自回归模型拟合PDF

自回归模型拟合PDF
自回归模型拟合PDF

逻辑回归模型分析见解

1.逻辑回归模型 1.1逻辑回归模型 考虑具有p个独立变量的向量,设条件概率为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4) 这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为00。对odds取对数,即得到线性函数, (1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为设为给定条件下

得到的概率。在同样条件下得到的条件概率为。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 (1.9) ,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森(Newton-Raphson)方法进行迭代求解。 1.3牛顿-拉斐森迭代法 对求二阶偏导数,即Hessian矩阵为 (1.10) 如果写成矩阵形式,以H表示Hessian矩阵,X表示 (1.11) 令

多元线性回归与曲线拟合――

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) (医学统计之星:张文彤) 上次更新日期: 10.1 Linear过程 10.1.1 简单操作入门 10.1.1.1 界面详解 10.1.1.2 输出结果解释 10.1.2 复杂实例操作 10.1.2.1 分析实例 10.1.2.2 结果解释 10.2 Curve Estimation过程 10.2.1 界面详解 10.2.2 实例操作 10.3 Binary Logistic过程 10.3.1 界面详解与实例 10.3.2 结果解释 10.3.3 模型的进一步优化与简单诊断 10.3.3.1 模型的进一步优化 10.3.3.2 模型的简单诊断 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。

例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下: 除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

完整版逻辑回归模型分析见解

1.逻辑回归模型 1.1 逻辑回归模型 考虑具有p个独立变量的向量■',设条件概率卩;上二?丨门二广为根据观测 量相对于某事件发生的概率。逻辑回归模型可表示为 :「( 1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中-" I' 1 c' ■-..【?。如果含有名义变量,则将其变为dummy 变量。一个具有k个取值的名义变量,将变为k-1个dummy 变量。这样,有 — I ( 1.2) 这个比值称为事件的发生比(the odds of experie ncing an event), 00 。对odds取对数,即得到线性函数, h ■ y —: j島一,厲-5 —+兀匸护9一 Q讣 1 p 上】(1.5) 假设有n个观测样本,观测值分别为设' 」I ■■-为给定条件下 (1.3) 简称为odds。因为定义不发生事件的条件概率为 那么,事件发生与事件不发生的概率之比为 1.2极大似然函数

得到I 的概率。在同样条件下得到-- 的条件概率为丨:一"。 得到一个观测值的概率为 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估 譏备心)( 」' (1.10 是, ◎ )*(1 ¥严(1.6 ) i-l 计。于是,最大似然估计的关键就是求出参数:- ,使上式取得最大值。 对上述函数求对数 — (1.8) 上式称为对数似然函数。为了估计能使亠取得最大的参数的值。 对此函数求导,得到p+1个似然方程。 Ei 片 n:—E L尹—心肿一时 (1.9 ) ^叶切迄尸,j=1,2,..,p. 上式称为似然方程。为了解上述非线性方程,应用牛顿-拉斐森 进行迭代求解。 (Newto n-Raphs on) 方法1.3 牛顿-拉斐森迭代法 对-八?求二阶偏导数,即Hessian矩阵为 如果写成矩阵形式,以H表示Hessian矩阵,X表示 (1.11 )

