旋桨)工况(P=cn3)。实验内容 ⒈柴油机负荷特性测定及负荷特性曲线绘制。 ⒉柴油机推进特性测定及推进特性曲线绘制。 实验要求: ⒈掌握柴油机负荷特性与推进特性的测定方法。 ⒉了解柴油机按负荷特性和推进特性工作时各参数间的变化规律。 二、实验目的、意义 柴油机的特性实验是柴油机的基本实验。此种特性测定不但为设计制造部 门所重视(柴油机的工作特性指标是否达到原设计指标),也为使用部门所关 注(运行管理中的依据)。尤其是船用柴油机的运转环境,运转工况变化很大, 如何在复杂的运转环境中正确管理柴油机,必须详细了解柴油机在不同运转工 况下的工作特性。通过本实验可使学生了解柴油机负荷特性与推进特性的测定 方法;了解柴油机按发电机工况和螺旋桨工况工作时各参数间的变化规律,从 而为正确管理船用柴油机做好必要的理论准备。 三、实验仪器、设备及测量精度 1.试验用主要仪器、设备如下: 4135Ca型船用柴油机(标定转速1500r/min、持续功率53kW) GWD-100型电涡流测功机 FC2210Z型智能油耗仪 FC2000型发动机自动测控系统 2. 仪器测量精度 (1) FC2000发动机自动测控系统 转速测量精度: ±1r/min 扭矩测量精度: ±0.4%F.S 扭矩控制精度: ±0.5%F.S 低温测量精度: ±0.5%F.S 高温测量精度: ±0.5%F.S (2) FC2210Z智能油耗仪

09325324电子无级调速器设计

《家电原理与检测》课程设计报告 电子无级调速器设计 姓名: 涂国龙 专业: 电子信息工程 班级: 093253 学号: 24 指导老师: 王晓荣 2011年12月20日

摘要 近几年随着科学技术的发展,尤其是生产电机的成本的下降,小功率的减速电机,调速电机,微型减速电机,齿轮减速电机等大量普及,随之出现的交流电子无极调速器品种也大量出现在市场。尽管各种个样的交流电子无极调速器品种繁多,但其功能和工作原理基本相同。主要区分在外型的不同。如上海任重仪表电器有限公司,上海百乐神自动化科技有限公司,中外合作湖州雪峰微电机有限公司等厂家的产品:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104,SCA-B,LSC-C ,LSC-H,LSC-G等,在功能上大致相同,主要的是安装结构存在差异。一般在使用上只要对启动的电容做出选择,改变,不管功率大小基本都能使用。主要分2大类:6-180W功率和180-370W功率。前者选:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104等型号产品。前者选SCA-B,LSC-C ,LSC-H,LSC-G等型号产品。交流电子无极调速器在产品的命

名上也很多:交流电子无极调速器,电子无极调速器,电子无极调速器,交流调速器,数显速控制器等。 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。 交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。 可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。 元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

