大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

第三章 刚体力学

3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,

又因为转动定理 dt

d J

J M ω

β== dt

d J

C ωω=-∴ dt J

C d t ??-=∴00ωωωω t J

C

-=0ln

ωω t J

C

e

-=0ωω

当021ωω=

时,2ln C

J

t =。 (2)角位移?=t

dt 0ωθ?

-=2ln 0

0C J t J

C dt e

ωC

J 0

21ω=

所以,此时间内转过的圈数为

C

J n πωπθ420==

。 3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(12

22b a ab J +σ

=

。其中a ,b 为矩形板的长,宽。 证明一:如图,在板上取一质元dxdy dm σ=,对与板面

垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ?

=2

dxdy y x a a b b σ?

?

--+=2222

22)(

)(12

22b a ab +=

σ

证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转

动惯量为

212

1

b dm ?,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为

22)2(121x a

dm b dm dJ -+?=

dx x a

b dx b 23)2

(121-+=σσ 33121121ba a b dJ J σσ+==∴?)(12

22b a ab +=σ

3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。

解:受力分析如图

ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)

βr a =,2

2

1mr J =

(5) 联立求出

g a 41=

, mg T 811=,mg T 451=,mg T 2

32=

3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 (1) 解:设杆的线l

m

=

λ,在杆上取一小质元dx dm λ= gdx dmg df μλμ==

gxdx dM μλ= 考虑对称 mgl gxdx M l μμλ?==20

4

1

2

(2) 根据转动定律d M J J dt

ωβ==

?

?=-t

w Jd Mdt 0

ω

图3-28 习题3-3图

图3-29 习题3-4图

T

0212

1

41ωμml mglt -=-

所以 g

l

t μω30=

3-5 质量为m 1和m 2的两物体A 、B 分别悬挂在如本题图所示的组合轮两端。设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1和J 2,轮与轴承间的摩擦力略去不计,绳的质量也略去不计。试求两物体的加速度和绳中的张力。

解:分别对两物体做如图的受力分析。根据牛顿定律,有

1111a m T g m =- a m g m T 222=-

又因为组合轮的转动惯量是两轮惯量之和,根据转动定理有

α)(2121J J r T R T +=-

而且,αR a =1,αr a =2,

gR r m R m J J r

m R m a 2

22121211+++-=

gr r m R m J J r

m R m a 2

22121212+++-=

g m r m R m J J Rr

m r m J J T 12

2212122

2211++++++=

g m r

m R m J J Rr

m R m J J T 22

22121121212++++++= 3-6 如本题图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1和m 2的物体A 、B 。A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。若B 向下作加速运动时,求:(1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑) 解:A 、B 物体的受力分析如图。根据牛顿定律有 1111sin a m f g m T =--θ

2222a m T g m =-

对滑轮而言,根据转动定律有 αJ r T r T =-12

由于绳子不可伸长、绳与轮之间无滑动,则 αr a a ==21

g

g

22

a 2

2

2111221cos sin r J m m g m g m g m a a ++--=

=∴θ

μθ

2

212

1211)cos (sin )cos sin 1(r J m m r J g m g m m T ++++++=θμθθμθ 2

212

2212)cos sin 1(r J m m r J g m g m m T +++++=

θμθ

3-7 如图3-32所示,定滑轮转动惯量为 J ,半径为 r ;物体的质量为 m ,用一细绳与劲度系数为 k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。当绳拉直、弹簧无伸长时使物体由静止开始下落。求:(1)物体下落的最大距离;(2) 物体的速度达最大值时的位置。 解:(1)机械能守恒。 设下落最大距离为h

mgh kh =2

2

1 k

mg

h 2=

(2)mgx J mv kx =++2

222

12121ω

12

2

22mgx kx v J m r ??

-??=??

+????

若速度达最大值,0=dx dv ,k

mg

x =

3-8 如图3-33所示,一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=o 时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=o 的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?