数据拟合——线性回归

数据拟合——线性回归法 【概述】 MATLAB支持用户对数据用线性回归方法linear regression建立模型。模型是指自变量和因变量之间的关系。线性回归方法建立的模型的系数是线性的。最常用的线性回归方法是最小二乘拟合,可进行线性拟合和多项式拟合。 1.线性相关性分析Linear Correlation Analysis 在对两组测量数据建立关系模型前,最好对这些数据之间的关系作一个判断——相关性分析,看二者是否真的存在线性关系。 这里,我们只介绍相关性系数①Correlation coefficient的计算。简单的说,相关性系数是绝对值在0-1之间的数,其绝对值越接近1,表明数据之间存在线性关系的可能性越大。反之,数据越接近0,表明数据之间不太可能存在线性关系。 ?MATLAB语法:R = corrcoef(x,y) 计算数据x和y的相关系数矩阵R 示例1: x = [1 2 3 4 5 6 7 8 9 10]; y = [1 4 9 16 25 36 49 64 81 100]; R = corrceof(x,y) R = 1.0000 0.9746 此数据表明两组数据具有很强的线性关系 0.9746 1.0000 示例2: x = [1 2 3 4 5 6 7 8 9 10]; y = [0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570 0.9894 0.4121 -0.5440]; R = corrceof(x,y) R = 1.0000 -0.1705 此数据表明两组数据不存在线性关系 -0.1705 1.0000 2.评价数据拟合的优劣——残差计算 残差被定义为实际测量数据与利用模型拟合(预测)的数据之差。合适的模型计算的残差应该接近独立的随机误差。如果计算得到的残差具有某种特殊的模式,那么模型就不合适。 3.利用MATLAB函数进行数据拟合 ?多项式模型 MATLAB提供了2个用于多项式拟合的函数polyfit和polyval。 ?MATLAB语法:p = polyfit(x,y,n) 通过对数据x和y进行n阶多项式②拟合(基于最小二乘法),计算n阶多项式系数p ?MATLAB语法:y = polyval(p,x) 计算以p为系数的多项式,在x处的函数值y 示例3:

SPSS操作方法:逻辑回归

SPSS操作方法之五 SPSS操作方法:逻辑回归 例证8.3: 在一次关于公共交通的社会调查中,一个调查项目是“乘公交车上下班,还是骑自行车上下班”因变量Y=1表示乘车,Y=0表示骑车。自变量X1表示年龄;X2表示表示月收入;X3表示性别,取1时为男性,取0时为女性。调查对象为工薪族群体。数据见下表:试建立Y与自变量之间的Logistic回归。 逻辑回归SPSS操作方法的具体步骤: 1.选择Analyze→Regreessin→Binary Logistic,打开对话框如图1所示:

图1 主对话框Logistic回归。 2.选择因变量Y进入Dependent框内,将自变量选择进入Convariates框。也可以将不同的自变量组放在不同的块(block)中,可以分析不同的自变量组对因变量的贡献。 3.在Mothed框内选择自变量的筛选策略: Enter表示强行进入法;(本例选择) Forword和Bacword都表示逐步筛选策略;Forword 为自变量逐步进入,Bacword是自变量逐步剔出。Conditional ;LR; Wald分别表示不同的检验统计量,如Forword Wald表示自变量进入方程的依据是Wald统计量。 4.在Selection中选择一个变量作为条件变量,只有满足条件的变量数据才能参与回归分析。 5.单击Categorical打开Categorical对话框如图2所示:对定性变量的自变量选择参照类。常用的方法是Indicator,即以某个特定的类为参照类,Last表示以最大值对应的类为参照类(系统默认),First表示以最小值对应的类为参照类。选择后点击Continue按钮返回主对话框。(本例不作选择性) 图2 Categorical对话框 6.单击Option按钮,打开Option对话框如图3所示

回归模型拟合精度分析

应用回归分析例库封面

一、案例背景 新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究, -生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas 收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。 二、数据介绍 新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究, -生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas 收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。 三、分析过程 经过对26个模型中标准残差、复相关系数、PRESS和AIC的对比,发现以下模型最优。 表2 4个最优回归模型比较

F 统计量的概率值都为0, 说明每个回归方程中的自变量作为一个整体对因变量Y 的影响是显著的。为了确定最优模型,将T 统计量的概率值比较如下表3 1952—1971年4个最优模型中T 统计量的概率值 从表3可以看出,当显著性水平0.05α=时,只有第一个模型中所有的P 值都满足 Pr(>|t|)<0.05,说明这个模型中的每个自变量对因变量的影响显著。综合以上因素,我 们认为Y 关于因素123,,X X X 的回归模型是最优的,即1952年—1971年这20年间,影响财政收入的主要因素是农业增加值、工业增加值和建筑业增加值。4.2.2 1972—2004年最优回归模型 过程同上。经过对比,发现以下4个模型最优。 表4 4个最优模型比较