柴油机数字式电子调速器

收稿日期:1996-12-01. 段晖辉,男,1972年生,硕士;武汉,华中理工大学船舶和海洋工程系(430074). 柴油机数字式电子调速器 段晖辉 高世伦 金寿吉(船舶和海洋工程系) 摘 要 提出了一种采用M CS-8098单片机控制的柴油机数字式电子调速器.通过单片机对柴油机转速进行数字P ID 调节,克服了传统机械式调速器的许多缺点.实验表明该调速器能够满足大多数中高速柴油机不同工况下的调速要求. 关键词 柴油机;调速器;单片机;PID 控制分类号 T K 421.4 柴油机调速器性能直接决定了柴油机运行的稳定性和经济性,目前我国大多数柴油机采用的机械式调速器已逐渐不能满足动力设备提出的越来越高的要求.改进柴油机的供油及调速系统通常有以下两条途径[1].a .采用新型电控喷油系统,抛弃传统的机械式供油系统.这条途径是未来柴油机供油系统发展的大趋势,在国外已有成熟的产品,但价格昂贵.由于制造加工精度要求高等原因,在短期内,我国还难以形成成熟产品.b .采用新型调速器,保留原有机械式供油系统.这种采用电子式调速器代替机械式调速器的方法,既能提高柴油机的各项性能,又不至于大幅度提高成本,用户和生产厂家都可以接受,是适合我国国情的一条途径. 本文论述了数字式电子调速器硬件软件设计.该调速器是一个闭环式控制系统.设定转速n 0由司机通过油门踏板输入,或台架操作人员通过操作手柄输入.发动机的实际转速n 1由测速系统测得.当n 0和n 1不相等时,产生转速偏差e ,经PID 运算控制PWM 波的占空比,该PWM 波通过滤波、放大后控制力矩电机,拉动油泵齿条,调节柴油机的循环供油量,使柴油机在设定转速点稳定地工作.当司机或操作人员改变油门位置时,设定转速n 0发生变化,系统能够以同样的方式迅速达到设定转速,改善了柴油机的响应性能. 1 硬件设计 硬件设计结构框图如图1所示,分为传感器、控制器、执行器三部分. 图1 调速器结构框图 1.1 传感器部分 本数字式电子调速器要输入的信号有:柴油机转速信号、油泵齿条极限位置信号、油门位置信号、PID 参数调整信号.由于MCS -8098单片机本身具有A /D 转换功能,因此油门位置信号和PID 参数调整信号可以通过单片机的A/D 转换口直接输入. 转速信号和油泵齿条极限位置由霍尔开关集成电路产生.霍尔器件由电源E 通过电阻R i 提供控制电流I ,B 为外加磁场,磁力线方向垂直于器件,则在其输出端得到霍尔电势U fz ,当I =const 时,B 变化导致U fz 改变.将霍尔元件产生的霍尔电势U fz 加以放大,整形,可构成开关型霍尔集成电路.本系统采用的开关型霍尔集成电路是由电压调整器、霍尔元件、差分放大器、施密特触发器和输出级组成的集成电路.它具有工作电源宽、无触点、寿命长、开关速度快、无瞬间抖动、工作频率宽、结构简单、体积小、安装方便的优点.另外由于集电极开路输出,能直接驱动晶体管、T TL 和M OS 集成电路等. 1.2 执行器部分 本系统的执行器采用了永磁式直流力矩电机.与其他类型执行器相比,该电机具有转速低、 第25卷第6期 华 中 理 工 大 学 学 报 V ol.25 N o.61997年 6月 J.Huazhong U niv.of Sci.&T ech. Jun. 1997

柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型 1、喷油泵的速度特性 喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速增大,柱塞有效行程略有增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。 2、柴油机上为什么要安装调速器 喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器。 3、调速器的功用、形式 调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。 型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。 4、机械离心式调速器的工作原理 机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。 反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理 永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理是通过磁体和导体之间的相对运动产生。也就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况下,在电动机满转时,PMD的

柴油机加装调速器的必要性分析

柴油机加装调速器的必要性分析 何贵生 摘要:本文叙述了柴油机调速器的功能、基本结构及工作原理,按结构和工作原理进行分类,分别介绍了不同柴油机调速器的优缺点,在不同的调速器中凸显出在柴油机中加装调速器的重要性同时简述了柴油机调速器的发展、应用概况及趋势。 关键词:柴油机;调速器;燃油调节系统

