代数和几何相结合

代数和几何相结合
代数和几何相结合

代数和几何相结合

图形的认识,图形与证明,图形的变换,图形与坐标的设计有效变化空间与图形,这部分内容原来有四条线索:图形的认识,图形与证明,图形的变换,图形与坐标。

课程标准修订之后,在这个结构上也略有一定的变化,是三条线索,一个是叫图形的性质,一个是图形与证明,没有图形与证明,一个是图形与变换图形与坐标。第一个问题,在初中阶段,研究的图形有哪些

首先要整体把握要研究的对象,可能从这样几个角度来做一个划分,实际上是做一个分类,大家看可能是对所要认识的对象能够更清楚一些,第一个实际上对分类就是从为纬度上,一维图形,二维图形和三维图形,在第三学段这三维图形都包括了,比如点、线段、直线,这是一维图形,二维图形说就是三角形,四边形,三维图形,因为在初中阶段,虽然不研究立体几何,但实际上还是要初步的了解一些最基本的三维图形整体对的一种把握和认识,比如说柱体,包括球,包括一些锥,尤其在视图这个内容里边,可能还是要初步的了解这些图形,这是一个划分的纬度,从的维数上,一维、二维、三维。

另外还有一个,就是认识这些图形的角度,是直线形还是曲线形。角就是直线形的图形,还有一类曲线形,包括二维和三维的,比如说圆,球,包括锥体,曲线形,这是另外一个将图形划分类别的这样一个角度。还有一个角度,还可以把研究的图形分成基本图形和组合图形,那说基本图形,像这种三角形,四边形,三角形,可能是最基本的图形。

在研究图形的性质,从总的来讲是两类,一类是一个图形之间的,它的对象就是研究这个图形自身的之间的关系,另外一个就是研究图象间的,之间相互的关系。全等是研究很重要的对象,包括相似的关系,另外还有对称性等等的,这些都是在明确了对象之后,进一步要展开几何各种学习里边很重要的内容。

图形与几何里有一块内容是新增加进来的, 就是视图。视图也是认为培养学生空间观念很重要的载体,从刚才说对图形的认识这个角度怎么样看待对视图这块内容的理解。在认识视图的时候,支撑着视图最重要的一件事情就是投影,就是用投影来观察理解一个空间的图形,从整体到局部,然后从局部回到整体这样的一个支撑,数学上称之为投影。中心投影,平行投影,这些在数学里都是挺要紧的,比如说通常所说的中心投影,将来会是摄影的基础,平行投影是会涉及到几何的会更广泛一点,所以这个是通过视图来支撑着对这样一个关系的认识。同时又是空间想象力,或者几何直观能力,或者空间观念的一个重要的载体。

要研究的对象明确了,要研究什么也明确了,接下来就是如何来研究。其实几何不等于证明,但是演绎推理,当然在集合内容的研究过程当中,仍然也是比较重要的一个方法,实际上就是综合,综合几何的这种方法,或者说原来这种欧式几何演绎证明从公理出发,现在把它叫做基本事实出发,经过以三段论为主的方法,展开对图形性质的证明。还有一种方法,就是用变换的手段来认识图形,有平移,轴对称,还有旋转。

另外,就是认识图形的办法,用坐标,通过对点的刻划,进一步对图形的位置,包括它的其一些属性的刻划,当然这个仅仅是一个初步,到了高中还会继续学习,因此概括来讲,认识图形基本方法,一个是演绎的方法,一个是运动变换的方法,还有一个就是运用坐标的,有序数对刻划的三种方法。当然,在这三种方法里面,在初中阶段,在不同的内容里面,各有

侧重。

刚才介绍了在初中阶段认识图形的几个不同的,各有特点的方法,第一种方法,就叫综合几何的方法,常常称之为欧式几何的方法,简单的说,就是从大家公认的定义,公理,和都承认的事实出发,三段论的演绎方式,看能推导出什么,就承认什么,这是研究几何的一种思路,欧式几何,无论是平面的,还是空间的,就按这个思路展开,这是一个基本的办法。

第二,是变换,通常叫变换几何。变换几何的内容非常丰富,比如说钢体变换,哪些东西变,哪些东西不变;比如说说放射变换,哪些东西变,哪些东西不变,通常所说的轴对称,说的旋转对称,通常所说的平移,都是属于钢体运动的范畴。另外还有,通常所说的相似,它就是所谓放大和缩小,就是属于摄影几何,摄影变换的范畴,所以,在标准中强调用变换的角度,用运动的角度来看待图形,个人觉得,是几何课程的一次重大的突破,相信会沿着这样一个角度,不断的强化。因为从高中的课程和大学的课程以及数学研究的角度来看,欧式几何作为锻炼人思维是一个载体,但是在后面的学习中,它会不断的被削弱。