线性回归模型

线性回归模型 1.回归分析 回归分析研究的主要对象是客观事物变量之间的统计关系,它是建立在对客观事物进行大量试验和观察的基础上,用来寻找隐藏在那些看上去是不确定的现象中的统计规律性的方法。回归分析方法是通过建立模型研究变量间相互关系的密切程度、结构状态及进行模型预测的一种有效工具。 2.回归模型的一般形式 如果变量x_1,x_2,…,x_p与随机变量y之间存在着相关关系,通常就意味着每当x_1,x_2,…,x_p取定值后,y便有相应的概率分布与之对应。随机变量y与相关变量x_1,x_2,…,x_p之间的概率模型为 y = f(x_1, x_2,…,x_p) + ε(1) f(x_1, x_2,…,x_p)为变量x_1,x_2,…,x_p的确定性关系,ε为随机误差项。由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。 当概率模型(1)式中回归函数为线性函数时,即有 y = beta_0 + beta_1*x_1 + beta_2*x_2 + …+ beta_p*x_p +ε (2) 其中,beta_0,…,beta_p为未知参数,常称它们为回归系数。当变量x个数为1时,为简单线性回归模型,当变量x个数大于1时,为多元线性回归模型。 3.回归建模的过程 在实际问题的回归分析中,模型的建立和分析有几个重要的阶段,以经济模型的建立为例:

(1)根据研究的目的设置指标变量 回归分析模型主要是揭示事物间相关变量的数量关系。首先要根据所研究问题的目的设置因变量y,然后再选取与y有关的一些变量作为自变量。通常情况下,我们希望因变量与自变量之间具有因果关系。尤其是在研究某种经济活动或经济现象时,必须根据具体的经济现象的研究目的,利用经济学理论,从定性角度来确定某种经济问题中各因素之间的因果关系。(2)收集、整理统计数据 回归模型的建立是基于回归变量的样本统计数据。当确定好回归模型的变量之后,就要对这些变量收集、整理统计数据。数据的收集是建立经济问题回归模型的重要一环,是一项基础性工作,样本数据的质量如何,对回归模型的水平有至关重要的影响。 (3)确定理论回归模型的数学形式 当收集到所设置的变量的数据之后,就要确定适当的数学形式来描述这些变量之间的关系。绘制变量y_i与x_i(i = 1,2,…,n)的样本散点图是选择数学模型形式的重要手段。一般我们把(x_i,y_i)所对应的点在坐标系上画出来,观察散点图的分布状况。如果n个样本点大致分布在一条直线的周围,可考虑用线性回归模型去拟合这条直线。 (4)模型参数的估计 回归理论模型确定之后,利用收集、整理的样本数据对模型的未知参数给出估计是回归分析的重要内容。未知参数的估计方法最常用的是普通最小二乘法。普通最小二乘法通过最小化模型的残差平方和而得到参数的估计值。即 Min RSS = ∑(y_i – hat(y_i))^2 = 其中,hat(y_i)为因变量估计值,hat(beta_i)为参数估计值。 (5)模型的检验与修改 当模型的未知参数估计出来后,就初步建立了一个回归模型。建立回归模型的目的是应用它来研究经济问题,但如果直接用这个模型去做预测、控制和分析,是不够慎重的。因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。统计检验通常是对回归方程的显著性检验,以及回归系数的显著性检验,还有拟合优度的检验,随机误差项的序列相关检验,异方差性检验,解释变量的多重共线性检验等。 如果一个回归模型没有通过某种统计检验,或者通过了统计检验而没有合理的经济意义,就需要对回归模型进行修改。 (6)回归模型的运用 当一个经济问题的回归模型通过了各种统计检验,且具有合理的经济意义时,就可以运用这个模型来进一步研究经济问题。例如,经济变量的因素分析。应用回归模型对经济变量之间的关系作出了度量,从模型的回归系数可发现经济变量的结构性关系,给出相关评价的一些量化依据。 在回归模型的运用中,应将定性分析和定量分析有机结合。这是因为数理统计方法只是从事物的数量表面去研究问题,不涉及事物的规定性。单纯的表面上的数量关系是否反映事物的本质这本质究竟如何必须依靠专门学科的研究才能下定论。 Lasso 在多元线性回归中,当变量x_1,x_2,…,x_3之间有较强的线性相关性,即解释变量间出现严重的多重共线性。这种情况下,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘的效果变得很不理想。为了解决这一问题,可以采用子集选择、压缩估计或降维法,Lasso即为压缩估计的一种。Lasso可以将一些增加了模型复杂性但与模型无关的