前言 自从1860年,莱诺依尔发明第一台大气压力式内燃机以来,人类历史上动力设备的发展就开始了崭新的篇章。内燃机给人类的生产、生活带来了非凡的便利。到了1897年,内燃机的发展上了一个新的台阶,德国工程师鲁道夫狄赛尔,发明了有史以来的第一台柴油机,在一个多世纪的发展过程中,柴油机技术先后出现了三次质的飞跃:第一次是在20世纪20年代用机械式喷油系统代替了蓄压式喷油系统;第二次是在20世纪50年代发展起来的增压技术;第三次则是从20世纪70年代以来一直蓬勃发展的柴油机电子控制技术。在这三次飞跃中,以电子控制技术的发展影响最大、意义最深远。柴油机的电子控制技术应用有多个方面,尤其是柴油机电子调速装置等。本文介绍的即是有关调速器在柴油机中的重要性。 1 调速器的功能 柴油机调速系统是指能根据负荷变化情况自动调节喷油泵循环供油量,协助操作人员稳定柴油机转速的装置。柴油机上均要用到调速装置,这是柴油机自身的特点——由扭矩速度特性及喷油泵速度特性所决定的。柴油机转速变化时,可燃混合气的数量、成分变化不大。因此通过燃烧产生的扭矩变化也不大。柴油机扭矩速度特性的这一特点,使柴油机在负荷(阻力矩)略有变化时,会引起其转速很大的变化。在操作人员不能及时操纵加速踏板改变喷油泵循环供油量的情况下,柴油机或因负荷(阻力矩)增大而转速迅速下降,以至熄火;或因负荷(阻力矩)减少而转速立即升高,甚至出现超速运转及“飞车”现象。另一方面,从喷油泵的速度特性对柴油机转速的影响来看:当柴油机负荷(阻力矩)减少而转速立即升高时,需要减少循环供油量,而喷油泵却相反的增大循环供油量(原因是随着柴油机转速升高,喷油泵柱塞套油孔的节流作用加大,使油泵供油始点提前,供油终点延迟,柱塞副泄漏时间减少)。可燃混合气成分由稀趋向合适,质量得到改善,燃烧速度加快,促使柴油机转速越来越高。反之,当柴油机负荷(阻力矩)增大转速降低时,需要循环供油量相应增加,而喷油泵却又减少了供油量,使可燃混合气成分变稀,质量变差,燃烧速度变慢,促使柴油机转速降低。可见,喷油泵的这一特性进一步降低了柴油机转速的稳定性。因此,为了使柴油机在负荷变化的情况下,在需要的某一转速下运转,防止意外熄火和超速运行,柴油机上必须安装调速装置,以保证柴油机的稳定运行。

汽车柴油机调速器经典课件

汽车柴油机调速器经典课件 1.喷油泵的速度特性及调速器的类型 (1)喷油泵的速度特性 喷油泵每次的供油量主要取决于供油拉杆的位置,其次还会受到发动机转速的影响。当发动机转速升高,柱塞运动速度加快时,柱塞套上油孔的节流作用增大,当柱塞上移时,即使柱塞还未完全封闭油孔,但由于被柱塞排挤的燃油一时来不及从油孔流出,而使泵腔内油压增 加,供油时刻略有提前。同理,当柱塞上升到斜槽与回油孔相通时,泵腔内油压一时来不及下降而使供油停止时刻略微延后。由于上述供油时间的延长,会使供油量略微增大;反之,当发动机转速降低时,供油量便略有减少。这种在油量调节拉杆位置不变时,供油量随转速变化的关系称为喷油泵的速度特性。喷油泵的速度特性对工况多变的车用柴油机是非常不利的。特别是在高速或大负荷时,如遇负荷突然减小(如汽车从上坡刚过渡到下坡),发动机转速会突然上升,这时喷油泵在上述速度特性的作用下,会自动将供油量加大,促使发动机转速近一步升高,转速和供油量如此相互作用的结果,有可能导致发动机转速超过标定的最大转速,而出现“飞车”现象。另外,汽车柴油机还经常在怠速工况下工作(如短暂停车,起动暖机等),虽然油量调节拉杆保持在最小供油量位置不变,但当内部阻力略有增大而使发动机转速略有降低时,由于喷油泵速度特性的作用,其供油量会自动减