解:机械能守恒

22

2

12121kx J mg =+ω

根据几何关系 2

2

2

15.1)5.0(+=+x 1

28.3-?=s rad ω

3-9 如图3-34所示,一质量为m 、半径为R 的圆盘,可绕过O 点的水平轴在竖直面内转动。若盘从图中实线位置开始由静止下落,略去轴承的摩擦,求:(1)盘转到图中虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。

图3-32 习题3-7图

图3-33 习题3-8图

解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒

221ωJ mgR =

222

1

mR mR J += R

g

34=

ω 3

4Rg

R v c ==ω 1623

A Rg

v R ω==

27

3

y F mg mR mg ω=+=

方向向上

3-10 如图3-35所示,一质量为m 的质点以v 的速度作匀速直线运动。试证明:从直线外任意一点O 到质点的矢量r 在相同的时间内扫过的面积相同。

解:质点不受任何力作用才会作匀速直线运动,因而它对O 点的力矩也为零,即对O 点的角动量守恒 =θsin mvr 常量。另一方面,矢量r 在单位时间内扫过的面积:θsin 2

1

vr S =

?=常量。

3-11 如图3-36所示,质量m 的卫星开始时绕地球作半径为r 的圆周运动。由于某种原因卫星的运动方向突然改变了θ =30°角,而速率不变,此后卫星绕地球作椭圆运动。求(1)卫星绕地球作圆周运动时的速率v ;(2)卫星绕地球椭圆运动时,距地心的最远和最近距离1r 和2r 。

解:(1)由 r v m r mM G 22=,得 r

GM

v =

(2)卫星在运动过程中对地心的角动量守恒和机械能守恒:

221130cos mv r mv r mv r ?=?=?ο

22

2221212212121r mM G mv r mM G mv r mM G mv -=-=- 其中,1v 、2v 分别是卫星在远地点与近地点时的速率,可求出

r r 231=

,r r 2

1

2= 3-12 如本题图所示,质量为M 长为L 的均匀直杆可绕过端点o 的水平轴转动,一质

量为m 的质点以水平速度v 与静止杆的下端发生碰撞,如图示,若M =6m ,求质点与杆分别作完全弹性碰撞和完全非弹性碰撞后杆的角速度大小。 解:(1)质点与杆完全弹性碰撞,则能量守恒

2

1222

12121mv J mv +=ω 又因为角动量守恒 ωJ Lmv Lmv +=1

且 2

3

1ML J =,m M 6=

图3-34 习题3-9图

图3-35 习题3-10图

图3-36 习题3-11图

L

o M m v

习题3-7图

L

v 32=

∴ω (2) 完全非弹性碰撞,角动量守恒 ωJ Lmv Lmv +=2 又 L v ω=2 L

v

3=

∴ω

3-13如本题图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的转动惯量J 1=10.0kg·m 2,开始时B 轮静止,A 轮以n 1=600r/min 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到两轮的转速都等于n=200r/min 为止。求:(1)B 轮的转动惯量;(2)在啮合过程中损失的机械能。 解:(1)取两飞轮为系统,啮合过程中系统角动量守恒,即

22111)(ωωJ J J +=

112n πω= 222n πω=

所以B 轮的转动惯量为

212

2

120.20m kg J n n n J ?=-=

(2)啮合过程中系统机械能变化

J J J J E 421122211032.12

1)(21?-=-+=

?ωω

3-14 如图3-39所示,长为l 的轻杆(质量不计),两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,

转轴O 距两端分别为l 3

1和

l 3

2

。轻杆原来静止在竖直位置。今有一质量为m 的小球,以水平速度v 0与杆下端小球m 作对心碰撞,碰后以02

1

v 的速度返回,试求碰撞后轻杆所获得的角速度。 解:根据角动量守衡 有

02202

1322)3()32(32v ml m l m l l mv ?-?+=ωω l

v 230

=

ω

3-15 如图3-40所示,有一空心圆环可绕竖直轴OO ′自由转动,转动惯量为J 0 ,环的半径为R ,初始的角速度为ω0 ,今有一质量为m 的小球静止在环内A 点,由于微小扰动使小球向下滑动。问小球到达B 、C 点时,环的角速度与小球相对于环的速度各为多少? (假

习题3-13图

图3-39 习题3-14图

设环内壁光滑。)

解: (1)小球与圆环系统对竖直轴的角动量守恒,当小球滑至B 点时,有 ωω)(2000mR I I += ①

该系统在转动过程中,机械能守恒,设小球相对于圆环的速率为B v ,以B 点为重力势能零点,则有

222020021)(2121B mv mR I mgR I ++=+ωω ②

联立①、②两式,得

2

02

2002mR I R

I gR v B ++

(2)当小球滑至C 点时,∵0I I c = ∴0ωω=c

故由机械能守恒,有

221)2(c mv R mg =

∴ gR v c

2=

3-16一长为2L 的均匀细杆,一端靠墙上,另一端放在的水平地板上,如本题图所示,所有的摩擦均可略去不计,开始时细杆静止并与地板成θ0角,当松开细杆后,细杆开始滑下。问细杆脱离墙壁时,细杆与地面的夹角θ为多大?