多元线性回归拟合分析

楚雄师范学院 2012年数学建模竞赛 第一次实战训练(一)第一题论文 题目多元非线性回归拟合模型 姓名郜红霞杨环刘发稳 2012年8月20日

多元非线性回归拟合模型 摘要:本文推论了多元非线性数据拟合的通用数学模型,利用最小二乘法和极值原理,导出求解多元非线性回归方程的规范方程组。并用矩阵形式对规范方程组进行表述,在所表述的诸矩阵中,结构矩阵是其基础。用它可方便地转化出其他矩阵,这将大大简化程序的编制和规范方程组的解算。计算机根据输入数据自变量的个数和实验所作次数的多少,求解出相应的多元非线性回归方程及其评估方程质量的数据。 关键字:规范方程;非线性回归方程;最小二乘法;结构矩阵;极值原理;对称矩阵;数据分析;计算机拟合;矩阵形式自变量。

1 问题重述

要求:1.检验强影响点; 2.正态性检验; 3.相关性检验; 4.自变量的多重共线性检验; 5.残差的相关性分析,模型的合理分析。 x=(470 81 82 50 13.7 225)'。 6.预测 2 问题分析 先建立基础的多元线性回归方程,以初步确定输入变量与输出变量的关系,若预测效果不理想,则需要对方程进行进一步优化,考虑建立非线性回归方程模型或其他更优模型,反复进行判断和优化,最后得到较理想的预测方程。并用一定的评价标准对得出的预测方程进行判定,最后,用实验数据对模型预测的精度进行验证。 3 基本假设与符号说明

Q 残差平方和 E 拟合误差 ε 无偏估计值 2s 方差 R 复相关系数 SE 标准误差 4 模型建立 3.1 问题分析 3.2 模型建立 (1)我们先假设输入变量和输出变量之间的关系是线性函数关系,建立多元线性回归模型。 {) ,0(~ (2) ' '110'σεε βββN x x Y m m ++++= (2)为了在研究两个指定变量之间的相关关系的同时,控制可能对其产生影 响的其他变量,我们在研究任意两个输入变量的相互作用的判断中,运用了偏相关分析先对任意两个输入变量之间是否有交互作用进行判断。 设随机变量X 、Y 、Z 之间彼此存在着相关关系,为了研究X 和Y 之间的关系,就必须在假定Z 不变的条件下,计算和Y 的偏相关系数,记为z xy r .。 在考察多个变量时,i X (i =1,2...,p )之间的p-1阶偏相关关系可由如下的递推式定义: 2 ) 1)...(1)(1...(12.2 ) 1...(1 2.0) 1)...(1)(1...(12.0)1...(12.0)1)...(1)(1...(12.0)...1)(1...(12.011-+---+---+-+---= p i i ip p p p i i ip p ip p i i i p i i i r r r r r r 计算得出输出变量的相关性检验。 (3)我们建立部分多元非线性回归模型,来判断在Y 与i X 的模型中有交互

回归模型的残差分析

回归模型的残差分析 山东 胡大波 判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果。下面具体分析残差分析的途径及具体例子。 一、 残差分析的两种方法 1、差分析的基本方法是由回归方程作出残差图,通过观测残差图,以分析和发现观测数据中可能出现的错误以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。 2、可以进一步通过相关指数∑∑==--- =n i i n i i i y y y y R 1 2 1 2 ^ 2 )()(1来衡量回归模型的拟合效果,一般 规律是2 R 越大,残差平方和就越小,从而回归模型的拟合效果越好。 二、 典例分析: 例1、某运动员训练次数与运动成绩之间的数据关系如下: 试预测该运动员训练47次以及55次的成绩。 解答:(1)作出该运动员训练次数x 与成绩y 之间的散点图,如图1所示,由散点图可 知,它们之间具有线性相关关系。 (2)列表计算: 由上表可求得875.40,25.39==y x , 126568 1 2 =∑=i i x ,137318 1 2=∑=i i y ,