第三,就是用所谓坐标来研究图形。实际上数学里,经常说是简易几何,建立坐标系,各种不同的建立方法,实际上说用坐标,它是搭建了一个联系几何和代数的一个平台,解析几何只是研究圆锥曲线的一个平台,还有其的平台,会搭建起来,都依赖于坐标系的选择。第一点,几何不等于欧式几何,研究几何的方法不等同于欧式几何的方法,所以不能一谈几何,就反应出欧式几何,这显得有点狭隘了,建议老师,应该更全面的来认识对于图形的研究,之所以要把研究图形的方法当做一个重点来强调,就是希望老师理解有不同的手段去研究图形的内在的性质。第二点,让图形动起来,是理解图形的一个重要的渠道,它会把复杂的问题变简单,它会把抽象的问题变具体,通常所说的几何直观的能力,用最通俗的语言,就是看图想事,通过图形来思考问题。这就是几何直观的基础,老师要认识和理解变换给带来的好处,它不仅仅是一个知识,而且是揭示图形的一个重要的手段。相信将来的课程,在这个方向上,还会发生变化。

第三个角度,就是要把代数和几何统一起来,而最重要的桥梁之一,是直角坐标系,到高中还会建立向量几何和立体几何。图形与几何某种意义上说,一个是强调研究的对象,一个是强调研究的方法,因为几何已经不是它从所谓希腊文词汇反应过来的一个度量,它赋予一个内涵是方法的意思,而多样性的方法,是这次标准的研制和修改所遵循的一个基点。第一件事情,几何不等于欧式几何,是研究几何的方法是多样的,随着知识的不断的增长,研究图形的办法会不断的丰富,第二件事,就是重视运动,重视变换,让图形动起来,让能从图形中挖掘出更多对有好处的东西,这是强调第三个角度的一个基点。

在这个过程当中,要特别关注学生的空间观念的形成,包括几何直观能力的培养,还有,既要培养核心推理能力,也要培养演绎推理能力,也就是所谓的推理能力的培养,在几何这部分内容里面的一个具体的落实。

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。如图所示,若AM平分∠BAC,则 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这 条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

一、高等代数与解析几何之间的关系

利用几何直观理解高等代数中抽象的定义和定理 一、高等代数与解析几何的关系 代数为几何的发展提供了研究方法,几何为代数提供直观背景。 解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。 “如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。” --------拉格朗日 二、目前将高等代数与解析几何合并开课的大学 中国科大: 陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011. 南开大学: 孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007. 华东师大: 陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008. 华中师大: 樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004. 同济大学: 高等代数与解析几何同济大学应用数学系高等教育出版社 (2005-05出版) 兰州大学,广西大学,西南科技大学,成都理工大学 三、高等代数的特点 1、逻辑推理的严密性; 2、研究方法的公理性; 3、代数系统的结构性。 四、高等代数一些概念的引入 对于刚上大学的一年级新生, 大多数难以适应高等代数的抽象概念的引入、推导 和应用。通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

华南理工大学 线性代数与解析几何 习题答案 (6)