解:如图,以初始细杆的质心为原点建立坐标系,则任意时刻质心坐标为

)cos (cos 0θθ-=l x

)sin (sin 0θθ-=l y (1) θωsin l dt

dx

v x -==

∴ dt

d l l dt dv a x x ω

θθωsin cos 2--== (2) 取初始位置的势能为零,则根据机械能守恒有 222

1

21ωC C J mv mgy +=

(3)

将式(1)代入(3)得 l

g 2)

sin (sin 302

θθω-=

(4)

θωcos 43l

g

dt d -= (5) 当细杆与墙壁脱离接触时,01==x ma F

0=∴x a (6)

图3-40 习题3-15图

将式(4)、(5)、(6)代入(2)解得

)sin 3

2

arcsin(0θθ=

3-17如本题图所示,A 、B 两个轮子的质量分别为m 1和m 2,半径分别为r 1和r 2。另有一细绳绕在两轮上,并按图所示连接。其中A 轮绕固定轴O 转动。试求:(1)B 轮下落时,其轮心的加速度;(2)细绳的拉力。

解:如图,取竖直向下为正方向。轮A 作定轴转动,设其

角加速度为A β,根据转动定理有

A r m Fr β2111

2

1

= 轮B 作平面运动,设质心加速度为C a ,角加

速度为B β,

根据牛顿定律有 C a m F g m 22=-

根据转动定理有 B r m Fr β22222

1

=

A 轮边缘一点加速度 A A r a β1=

B 轮边缘一点加速度 B B r a β2= 而且 B

C A a a a -= g m m m m a C 212123)(2++=

∴,g m m m m F 2

12

123+=

3-18如本题图所示,一长为l 的均质杆自水平放置的初始位置平动自由下落,落下h 距离

时与一竖直固定板的顶部发生完全弹性碰撞,杆上碰撞点在距质心C 为l /4处,求碰撞后瞬间的质心速率和杆的角速度。 解: 由机械能守恒 22

2

121ωJ mv mgh c +=

其中J 为绕质心转动惯量2

12

1ml J =

由动量定理 )2(gh m mv t F c --=?

由角动量定理 ωω2

121)4(ml J t l F ==?

联立解得 gh v c 271=, gh l

2724

22

习题3-18图

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动与绕定轴转动。 2、刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度与转向,就是代数量, 。角速度也可以用矢量表示, 。 ?角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示, 。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二. 转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量就是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理与转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I md =+

大学物理答案第3章

第三章 刚体力学 3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=, 又因为转动定理 dt d J J M ω β== dt d J C ωω=-∴ dt J C d t ??-=∴00ωωωω t J C -=0ln ωω t J C e -=0ωω 当021ωω= 时,2ln C J t =。 (2)角位移?=t dt 0ωθ? -=2ln 0 0C J t J C dt e ωC J 0 21ω= , 所以,此时间内转过的圈数为C J n πωπθ420== 。 3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力 解:由牛顿第二定律和转动定律得 ma T mg =- ααJ R Mg TR =-.sin 2 由平行轴定理 223MR J = 联立解得 g m M M m a 83sin 48+-=α mg m M M T 83)sin 43(++=α 3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动, 如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。 解:设平板的加速度为a 。该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。 m g

大学物理力学题库及答案(考试常考)

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ b ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0. (D) 2πR /T , 0. [ ] -12 O a p

大学物理刚体动力学

第二章 刚体力学基础 自学练习题 一、选择题 1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为 ( ) (A )3kN m -?; (B )29kN m ?; (C )29kN m -?; (D )3kN m ?。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+ =】 4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大; (C )角速度从小到大,角加速度从大到小;