131808 1 =∑=i i i y x ,所以∑∑==---= 8 1 2 8 1 )() )((i i i i i x x y y x x β.0415.188 1 2 28 1≈--= ∑∑==i i i i i x x y x y x 00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^ -=x y (3)计算相关系数 将上述数据代入∑∑∑===---= 8 1 8 1 2 22 2 8 1 ) 8)(8(8i i i i i i i y y x x y x y x r 得992704.0=r ,查表可知 707.005.0=r ,而05.0r r >,故y 与x 之间存在显着的相关关系。 (4)残差分析: 作残差图如图2,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。 计算残差的方差得884113.02 =σ ,说明预报的精度较高。 (5)计算相关指数2 R 计算相关指数2 R =0.9855.说明该运动员的成绩的差异有98.55%是由训练次数引起的。 (6)做出预报 由上述分析可知,我们可用回归方程 .00302.00415.1^ -=x y 作为该运动员成绩的预报值。 将x =47和x =55分别代入该方程可得y =49和y =57, 故预测运动员训练47次和55次的成绩分别为49和57. 点评:一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; (2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等); (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +a ); (4)按一定规则估计回归方程中的参数(如最小二乘法); (5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。 例2、某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽取

Logistic回归模型

Logistic 回归模型 1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介 主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率 p 与那些因素有关。显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关 系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。于是Logit 变换被提出来: p p p Logit -=1ln )( (1) 其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便, 解决了上述面临的难题。另外从函数的变形可得如下等价的公式: X T X T T e e p X p p p Logit βββ+= ?=-=11ln )( (2) 模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率 )|1(X y P =就是模型要研究的对象。而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以 是定性变量也可以是定量变量,T k ),,,(10ββββ =。为此模型(2)可以表述成: k x k x k x k x k k e e p x x p p βββββββββ+++++++=?+++=- 1101 1011011ln (3) 显然p y E =)(,故上述模型表明) (1) (ln y E y E -是k x x x ,,,21 的线性函数。此时我们称满足上面条件 的回归方程为Logistic 线性回归。 Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。因此评价模型的拟合度的标准变为似然值而非离差平方和。 定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为 OR= k x k x e p p βββ+++=- 1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称 -2?ln ()L β 为估计值β?的拟合似然度,该值越小越好,如果模型完全拟合,则似然值?()L β为1,而拟合似然度达到最小,值为0。其中?()lnL β 表示β?的对数似然函数值。 定义3 记)?(β Var 为估计值β?的方差-协方差矩阵,2 1 )]?([)?(ββVar S =为β?的标准差矩阵,则称 k i S w ii i i ,,2,1,]?[ 2 ==β (5) 为i β?的Wald 统计量,在大样本时,i w 近似服从)1(2 χ分布,通过它实现对系数的显著性检验。

回归模型拟合精度分析-实用回归分析

应用回归例库封面

一、案例背景 自1978 年改革开放以来, 中国人均国内生产总值连续高速增长。研究表明: 截至2002 年, 25 年来中国人均国内生产总值的增长不是均衡的, 而是分阶段的。文章基于对25 年来中国人均国内生产总值、人均收入以及人均消费的关系的研究, 提出一个更为合适的分段模型 线性误差模型。同时, 给出该模型中参数的估计方法。 二、数据介绍 数据显示,改革开放30年来,随着社会制度的变迁,中国经济增长趋势是不均衡的,而是分阶段的。分几个阶段比较合适,对这一问题的研究,既要从我国国情出发,兼顾一些重要国策,又要放眼世界,考虑国际大气候的的影响。借助散点图1和图2,我们不难发现:自改革开放以来,中国经济增长趋势分为两个阶段比较恰当(以下把分成几段称为几个总体)。以下分两种情形加以讨论: 单个总体: 1972—2007年,共30年。 两个总体:1972—1992年,共15年;1993—2007年,共15年. 在有5个可供选择的自变量12345,,,,X X X X X 中,考虑到影响财政收入的因素至少 一个,所以财政收入关于这些变量的一切可能的回归方程共有2345555526 C C C C +++=个。 下面建立变量Y 关于自变量的各种组合的回归方程,同时计算PRESS 和AIC 的值,并对回归方程和回归系数进行显著性检验,作出回归诊断图。 三、分析过程 详见史宁中,陶剑中国经济增长趋势与人均国内生产总值、收入以及消费之间关系的研究: 1978~ 2002。20卷6期,2005年11月《统计与信息论坛》。 四、结论 本文根据中国GDP 增长趋势的特点提出了线性误差模型。从该模型出发, 了解了中国人均GDP 、人均消费与人均收入的关系。1978 年中国实行改革开放政策, 经济持续快速增长, 到1992 年经济增长已冲出10% , 达到14. 2% 的高峰, 明显出现了经济过热。紧接着在随后1993~ 1997 年间, 中国经济增长率呈现连续下滑的局面, 平均每年回落1个百分点。1998~ 2002 年, 中国GDP 增长率连续几年徘徊在7% ~ 8%之间, 呈现所谓 七上八下的 局面[ 7] 。 总之, 这25 年来中国经济增长趋势分成三个阶段是合理的, 即分成1978~ 1992 年, 1993~ 1997 年和1998~ 2002 年。通过对这25 年以来增长趋势的分段研究, 我们可以很清

