土壤温度测量仪的使用原理及操作方法

土壤温度测量仪的使用原理及操作方法
土壤温度测量仪的使用原理及操作方法

土壤温度测量仪的使用原理及操作方法

土壤温度影响着植物的生长、发育和土壤的形成。土壤中各种生物化学过程,如微生物活动所引起的生物化学过程和非生命的化学过程,都受土壤温度的影响。

土壤温度越高,作物的生长发育越快。一年内某时段出现低温或高温,常常给农业生产带来危害。作物的种子必须在适宜的土壤温度范围内才萌发。

过高的土壤温度使植物根系组织常加速成熟,根系木质化的部位几乎达到根尖,降低了根表面的吸收效率。土壤温度低,作物根系吸水缓慢,当气候条件适于蒸腾时,植株地上部分常呈现脱水或缺水。土壤温度过低,常使冬作物的分孽节或根系产生冻害,强低温延续的时间长短和降温及冻融的速度都影响到冻害的程度。土壤温度影响作物的生理过程,所以对土壤温度的检测是至关重要的。

长期以来传统的温湿度数据记录方式通常采用的是人工记录或普通记录仪用墨水在记录纸上绘制曲线,其体积庞大、精度低、墨水易堵塞、费时费力,后来出现的巡检仪、无纸记录仪也因体积大、成本高,需外接电源,而未能在农业科研中大量使用,因此,土壤温度测量仪在上述的条件下,应运而生了。

什么是土壤温度测量仪?

土壤温度测量仪主要由土壤温度传感器、数据记录仪、通讯设备和上位机软件组成,用来测量和记录土壤湿度及温度。广泛应用于农业、林业、地质等方面土壤温湿度测量及研究。土壤温度测量仪被列入基层农技推广服务体系建设项目必备的仪器设备,是农业高科技发展的得力助手。

托普云农土壤温度测量仪使用原理:

1、小巧美观便于携带,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。

2、采集设置:在无人看守的情况下使用,可设置定时采集,也可手动采集。自动记录数据并存储。

3、交直流两用,内置锂电池供电:3.7v4Ah锂电池,具有充电保护、电压过低提示功能。也可长时间放置记录地点。

4.带GPS定位功能,可实时显示采集点经纬度并保存。(选配)

5.带语音播报功能,可对超限值进行语音报警设置,对超标的参数实时普通话语音播报,亦可直接播报出实时的环境参数值

6.数据保存功能强大,设备内部Flash可存储最近3万条数据,标配4G内存卡可无限存储,亦可与Flash中数据同时存储

7.既可在主机上查看数据,也可导入计算机进行查看

8.意外断电后,已保存在主机里的数据不丢失。

9.探头具有一致性,主机可通过集线器接入不同类型的传感器,互不影响精度。

10.将传感器插入主机后便可手动搜集到多钟不同类别的传感器(类似于U 盘和电脑相连接能自动感应)。

11.仪器具有32通道同时检测的扩展功能,可以实现多点同步检测,可按需要自行组合。

12.有线RS485通讯,传感器通讯电缆最远可达到100米

13.低功耗设计,增加系统监控和保护措施,防止电源短路或外部干扰而损坏,避免系统死机。

土壤温度测量仪上位机软件功能:

1、显示每种参数过程曲线趋势,最大值、最小值、平均值显示查看,放大、缩小功能。

2、具有设置超限区域着色功能,显示更直观,为客户带来更多便捷。

3、可将存储记录的数据以EXCEL格式备份保存,方便以后调用。

4、每种参数的报表、曲线图均可选择时段查询查看,并可通过计算机打印。

5、曲线坐标均可自行设置和移动,分析历史走向更清晰、时间把握更明朗。

土壤温度测量仪技术参数:

土壤温度范围:-40℃-100℃

精度:±0.5℃

分辨率:0.1℃

记录容量:主机可存3万条,标配4G内存卡可无限存储记录时间间隔:5分到99小时连续可调

工作电源:3.7V锂电池供电

最低成膜温度测定仪使用方法

最低成膜温度测定仪使用方法 一、首先介绍为什么要做最低成膜温度试验 聚合物乳液用作涂料、粘合剂、化纤织物、皮革、纸张等表面的处理剂时,它的成膜性是重要的技术指标之一。研究者为了制造出更低成膜温度的新产品来,不断地改进其技术规范和配方。因此检测出最低成膜温度(MFT)是此类涂料的重要指标,能够方便的测出MFT的理想仪器,即是最低成膜温度测定仪了。新款最低成膜温度测定仪采用6个测试槽,中一条放置已知试样(业已测定,作为对照之用),也就是说每次可同时测出5 个样品。 二、最低成膜温度测定仪的使用方法 1、将电源线接入电源插座(220伏,50Hz三孔插座,必须接地良好),接通冷却水,依次接通总电源开关、加热、巡检、制冷开关,仪器面板立即显示出相应动作(指示灯亮,数显表显示数字)。 2、根据所测试漆膜条件不同,需设置不同测试条件。主要是制冷和加热预置,巡检表在出厂前已调好,一般情况下不需调整。 3、仪器预热,时间约在150分钟左右(若发现巡检表在一定时间内1~13各点显示稳定或变化极小即为预热完成)方可加入试样。 4、取下有机玻璃罩用小勺或滴管将待测和已知乳液注入梯度板槽内,再用涂布器涂平,盖好有机玻璃罩 5、大约经过60~90分钟,梯度板上的涂层发生一系列的变化,乳胶漆用乳液水分蒸发后,聚合物分子相互作用,在适当温度下形成连续薄膜,高于该乳液MFT 的部分成膜透明,低于MFT 的部分发生龟裂或产生白垩现象。这个明显的分界线即为该乳液的最低成膜温度(MFT) 6、确定成膜线后,根据其位置,用两个标尺的细分刻度计算出准确温度。 7、试验完毕后,关闭电源、水源,做好各部位的清洁工作,为下一次试验做好准备。

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

视觉测量系统技术及应用

视觉测量系统技术及应用 1 引言 基于计算机的视觉检测系统是指通过计算机视觉产品将被摄取目标转换成图像信号,传送给图像处理系统,图像处理系统再根据像素分布和亮度、颜色等信息,转变成数字化信号,计算机图像系统对这些信号进行复杂运算来抽取目标的特征,进而根据判别的结果来控制设备动作。它具有非接触、速度快等优点,是一种先进的检测手段,非常适合现代制造业。可用于视觉检测的试验原理很多,如纹理梯度法、莫尔条纹法、飞行时间法等,然而诸多测试原理中,尤其基于三角法的主动和被动视觉测量原理具有抗干扰能力强、效率高、精度合适等优点,非常适合在线非接触测量。本文主要从视觉测量系统在实际中应用出发,展示视觉检测技术在制造业中的广阔应用[1-4]。 2 视觉测量系统技术的应用 2.1 汽车车身视觉检测系统 在汽车制造过程中,车身上总有很多关键的三维尺寸进行测量,采用传统的三坐标测量机只能离线抽样检测,效率低,更不能满足现代汽车制造在线检测的需要,而视觉检测系统能很好的适应该需要,典型的汽车车身视觉检测系统如图1所示[5]。 图1 车身视觉检测系统 车身检测系统主要依靠的是数个视觉传感器,其中还包括传送机构、定位机构,计算机图像采集、网络控制部分。每个传感器对应一个被测区域,然后通过传输总线传至计算机,通过计算机对每个视觉传感器进行过程控制。 汽车车身检测系统的测量效率很高,精度式中,并且可以在完全自动情况下完成,这个包含几十个测点的系统都能再几分钟内测量完成,因此可以适应汽车制造的在线检测。而且传感器的布置可以根据不同车型来布置,增加了应用要求,