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

大学物理刚体部分练习题

02刚体 一、选择题 1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动 (B) 转速必然不变 (C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ] 2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动。若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到 圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少 (C) 不会改变 (D) 如何变化,不能确定 [ ] 3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大 [ ] 4.0289:关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与轴的位置无关 (C )取决于刚体的质量、质量的空间分布和轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ] 5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所 受重力为P ,滑轮的角加速度为。若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将 (A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ] 6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角 速度为。然后她将两臂收回,使转动惯量减少为J 0。这时她转动的角速度变为: (A) (B) (C) (D) [ ] 7.0132:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于 杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2 ,起初杆静止。 为m v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非 弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速 ωαα0ω 31 31ω() 03/1ω03ω03ω31 O v 俯视图

第14章 (DEMO)

第十四章 波动 14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(?+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。 解:(1)O 处质点振动方程: y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程 y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置 x = L ± k 2πu / ω (k = 0 , 1, 2, 3……) 14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。 解:(1) y = 0.1 cos ( 4πt - 2πx / 10 ) = 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处 质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 ) = 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t t y v --=??= ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速 v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s 14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波 速为u 。设4 T t =时刻的波形如本题图所示,求该波的表 达式。 解:由图可看出,在t=0时,原点处质点位移 y 0=-A , 说明原点处质点的振动初相π?=0,因而波动方程为 ])(cos[πω++=u x t A y 14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。 解:由图可知: 原点处质点的振动初相2 0π ?- =; x 习题14-1图 习题14-3图

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理复习题答案力学

大学物理力学复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.下列运动中,加速度a 保持不变的是 ( D ) A .单摆的摆动 B .匀速率圆周运动 C .行星的椭圆轨道运动 D .抛体运动。 2.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( D ) A .匀加速直线运动,加速度沿x 轴正方向 B .匀加速直线运动,加速度沿x 轴负方向 C .变加速直线运动,加速度沿x 轴正方向 D .变加速直线运动,加速度沿x 轴负方向 3. 某物体作一维运动, 其运动规律为 dv kv t dt =-2, 式中k 为常数. 当t =0时, 初速为v 0,则该物体速度与时间的关系为 ( D ) A .v kt v =+2012 B .kt v v =-+2011 2 C .kt v v =-+201112 D .kt v v =+20 1112 4.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( C ) A .dv dt B .v R 2 C .dv v dt R -??????+?? ? ? ???????? 1242 D . dv v dt R +2 t a t dt dx v 301532 -=-==

5、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示 切向加速度,对下列表达式:(1) a dt dv =;(2) v dt dr =;(3) v dt ds =;(4) t a dt v d = ,下列判断正确的是 ( D ) A 、只有(1)(4)是对的; B 、只有(2)(4)是对的; C 、只有(2)是对的; D 、只有(3)是对的。 6.质点作圆周运动,如果知道其法向加速度越来越小,则质点的运动速度 ( A ) A 、 越来越小; B 、 越来越大; C 、 大小不变; D 、不能确定。 7、一质点在做圆周运动时,则有 ( C ) A 、切向加速度一定改变,法向加速度也改变; B 、切向加速度可能不变,法向加速度一定改变; C 、切向加速度可能不变,法向加速度不变; D 、切向加速度一定改变,法向加速度不变。 8.一质点在外力作用下运动时,下列说法哪个正确 ( D ) A .质点的动量改变时,质点的动能也一定改变 B .质点的动能不变时,质点的动量也一定不变 C .外力的功为零,外力的冲量也一定为零 D .外力的冲量为零,外力的功也一定为零 9、一段路面水平的公路,拐弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽 车不至于发生侧向打滑,汽车在该处的行使速率 ( C ) A .不得小于gR μ B .必须等于gR μ C .不得大于gR μ D .还应由气体的质量m 决定