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型, 但也有一些非线性回归模型却无法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 εβα+=L AK y 其中 L 和 K 分别是劳力投入和资金投入, y 是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型, 只要其中有一个方程是不能通过代换转化为线性, 那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 εβββ+=),,,;,,,(2121p k x x x f y ΛΛ 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)εββ++=x e y 10 (2)εββββ+++++=p p x x x y Λ2210 (3)ε+=bx ae y (4)y=alnx+b 对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y Λ22110 对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。加性误差项模型认为t y 是等方差的。从统计性质看两者的差异,前者淡化了t y 值大的项(近期数据)的作用,强化了t y 值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用加权最小二乘。

对线性回归逻辑回归各种回归的概念学习以与一些误差等具体含义

对线性回归、逻辑回归、各种回归的概念学习回归问题的条件/前提: 1)收集的数据 2)假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。 1. 线性回归 假设特征和结果都满足线性。即不大于一次方。这个是针对收集的数据而言。 收集的数据中,每一个分量,就可以看做一个特征数据。每个特征至少对应一个未知的参数。这样就形成了一个线性模型函数,向量表示形式: 这个就是一个组合问题,已知一些数据,如何求里面的未知参数,给出一个最优解。一个线性矩阵方程,直接求解,很可能无法直接求解。有唯一解的数据集,微乎其微。 基本上都是解不存在的超定方程组。因此,需要退一步,将参数求解问题,转化为求最小误差问题,求出一个最接近的解,这就是一个松弛求解。 求一个最接近解,直观上,就能想到,误差最小的表达形式。仍然是一个含未知参数的线性模型,一堆观测数据,其模型与数据的误差最小的形式,模型与数据差的平方和最小: 这就是损失函数的来源。接下来,就是求解这个函数的方法,有最小二乘法,梯度下降法。 https://www.360docs.net/doc/11521983.html,/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84 最小二乘法 是一个直接的数学求解公式,不过它要求X是列满秩的, 梯度下降法 分别有梯度下降法,批梯度下降法,增量梯度下降。本质上,都是偏导数,步长/最佳学习率,更新,收敛的

问题。这个算法只是最优化原理中的一个普通的方法,可以结合最优化原理来学,就容易理解了。 2. 逻辑回归 逻辑回归与线性回归的联系、异同? 逻辑回归的模型是一个非线性模型,sigmoid函数,又称逻辑回归函数。但是它本质上又是一个线性回归模型,因为除去sigmoid映射函数关系,其他的步骤,算法都是线性回归的。可以说,逻辑回归,都是以线性回归为理论支持的。只不过,线性模型,无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。 另外它的推导含义:仍然与线性回归的最大似然估计推导相同,最大似然函数连续积(这里的分布,可以使伯努利分布,或泊松分布等其他分布形式),求导,得损失函数。 逻辑回归函数 表现了0,1分类的形式。 应用举例: 是否垃圾分类? 是否肿瘤、癌症诊断? 是否金融欺诈? 3. 一般线性回归 线性回归是以高斯分布为误差分析模型;逻辑回归采用的是伯努利分布分析误差。 而高斯分布、伯努利分布、贝塔分布、迪特里特分布,都属于指数分布。 而一般线性回归,在x条件下,y的概率分布p(y|x) 就是指指数分布.