少,使发动机转速进一步降低.如此循环作用,最后将使发动机熄火。反之,当机内阻力稍有减小时,柴油机转速将不断升高。 由于上述喷油泵速度特性的作用,使柴油机转速的稳定性变差,特别是在高速和怠速时,将影响正常工作。要使柴油机稳定运转,就必须在其阻力发生变化时,及时改变供油量,修正喷油泵速度特性的不良影响。因此,汽车柴油机都装有调速器。 (2)调速器的类型 汽车用柴油发动机的调速器按其功能可分为:两速调速器(只控制发动机的怠速和最高转速)、全速调速器(可控制发动机在怠速至最高转速之间的任一给定转速下稳定运转)和综合调速器(兼具两速和全速调速器的功能)。调速器按其转速传感方式可分为:气动式调速器(利用膜片感知进气管真空度的变化,自动调节供油量实现调速)、机械离心式调速器(利用喷油泵凸轮轴的旋转,使飞块产生离心力,实现调速作用)和复合式调速器(同时采用气动作用和离心作用进行调速)。 2.两速调速器 两速调速器只能自动限制柴油机最高转速和稳定其怠速。在最高和最低转速之间的所有中间转速则由驾驶员用油门控制。两速调速器适用于一般公路运输用的汽车柴油机。 图8—24为离心式两速调速器示意图,其基本构造是:油泵凸轮轴带动飞块座11转动,飞块9铰接在飞块座上。滑动轴10可在飞块座孔中轴向移动。调速杠杆8的中部与滑动轴10铰接,下端与摇臂

船舶柴油机复习资料(全)

船舶柴油机复习资料(全)

1.柴油机特性曲线:用曲线形式表现的柴油机性 能指标和工作参数随运转工况变 化的规律。 2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以 上的气缸发生了一时无法排除的 故障,所采取的停止有故障气缸运 转的措施。 4.12小时功率:柴油机允许连续运行12小时的 最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所 消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 10.9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的

14.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 15.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 16.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 17.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 18.有效功率:从柴油机曲轴飞轮端传出的功率。 19.机械损失功率:作用在活塞上指示功率传递到曲轴的过程中损失的功率。 20.活塞平均速度:曲轴一转两个行程中活塞运动速度的平均值。 21.机械负荷:柴油机部件承受最高燃烧压力,惯性力,振动冲击等强烈程度 22.热负荷:柴油机燃烧室部件承受温度,热流量及热应力的强烈程度。 23.热疲劳:燃烧室部件在交变的热应力作用下出

柴油机的调速装置汇总

2.7柴油机的调速装置 2.7.2超速保护装置 2.7.2.1超速保护装置的作用7题 按我国有关规定,凡标定功率大于220 kW的船用主机和船用柴油发电机应分别装设超速保护装置,以防止船舶主机转速超过120%标定转速和柴油发电机转速超过115%标定转速。此种超速保护装置是一种运转安全装置。它与调速器不同,它只能限制柴油机的最高转速,本身没有调速特性,它在柴油机正常运转范围内不起作用,只在柴油机转速达到规定限值时才发生动作,使柴油机立即停车或降速。按规定,超速保护装置必须与调速器分开设置而独立工作,无论柴油机的操纵机构处于什么状态,该装置的保护性动作必须迅速而准确。 1. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机 B.标定功率大于220 kW的船用发电柴油机 C.功率大于220 kW主机,功率大于110 kW发电柴油机 D.A+B 2.按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机和船用发电柴油机 B.标定功率大于220 kW的船用主机和标定功率大于110 kW的船用发电柴油机C.标定功率大于110 kW的船用主机和标定功率大于220 kW的船用发电柴油机D.标定功率大于110 kW的船用主机和船用发电柴油机 3. 下述关于超速保护装置论述中不正确的是()。 A.它是极限调速器的一种 B.它自身无调速特性 C.它是一种安全装置 D.它对柴油机的控制动作不受操纵机构限制 4. 超速保护装置的作用是()。 A.维持柴油机稳定运转 B.柴油机超速时使柴油机立即降速或停车 C.柴油机超速时立即报警 D.A或B 5.根据我国有关规定,船舶主机所装极限调速器的限制转速是()。A.103%n b(标定转速) B.110%n b C.115%n b D.120%n b 6. 根据我国有关规定,超速保护装置的作用是()。 A.防止主机转速超过110%n b(标定转速),发电柴油机转速超过115%n b B.防止主机转速超过115%n b,发电柴油机转速超过110%n b C.防止主机转速超过120%n b,发电柴油机转速超过115%n b D.防止主机转速超过115%n b,发电柴油机转速超过120%n b 7.下列情况中,柴油机不必装设超速保护装置的是()。 A.柴油机装有全制式调速器 B.柴油机装有定速调速器 C.柴油机装有限速器