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第10章 流体力学

第十章 流体力学 10-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得 )-(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=- )-(汞9.0221g P P ρ=- )-(-水9.05.21g P P ρ=- m g m g P P 9.22.20??=-∴水汞-ρρ 10-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的 容器中,其读数为 -25 m N 10 950.0??=p 。(1)求水银柱的高度h 。(2) 考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径 m 100.23-?=d ,接触角π=θ,水银的表面张力系数-1m N 49.0?=σ。 解:(1)gh p ρ=Θ cm g p h 3.716 .138.910950.05 ≈??==∴ρ (2)Pa d p p 4 3 500106.9100.1cos 49.021095.02 cos 2'?=??+?=+ =-πθσ 10-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q == 且 gh v v 22 12 2-=- s m m s m S Q v /107.6105.1606032 43 11?≈?= =∴- 2212235.42cm gh v Q v Q S =-== 10-4油箱内盛有水和石油,石油的密度为0.9g /cm3,水的厚度为1m ,油的厚度为 4m 。求水自箱底小孔流出的速度。 解:如图,流线上1、2点分别是油面和小孔处的两点。根据伯努利方程 水 习题10-1图 习题10-2

大学物理刚体部分知识点总结复习过程

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理和转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I m d =+

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论 12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的 数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

大学物理答案第4章

第四章 流体力学 4-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得 ) -(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=- )-(汞9.0221g P P ρ=- )-( -水9.05.21g P P ρ=- m g m g P P 9.22.20??=-∴水汞-ρρ 4-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的容器中,其读数为 -2 5 m N 10950.0??=p 。(1)求水银柱的高度h 。(2) 考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径 m 100.23-?=d ,接触角π=θ,水银的表面张力系数-1m N 49.0?=σ。 解:(1)gh p ρ= cm g p h 3.716 .138.910950.05≈??==∴ρ (2)Pa d p p 43 500106.9100.1cos 49.021095.02 cos 2'?=??+?=+ =-π θσ 4-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q == 且 gh v v 22 12 2-=- s m m s m S Q v /107.6105.1606032 43 11?≈?= =∴- 2212235.42cm gh v Q v Q S =-== 4-4油箱内盛有水和石油,石油的密度为0.9g /cm 3,水的厚度为1m ,油的厚度为4m 。 求水自箱底小孔流出的速度。 解:如图,流线上1、2点分别是油面和小孔处的两点。根据伯努利方程 习题4-2图

大学物理刚体部分知识点总结上课讲义

大学物理刚体部分知 识点总结

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。

?传动比。 二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量 J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布

质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素: (1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 刚体转轴位置转动惯量J 细棒(质量为m,长为l)过中心与棒垂直212 ml 细棒(质量为m,长为l)过一点与棒垂直23 ml 细环(质量为m,半径为 R)过中心对称轴与环面垂直2 mR 细环(质量为m,半径为 R)直径22 mR 圆盘(质量为m,半径为 R)过中心与盘面垂直22 mR 圆盘(质量为m,半径为直径24 mR

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第9章 电磁感应

第9章 电磁感应 9-1在通有电流I=5A 的长直导线近旁有一导线ab ,长l =20cm ,离长直导线距离d=10cm (如图)。当它沿平行于长直导线的方向以v =10m/s 速率平移时,导线中的感应电动势多大?a 、b 哪端的电势高? 解:根据动生电动势的公式E =? ??L l B v d )( E 3ln 22030 10 0π μ=πμ= ? Iv x dx Iv V 57 101.13ln 210 510 4--?=π ???π= 方向沿x 轴负向,a 电势高。 9-2平均半径为12cm 的4×103匝线圈,在强度为0.5G 的地磁场中每秒钟旋转30周,线圈中可产生最大感应电动势为多大?如何旋转和转到何时,才有这样大的电动势? 解:t NBS ω=?cos ,电动势的大小为 E t NBS dt d ωω=? = sin E max n r NB ππ=22 V 7.1302)1012(105.0104224 3 =?π???π????=-- 9-3如图所示,长直导线中通有电流I=5A 时,另一矩形线圈共1.0×103匝,a=10cm ,长L=20cm ,以v =2m/s 的速率向右平动,求当d=10cm 时线圈中的感应电动势。 解:10 10 ln 2102010 10 0+πμ=+πμ= ?? +x IL N x dx IL N x 电动势的大小为E dt d ? = dt dx x IL N 10120+πμ= 10 20+πμ=x v IL N E x=d=10= V 37 3 102) 1010(22 5104100.1--?=+π???π?? 9-4若上题中线圈不动,而长导线中,通有交流电i =5sin100πt A ,线圈内的感生电动势将多大? 解:2ln 2102010 1010 0π μ=+πμ= ?? +iL N x dx iL N v x o

相关文档
最新文档