第二章(简单线性回归模型)2-3答案

拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) 二、单项选择题 1.已知某一直线回归方程的可决系数为,则解释变量与被解释变量间的线性相关系数为( B )。 A .± B .± C .± D .± 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。 A .2i i 2 i i ?Y Y Y Y ∑∑(-)(-) B .2i i 2 i i ?Y Y 1Y Y ∑∑ (-)-(-)

线性回归分析 拟合

如何用excel做线性拟合公开2009-10-12 13:43 |(分类:something useful) 在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项 实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。 这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。 选择成对的数据列,将它们使用“X、Y散点图”制成散点图。 在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。

由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。 因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。

【原创】r语言收入逻辑回归分析报告附代码数据

逻辑回归对收入进行预测 1逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量x,即特征数据,判断是否生病就相当于获取因变量y,即预测分类。 最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图1.a所示,X为数据点——肿瘤的大小,Y为观测值——是否是恶性肿瘤。通过构建线性回归模型,如h θ (x)所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤h θ(x)≥.05为恶性,h θ (x)<0.5为良性。 Zi=ln(Pi1?Pi)=β0+β1x1+..+βnxn Zi=ln(Pi1?Pi)=β0+β1x1+..+βnxn 2数据描述 该数据从美国人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。 3问题描述 其实对于收入预测,主要是思考收入由哪些因素推动,再对每个因素做预测,最后得出收入预测。这其实不是一个财务问题,是一个业务问题。 对于某企业新用户,会利用大数据来分析该用户的信息来确定是否为付费用户,弄清楚用户属性,提高运营人员的办事效率。 流失预测。这方面会偏向于大额付费用户,提取额特征向量运用到应用场景的用户流失和预测里面去。 我们尝试并预测个人是否可以根据数据中可用的人口统计学变量使用逻辑回归预测收入是否超过$ 50K的资金。在这个过程中,我们将: 1.导入数据 2.检查类别偏差 3.创建训练和测试样本 4.建立logit模型并预测测试数据 5.模型诊断

各种线性回归模型原理

一元线性回归 一元线性回归模型的一般形式:εββ++=x y 10 一元线性回归方程为:x y E 10)(ββ+= 当对Y 与X 进行n 次独立观测后,可取得n 对观测值 ,,,2,1),,(n i y x i i =则有i i i x y εββ++=10 回归分析的主要任务是通过n 组样本观测值,,,2,1),,(n i y x i i =对 10,ββ进行估计。一般用∧ ∧ 10,ββ分别表示10,ββ的估计值。 称x y ∧ ∧∧+=10ββ为y 关于x 的一元线性回归方程(简称为回归直线方程),∧ 0β为截距,∧ 1β为经验回归直线的斜率。 引进矩阵的形式: 设 ????????????=n y y y y 21,????????????=n x x x X 11121 ,????? ? ??????=n εεεε 21,??????=10βββ 则一元线性回归模型可表示为:εβ+=X y 其中n I 为n 阶单位阵。 为了得到∧ ∧ 10,ββ更好的性质,我们对ε给出进一步的假设(强假设) 设n εεε,,,21 相互独立,且),,2,1(),,0(~2n i N i =σε,由此可得: n y y y ,,,21 相互独立,且),,2,1(),,(~210n i x N y i =+σββ 程序代码: x=[]; y=[]; plot(x,y,’b*’) 多元线性回归 实际问题中的随机变量Y 通常与多个普通变量)1(,,21>p x x x p 有

关。 对于自变量p x x x ,,21的一组确定值,Y 具有一定的分布,若Y 的数学期望值存在,则它是Y 关于p x x x ,,21的函数。 12(,,,)p x x x μ是p x x x ,,21的线性函数。 212,, ,p b b b σ是与p x x x ,,21无关的未知参数。 逐步回归分析 逐步回归分析的数学模型是指仅包含对因变量Y 有显著影响自变量的多元线性回归方程。为了利于变换求算和上机计算,将对其变量进行重新编号并对原始数据进行标准化处理。 一、变量重新编号 1、新编号数学模型 令k x y αα=,自变量个数为1k -,则其数学模型为: 式中,1,2,3,,n α= (其中n 为样本个数) j x 的偏回归平方和为: k x :为k x α的算术平均值 j b :j x 的偏回归系数 jj c :为逆矩阵1-L 对角线对应元素 2 回归数学模型 新编号的回归数学模型为: 二、标准化数学模型 标准化回归数学模型是指将原始数据进行标准化处理后而建立的回归数学模型,即实质上是每个原始数据减去平均值后再除以离差

相关文档
最新文档