【知识】柴油机与螺旋桨特性(一)

【知识】柴油机与螺旋桨特性(一) 重点:柴油机特性的分类,速度特性和负荷特性。难点:推进特性和限制特性。 单元一概述 一、柴油机的工况1.发电机工况转速恒定2.螺旋桨工况N=Cn3 3.其它工况转速和扭矩之间没有一定的关系。 二、柴油机特性的分类1.柴油机特性柴油机的主要性能指 标和工作参数(如排气温度Tr、最高爆发压力pz、增压压力pk等)随运转工况变化的规律称为柴油机的特性。把这 种变化规律在坐标上用曲线的形式表示出来,这种曲线称为 柴油机的特性曲线。2.目的(1)评价柴油机的性能(2)确定柴油机工况(3)分析影响特性的因素(4)检测柴油机的状态 三、柴油机特性的分类Ne=Cpeni 1)速度特性pe不变,n改变2)负荷特性n不变,pe改3)推进特性n和pe均改变化 单元二速度特性 1.概念:将喷油泵油量调节杆固定在某一位置,改变柴油 机外负荷以改变其转速,测量各转速下的功率Ne、扭矩Me (或平均有效压力pe)、有效耗油率ge和排气温度Tr等随

转速的变化规律。根据喷油泵油量调节机构固定的位置不同, 有全负荷速度特性(亦称外特性)。部分负荷速度特性和超 负荷速度特性。2.全负荷速度特性(1)概念:将喷油泵油量调节杆固定在标定供油量位置,改变柴油机外负荷以改变 其转速,测量各转速下的功率Ne、扭矩Me(或平均有效压力pe)、有效耗油率ge和排气温度Tr等随转速的变化规律。(2)标准环境状况:(3)柴油机功率的标定:我国国家标 准规定了内燃机标定功率分为15分钟功率、1小时功率、12小时功率、持续功率四级。15分钟功率:柴油机允许连续运行15分钟的最大有效功率。商船不允许使用这么大的 功率。可作为军用车辆和舰艇的追击功率。1小时功率:柴油机允许连续运行1小时的最大有效功率。可作为商船的超 负荷功率。是最大持续功率的110%。1小时功率还可作为拖拉机、工程机械的最大使用功率。12小时功率:柴油机允许连续运行12小时的最大有效功率。可以作为拖拉机、工 程机械的正常使用功率。持续功率:柴油机允许长期连期运 行的最大有效功率。船舶柴油机就用它来标定功率,并同时 标定其相应转速。我们通常所说的标定功率就是指这种功率, 标定工况就是指这种功率及其相应转速。国外船用柴油机常 用的几种功率(工况)名称MCR:最大持续功率,同时标 有相应的转速。原含义相当于国家标准的持续功率标定工况, 是设计选配螺旋桨的依据。OR:超负荷功率工况。其功率