《线性代数与解析几何》勘误表 第1章:行列式 p.13, 例题 4.1: 解的第二个等号后,应加一个负号。 p.15,第三行(等号后):去掉; p.17, 第7-8行: (t=1,2,…, j-1,j+1,…,n) p.19,倒数第4-5行:假设对于n-1阶范德蒙行列式V_{n-1}结论成立,… p .20,第2行: D_{n-1}改为V_{n-1} p.20, 第6行,定理5.2中: 去掉“若”字 p.21, 倒数第3行: …展开代入而得, p.24,倒数第1行: (-1)的指数应为“1+2+…+k +1+2+…+k ” 习题1: 第1题(2)答案有误:应为sin2x-cosx^2. 第6题(3)答案有误:(3) n(3n-1)/2, 当n=4k 或者n=4k+3时为偶数,当n=4k+1或4k+2时为奇数. 第10题(4)(5)答案有误:(4)(-1)^{(n-2)(n-1)/2};(5)(-1)^{n-1}a_n 第11题(6)答案有误: ….,当a\neq 0时,D=(-1)^{n(n-1)/2}a^{n-2}[a^2-(n-1)x^2] p.26, 第12题(2):改为: (33333) 3222 222111 111=+++++++++y x x z z y y x x z z y y x x z z y (3): …= ;)1](2 )2)(1([1--+-+ n a n n a (4): …=.0 ∑=-n i i n i b a p.27, 第14题(4):(此题较难,可以去掉!) 答案有误,应为: n x n )2 )(1( n +=,当yz x 42=。 第15题答案有误:为60(11-2) p .27, 第16题:去掉条件“若x_1+x_2+x_3+x_4=1,则” 第二章:矩阵 p.32, 第7行: 称其为n 阶对角矩阵,….. p.35, 第5-6行: b_21和b_12互换位置(两处) p.36, 第7行: 去掉“设 A ,B ,C 分别为….矩阵,”在第10行后增加: 当然,这里假定了矩阵运算是有意义的. p.39, 第4行: 就得到一个2*2的分块矩阵。 p.46,第2行: 去掉 ′(3个) p .46,倒数 4-6行:… 为满秩的(或非奇异的,非退化的),…为降秩的(或奇异的,退化的),… p.47,倒数第6-7行: 去掉 “,n α”(3处 ),另: 本页的 ”T j T i αα,”均改

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

代数和几何相结合

代数和几何相结合 图形的认识,图形与证明,图形的变换,图形与坐标的设计有效变化空间与图形,这部分内容原来有四条线索:图形的认识,图形与证明,图形的变换,图形与坐标。 课程标准修订之后,在这个结构上也略有一定的变化,是三条线索,一个是叫图形的性质,一个是图形与证明,没有图形与证明,一个是图形与变换图形与坐标。第一个问题,在初中阶段,研究的图形有哪些 首先要整体把握要研究的对象,可能从这样几个角度来做一个划分,实际上是做一个分类,大家看可能是对所要认识的对象能够更清楚一些,第一个实际上对分类就是从为纬度上,一维图形,二维图形和三维图形,在第三学段这三维图形都包括了,比如点、线段、直线,这是一维图形,二维图形说就是三角形,四边形,三维图形,因为在初中阶段,虽然不研究立体几何,但实际上还是要初步的了解一些最基本的三维图形整体对的一种把握和认识,比如说柱体,包括球,包括一些锥,尤其在视图这个内容里边,可能还是要初步的了解这些图形,这是一个划分的纬度,从的维数上,一维、二维、三维。 另外还有一个,就是认识这些图形的角度,是直线形还是曲线形。角就是直线形的图形,还有一类曲线形,包括二维和三维的,比如说圆,球,包括锥体,曲线形,这是另外一个将图形划分类别的这样一个角度。还有一个角度,还可以把研究的图形分成基本图形和组合图形,那说基本图形,像这种三角形,四边形,三角形,可能是最基本的图形。 在研究图形的性质,从总的来讲是两类,一类是一个图形之间的,它的对象就是研究这个图形自身的之间的关系,另外一个就是研究图象间的,之间相互的关系。全等是研究很重要的对象,包括相似的关系,另外还有对称性等等的,这些都是在明确了对象之后,进一步要展开几何各种学习里边很重要的内容。 图形与几何里有一块内容是新增加进来的, 就是视图。视图也是认为培养学生空间观念很重要的载体,从刚才说对图形的认识这个角度怎么样看待对视图这块内容的理解。在认识视图的时候,支撑着视图最重要的一件事情就是投影,就是用投影来观察理解一个空间的图形,从整体到局部,然后从局部回到整体这样的一个支撑,数学上称之为投影。中心投影,平行投影,这些在数学里都是挺要紧的,比如说通常所说的中心投影,将来会是摄影的基础,平行投影是会涉及到几何的会更广泛一点,所以这个是通过视图来支撑着对这样一个关系的认识。同时又是空间想象力,或者几何直观能力,或者空间观念的一个重要的载体。 要研究的对象明确了,要研究什么也明确了,接下来就是如何来研究。其实几何不等于证明,但是演绎推理,当然在集合内容的研究过程当中,仍然也是比较重要的一个方法,实际上就是综合,综合几何的这种方法,或者说原来这种欧式几何演绎证明从公理出发,现在把它叫做基本事实出发,经过以三段论为主的方法,展开对图形性质的证明。还有一种方法,就是用变换的手段来认识图形,有平移,轴对称,还有旋转。 另外,就是认识图形的办法,用坐标,通过对点的刻划,进一步对图形的位置,包括它的其一些属性的刻划,当然这个仅仅是一个初步,到了高中还会继续学习,因此概括来讲,认识图形基本方法,一个是演绎的方法,一个是运动变换的方法,还有一个就是运用坐标的,有序数对刻划的三种方法。当然,在这三种方法里面,在初中阶段,在不同的内容里面,各有