2、调速器基本原理和设备特性

第二章 调速器基本原理和设备特性本章介绍调速器基本原理和MGC4000系列调速器的设备结构特性

2.调速器基本原理和设备特性 (3) 2.1调速系统原理介绍 (3) 2.2 MGC4000系列调速器概述 (4) 2.3 MGC系列调速器的选型说明 (4) 2.4 MGC系列调速器的性能参数 (5) 2.4.1 MGC系列调速器的主要技术参数 (5) 2.4.2 MGC系列调速器的基本功能 (6) 2.5调速器电气原理概述 (6) 2.6 MGC4000系列调速器电源系统 (8) 2.6.1 MGC4000系列调速器电源系统特点 (8) 2.6.2 MGC4000系列调速器的急停回路电源 (8) 2.7 MGC4000系列调速器双微机控制器冗余 (9) 2.7.1 MGC4000系列双微机控制器冗余特点 (9) 2.7.2 MGC4000系列双微机控制器切换特点 (9) 2.8 MGC4000系列调速器的通讯接口 (9) 2.8.1 RS232/485 接口 (9) 2.8.2 以太网接口 (9)

2.调速器基本原理和设备特性 2.1调速系统原理介绍 水轮机调速系统由水轮机控制系统和被控制系统组成,方框内即为调速系统。 水轮机控制系统用来检测被控参量(转速、流量、水位、功率等)与给定参量的偏差,并将它们按照一定特性转换成主接力器行程偏差的一些设备所组成的系统。 被控制系统由控制系统控制的设备或物理量,包括水轮机、引水和泄水系统,发电机以及所并入的电网。 调速器通过外围的水位、频率、有功功率、导叶开度等传感器将机组的信息送至控制器,控制器将这些信息与监控系统或者调速器面板上的控制指令进行综合,判断机组当前的工作状态以及控制目标,并且将控制信号送至执行机构,将控制指令经过电液转换之后最终作用在导叶(桨叶)接力器上,从而改变机组的运行状态,达到预期的控制目标。 ◆机组在并网运行前,调速器将机组调整到额定转速运行,此时调速器的作用为频率调节器,其调整目标是把机组频率调整到额定值。 ◆机组在并网运行后,机组向电网输出有功功率,调整水轮机的导叶开度/桨叶开度能够改变机组输出的有功功率大小,此时调速器作为有功功率调节器工作,其调整目标是把机组发出的有功功率调整到电网需求的数值。同时,调速器需要控制导叶开度,使得机组发出的有功功率不超过机组的额定功率,所以调速器也作为机组有功功率限制器使用。当电网频率波动超过设定值后,调速器自动变为频率调节器,将机组频率稳定在机组额定值。

柴油发电机2种常用的调速器介绍

柴油发电机2种常用的调速器介绍 (l)RSV型全程式调速器。RSV型全程式调速器(见图1)是一种典型的机械全程式调速器,目前广泛应用于中小功率高速柴油机上。这种调速器的结构特点是采用双杠杆,一根调速弹簧,转速感应元件为飞锤。它可较容易地变型为其他调速器(如RSUV及RSVD型等)。图2所示为RSUV型全程式调速器的结构简图。它是在RSV型调速器的基础上,增设一对调速齿轮(图2中的1)发展而成的。 图1RSV型全程式调速器 l-弹簧摇臂2-弹簧挂耳3-供油拉杆4-供油齿杆5-调速器体6-起动瓣7-调速手柄8-调速糕9-停车-怠速挡块10-@调速杠杆11-支持杆12-调速弹簧13-怠速9$簧14-校工弹簧15-油量 限制器

图2RSUV型全程式调速器构造 l-调速齿轮2-飞锤座3-飞锤4-移动杆5-齿杆行程限制螺栓6-怠速弹簧7-调速器后盖8-怠速辅助弹簧9-拉力杠杆10-停车限制螺栓11-导动杠杆12-浮动杠杆13-拉杆14-起动弹簧15-操纵杆(加速杆,16-高速限制螺栓17-校正弹簧18-销钉19-油量调节齿杆20-调速弹簧21- 转动杆22-凸块23-凸块调整螺钉 1)构造(见图2)。调速器装在喷油泵后端,由喷油泵凸轮轴后端的调速齿轮l驱动。调速器主要由飞锤3(两个)、飞锤座2、移动杆4、拉力杠杆9、导动杠杆11、浮动杠杆12、转动杆21、调速弹簧20、启动弹簧14、怠速弹簧6、怠速辅助弹簧8、操纵杆15、校正弹簧17及齿杆行程限制螺栓5等组成。 调速弹簧20的一端与转动杆21相连,另一端连在拉力杠杆9上,转动操纵杆(加速杆)15即可改变调速弹簧的弹力,从而变更谰速器所控制的转速。拉力杠杆9上端用销子装在调速器壳上,下端的孔座中装着怠速弹簧6。导动杠杆11下端的缺口插在移动杆4中部的销钉上,上端用销子装于调速器壳。浮动杠杆12有4个连接点,最上端连于起动弹簧14的一端(起动弹簧的另一端固定于调速器壳),再下一个连接点用拉杆13与油量调节齿杆19相连,中部用销钉与导动杠杆11连接,下端的支点则在调速器壳上。 2)工作过程。柴油机在某一负载下工作时,司机将操纵杆15转到某个位置,这时调速弹簧20具有一定的弹力,柴油机即在某一转速下运转。飞锤3由于离心力而向外张开,通过移动杆4向右推动拉力杠杆9,使其处于某一位置(拉力杠杆9下端离开齿杆行程限制螺栓5,与限制螺栓间形成一定的距离),这时飞锤的离心力与调速弹簧的弹力达到平衡,并通过导动杠杆11和浮动杠杆12,使油量调节齿杆也保持在某一位置,柴油机即在此工况下稳定运转。

第七章 柴油机特性与选型

第七章柴油机特性及选型 柴油机的特性反映出柴油机的动力性、经济性和使用性能,它是柴油机固有的特性。柴油机的应用场合和工作条件不同,其性能指标和工作参数有很大的差异。对柴油机特性进行研究是制造和使用柴油机的重要依据。 第一节概述 一、船舶柴油机的工况 柴油机作为一种动力机械用来驱动各种工作机械时,其功率 和转速是按照工作机械所需的功率和转速而变化的。柴油机在 各种不同条件下运转的工作状况(功率和转速)称为柴油机运转 工况。在船舶上,柴油机主要作为推进主机、发电原动机和应图7-1船用柴油机的各种工况

第七章柴油机特性213 急发动机(应急发电机、空压机和消防泵的原动机)。根据柴油机在船上应用时的不同条件,概括起来有三类工况:发电机工况、螺旋桨工况和其他工况。 1发电机工况 电力传动的船舶主机和发电副机按发电机工况运行。在这种工况下,为了保持电网电压稳定和一定的电流频率,由调速器控制柴油机保持恒速运转。它的功率随着航行条件的变化或船舶用电量的变化,可以从零变化到最大许用值。因此,柴油机的发电机工况是转速不变而功率随时发生变化的工况。如图7-1中直线2所示。 2螺旋桨工况 用来直接驱动螺旋桨的船舶主机是按螺旋桨工况运行的。在此工况下,柴油机按一定的转速将其功率通过轴系传给螺旋桨,螺旋桨在水中旋转产生推力克服船舶航行阻力使船保持航速。螺旋桨的吸收功率就等于主机发出的功率。在螺旋桨工况下,柴油机发出的功率和其转速都是改变的。螺旋桨在工作时其吸收功率与转速的m次方成比例(P p=cn m)。通常在稳定运转时,螺旋桨吸收功率P p与转速n的三次方成比例,即P p∝n3。相应柴油机功率Pe与转速的关系可写成Pe=cn3。我们把柴油机按此关系运转的工况