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA. 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC. 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE. 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知 ∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ. 证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ. 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

九年级数学代数和几何的综合专题

精典专题七代数与几何的综合问题 一、探究与证明 【例1】【问题情境】 如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM. 【探究展示】 (1)证明:AM=AD+MC; (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由. 【拓展延伸】 (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

二、探究与计算 【例2】(盐城)(12分)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC ,点P 为边BC 上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D 、E ,过点C 作CF⊥AB,垂足为F .求证:PD+PE=CF . 小军的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF . 小俊的证明思路是:如图2,过点P 作PG⊥CF,垂足为G ,可以证得:PD=GF ,PE=CG ,则PD+PE=CF . 【变式探究】如图3,当点P 在BC 延长线上时,其余条件不变,求证:PD ﹣PE=CF ; 请运用上述解答中所积累的经验和方法完成下列两题: 【结论运用】如图4,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG⊥BE、PH⊥BC,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值; 三、坐标与几何 例3.如图,抛物线y=2 1(x-3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D . (1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD ,求证:∠AEO=∠ADC ; (3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知 ∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

高中数学平面几何知识点知识清单

高中课程复习专题 ——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。 围成多面体的各个 多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭 几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1棱柱的结构特征 1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻 两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2棱柱的分类 瓦他棱柱… ②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底 向 A-'K'tf'AlkJtt 囱向为和序 ------------------ ? ------------- - ----------------- ■ ------------------ A 长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 1.4长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么: 2 2 2 cos a + cos 3 + COS 丫= 1 sin 2 a + sin 3 + siny =2 ⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为 a 3 Y 则: .咬llLI 昭|1.呂出 *正棱柱 够一 ;I ;从 图1-2长方体 2 COs a 2 2 + cos 3 + COSY = 2 sin 2 a 2 2 + sin 3 + sinY =1 E' A 图图1棱柱棱柱

高中数学竞赛平面几何定理证明大全知识讲解

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构 成一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP 的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。 如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、 F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF=FD =FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。

几何与代数相结合的综合题型的复习要点和复

几何与代数相结合的综合题型的复习要点和复习策略 初中数学传统上分为几何和代数(以下简称“几代”)两部分,于是几、代的有机结合也就成为初中数学的一个落脚点,因此几代相结合的综合题型也就理所当然成为中考的重点、难点与焦点。几代相结合的综合题常以“起点低、入口宽、步步高”的特点呈现,并以“思想方法立意”和“能力立意”为创新点。从某一角度上讲可分为“几何背景代数解法”和“代数背景几何解法”两大类。下面就谈谈几代相结合的综合题型的复习要点和复习策略: 一、几代综合题的复习要点 1、基础知识的复习仍是几代综合题复习的前提与基础,否则几代综合题的复习就成为无本之木,无源之水 几代综合题是基于几何、代数基本知识之上,它的解法其实就是对各基础知识的综合、灵活的运用,因此全面复习好几何与代数基础知识,对于几代综合题的复习至关重要。其包含的基础知识主要有: 代数基础知识:数的运算、式的变形、方程、不等式的解法、函数的图象与性质。 几何基础知识:几何变换、平行四边形的性质与判定、相似三角形的性质与判定(含全等三角形)、 勾股定理与三角函数、圆中的位置关系及其判定。 【例1】已知,在Rt △OAB 中,∠OAB =90°,∠BOA =30°,AB =2. 若以O 为坐标原点,OA 所在直线为x 轴,建立如图1所示的平面直角坐标系,点B 在第一象限内. 将Rt △OAB 沿OB 折叠后,点A 落在点C 处. (1)直接写出A 的坐标; (2)若抛物线bx ax y +=2 (0≠a )经过C 、A 两点, 求此抛物线的解析式; (3)若(2)中抛物线的对称轴与OB 交于点D ,点P 为线段 DB 上一点,过P 作y 轴的平行线,交抛物线于点M. 问:是否存 在这样的点P ,使得四边形CDPM . 简析: (1)利用特殊三角形的性质直接写出A 的坐标是解直角三角形的最基本的知识。 (2)通过解直角三角形求点C 的坐标,并利用待定系数法求解析式是确定解析式的基本方法。 (3) 在作好图形的基础上,探索要使四边形CDPM 为等腰梯形,只需CM=DP ,从而转化为方程问题并求解,这也是对于等腰梯形判定的最低要求。 由此可见,基础知识的复习是解题的基础,实不可忽视。 2、数学思想方法及其灵活运用永远是数学复习的重点内容,也是几代综合题解法的关键所在 对于初中阶段常见的数学思想、方法应熟练地掌握,并灵活地运用。如:数形结合、分类讨论、运动变化、方程、不等式、函数、转化化归等数学思想;待定系数法、面积法、配方法、图象法、公式法、反证法等数学方法。 【例2】如图2—①,已知直线128 :33 l y x = +与直线2:216l y x =-+相交于点C ,1l 、2l 分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线1l 、2l 上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求点B 、点D 的坐标; (2)求ABC △的面积; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位 长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与 ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出 相应的t 的取值范围. 简析:(1)(2)略 (3)解题的关键是利用数形结合,结合运动变化思想,通过分类讨论、把问题转化为①当03t <≤时,(如图2—②)、②当38t ≤<时,(如图2—③)、③ 当812t ≤≤时,(如图2—④)等三种情况并加于解决,其中还用到了方程思想、图象法等数学思想方法。 (图2—①)

高中数学平面解析几何知识点梳理

平面解析几何 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线 重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α ,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式: )(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式: 0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为 00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111: l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111 =++C y B x A l ,0:2222=++C y B x A l ,有 ① 122112212 1//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),2 2122121)()(y y x x P P -+-=.x 轴上两点间距离: A B x x AB -=. 线段21P P 的中点是),(0 0y x M ,则??? ???? +=+=22 2 10210y y y x x x . 6.点到直线的距离公式:

高中数学平面解析几何初步经典例题

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

几何代数结合综合题

几何与代数相结合的综合问题 【考点透视】 几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等. 综观全国各地的中考试题,90%左右的压轴题都是几何与代数相结合的综合题.就江苏省十三个大市来说,有十一个大市最后的压轴题都是这样的题型,占分比例都很高.编制这样的综合题,不但考查学生数学基础知识和灵活运用知识的能力;考查学生对数学知识迁移整合能力;考查学生学会将大题分解为小题,逐个击破的能力;考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力;还考查学生知识网络化、创新意识和实践能力. 几何与代数综合题在中考试题中还有特别重要的功能,它关系到整个试卷的区分度;有利于高一级学校选拔人才. [典型例题] 例1.已知关于x的一元二次方程x2-(2k+1)x+4k-3=0 (1)求证:无论k取什么实数值,该方程总有两个不相等的实数根; (2)当Rt△ABC的斜边长a=31,且两条直角边的长b和c恰好是这个方程的两个 根时,求△ABC的周长. (2003年江苏省连云港市中考试题)分析:(1)由一元二次方程根的判别式得△=(2k-3)2+4>0即可.(2)由一元二次方程根与系数关系,再由直角三角形的勾股定理建立关于k的一元二次方程,从而求出三角形的另两边之和. 解:(1)证明:△=[-(2k+1)] 2-4×1×(4k-3)=4k2-12k+13=(2k-3)2+4 ∵无论k取什么实数值,总有(2k-3)2+4>0,即△>0,∴无论k取什么实数值时,该方程总有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得b+c=2k+1,bc=4k-3.又在Rt△ABC中, ()231,即(2k+1)2-2(4k-3)=31,整理得,得根据勾股定理,得b2+c2=a2,∴(b+c)2-2bc= k2-k-6=0,解这个方程,得k=-2或k=3.当k=-2时,b+c=-4+1=-3<0,不符合题意,舍去故k=3,此时b+c=2×3+1=7,故△ABC的周长为7+31. 说明:本题一方面考查学生一元二次方程根的判别式、根与系数关系及直角三角形中的勾股定理重要内容;另一方面又考查学生一元二次方程解出的两根 是否都符合题意,培养学生严谨解题的习惯. 为圆心,OB为半径的圆与AB交于点E,与AC切于点D,若AD=23, 且AE、AB的长是关于x的方程x2-8x+k=0的两个实数根 (1)求⊙O的半径; 图13-1 (2)求CD的长. (2003年江苏省宿迁市中考试题)分析:(1)由圆的切割线定理、方程的根与系数关系易求⊙O的半径.(2)由切线长相

相关文档
最新文档