电子调速器

? 1.根据控制机构的不同分: (1)电子式 (2)液压式 (3)气动式: (4)机械式: 2.据用途的不同分为: (1)单制式:单置式调速器又称恒调速器,只能控制柴油机的最高速度。这种调速器中调速弹簧的预紧力是固定不变的,只有当柴油机转速超过最高标定转速时,调速器才能起作用,故称恒速调速器。 (2)双置式:双置式调速器又称两极式调速器,用来控制柴油机的最高转速和最低稳定速度。 (3)全置式:全置式调速器可以控制柴油机在规定的转速范围内任意转速下运动。其工作原理与恒调速器的区别在于弹簧承盘做成活动的,因此弹簧的弹力不是固定值,而是由操纵杠杆控制,随操纵杠杆位置的变化,调速器弹簧的弹力也随之变化,故可以控制柴油机在任意转速下稳定工作。 电子调速器的组成 ?电子调速器由转速调整电位器、转速传感器、控制器、执行器和保险电路等组成。 1.转速传感器 它应采集尽可能高的信号频率。设计采用最高的信号频率为12000Hz发动机转速与频率关系的计算公式如下:f=nz/60。式中f--频率Hz n--发动机的转速r/min;Z--传感齿轮齿致(或飞轮外圈齿数)。传感器最好是从飞轮处测量转速,安装时传感器与飞轮齿圈齿顶的间隙为0.4-0.8mm。 2.控制器 它的作用是根据传感器测出的转速实际值与其中设定值,进行比较、并驱动执行器执行。 3.转速调整电位器 它用来根据发动机使用的最高允许转速来调定频率。在订购时若写明发动机的运行频率,工厂根据要求调定好频率。若订单上未注明机组运行频率,则出厂时频率调定为2000Hz。 如果此调定的频率在发动机的空转和最高转之间,则可起动发动机并调节"speedmax" (最高转速)电位器使发动机获得最高运转频率。 4.执行器 执行器主要由直流电机,传动齿轮,输出轴及反馈部件组成。执行器由直流电机驱动,其扭矩通过一个中间齿轮传至输出轴。反馈部件将执行器的工作状态传入控制器以形成闭环控制系统。执行器的输出轴摇臂通过调节连杆与喷油泵齿杆相连。 5.保险电路 在电子调速系统中设有保险电路,当传感信号中断,如因电缆断裂发动机停止远行时,它可以使执行器停止工作,并使输出轴摇臂恢复至"0"位置。 电子调速器的原理

柴油发电机调速器的分类介绍

柴油发电机调速器的分类介绍 (1)柴油机调速器按工作原理可分为机械离心式调速器、气动式调速器、液压式调速器和电子式调速器四种。 1)机械离心式调速器。所有机械式调速器的工作原理大致相同,它们都具有被曲轴驱动旋转的飞锤(或飞球),当转速变化时飞锤的离心力也随着变化,然后利用离心力的作用,通过一些杆件来调节发动机的供油量,使供油量与负载大小相适应,从而保持发动机的转速稳定。 在中小功率柴油机上,应用最广泛的是机械离心式调速器。 机械离心调速器有卧式和立式两种,主要构件是钝盘、飞铁、调速弹簧、调整螺钉和传动拉杆等。转速在额定值时,飞铁的离心力与调速弹簧的张力平衡。当转速高于额定值时,飞铁离心力增大超过弹簧的张力,使飞铁张开带动拉杆减少油门,柴油机自动恢复额定转速。相反,当转速低于额定值时,飞铁向内靠拢,带动拉杆增大油门,使柴油机增速。 机械离心式调速器结构简单,维护比较方便,但是灵敏度和调节特性较差。 2)气动式调速器。气动式调速器的感应元件用膜片等气动元件来感应进气管压力的变化,以便调节柴油机转速。 3)液压式调速器。液压式调速器是利用飞铁的离心作用来控制一个导阀,再由导阀控制压力油的流向,通过油压来驱动调节机构增大或减小油门,完成转速自动调节的目的。 液压调速器的优点是输出转矩大,调速特性和灵敏度比机械离心式调速器好,缺点是结构较复杂,维护技术的水平要求较高。 4)电子式调速器。电子式调速器是近年来研究应用的较先进的调速器,它的感应元件和执行机构主要使用电子元件,可接受转速信号和功率信号,通过电子电路的分析比较,输出调节信号来调节油门。 电子调速器的调速精度高,灵敏度也高,主要缺点是需要工作电源,并要求电子元器件具有很高的可靠性。

相关文档
最新文档