因此减少了车身视觉系统的维护费用。 2.2 拔丝模孔形视觉检测系统 使用计算机视觉检测技术开发出的拔丝模孔形检测系统由光学成像系统、工业用摄像机图像采集卡、计算机及监视器组成,可以解决生产实际中的模具孔形检测问题.工作原理如下:先采用注入硅胶方法获得反映待检拔丝模尺寸及形状的硅胶凸模,然后把硅胶凸模放在光学系统的载物台上.硅胶凸模经光学成像放大,成像于CCD像面上,然后用图像采集卡采集CCD图像信息,最后由计算机视觉检测软件完成对孔形尺寸的自动计算,此时图像采集时需要配置特殊的光照系统.系统实现了自动数据采集、处理,实现采样、进样、结果一条龙,形成检测的自动化. 2.3 无缝钢管直线度和截面在线视觉检测 无缝钢管是一类重要的工业产品,在反应无缝钢管质量中,钢管直线度及截面尺寸是主要的几何参数。现代工业已经可以实现无缝钢管的大批量大规模生产,并且并无成熟的直线度、截面尺寸高效率的检测系统,主要原因为:无缝钢管空间尺寸大,需要很大的测量空间,一般的检测手段很难实现如此大尺度的检测。然而视觉检测却非常适合无缝钢管及截面尺寸的测量,其测量原理图如图2所示。 多个传感器组成了视觉检测系统,传感器的结构光所投射的光平面与被测钢管相交,从而得到钢管的部分圆周,传感器测量圆周在传感器三维空间位置,每一个传感器实现一个截面圆周测测量,然后通过拟合得到截面的圆心和其空间位置,从而实现对无缝钢管截面和直径的测量。 图2 无缝钢管在线检测 2.4 视觉测量在逆向工程中的应用 逆向工程是针对现有的工件,利用3D数字化测量仪准确快速地测量出轮廓坐标值,并建构曲面,经过编辑、修改后,将图形存档形成一般的CAD/CAM系统,再由CAM所产生刀具的NC加工路径送至CNC加工机制所需模具,或者以快速成型将物品模型制作出来。视觉测量一般使用三种激光光源:点结构光、线结构光、面结构光,图3为使用线结构光测量物体表面轮廓的结构示意图[6]。

测温原理

热电偶的测温原理和常用材料 这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。 两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。 热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6 K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍 (T型热电偶)铜-铜镍热电偶 铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。 T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。

教你各类温度测试仪的正确使用方法!

教你各类温度测试仪的正确使用方法! 热电偶、无线炉温测试仪都是用来测量温度的仪器。使用它们,能够给我们的工作带来很大的便利。这种温度测试仪功率高、但是功耗低,使用寿命长;而且产品体积小,存储容量大,任何意外都不会丢掉数据。这就很好地解决了安全隐患问题。 虽然说这两种温度测试仪具有相同的用途,但是工作的原理是不一样的,产品结构不同,使用方法也是不同的。 那么,我们该如何正确使用它们呢?下面就分别来了解下吧。 一、热电偶的正确使用方法 众所周知,热电偶可以直接测量温度并把温度信号转换成热电动势信号,再转换成被测介质的温度。常作为测温元件用于跟踪仪中,所以跟踪仪热电偶的正确使用是非常重要,事关着温度曲线的变化情况。 在使用时最容易出现问题的地方就是热电偶了,热电偶是易耗品,但是可以进行维修的。掌握正确的使用方法势在必行,具体如下 一、跟踪仪热电偶在粘贴工件时一定得记住紧密贴合产品工件,不能让热电偶的焊点在里面晃动,特别是热电偶焊点当跟金属碰到一起的时候,容易产生瞬间电压,而导致测出来的温度曲线某个地方温度突然升得很高,这样又会引起分析软件Y轴坐标也跟着变得很高,那么整个曲线就会看起来很小了。 二、热电偶正确的接线方法是:红线接负极,黄线接正极,接的时候两股线一定要往上顶到公插头的三角处,防止裸露的部份短路 三、针对玻璃纤维的热电偶,在插拔时千万要记得用手捏住公插头往外拔,不要去拉线,这样容易造成保护套被拉松或拉出公插头,造成线芯裸露,而导致短路的现象。 四、使用时千万不要打结或折成90度以上,这样很容易造成内部的两根线芯断裂,断了之后你都不知道在哪里断的,那么这根热电偶就没用了,使用时要细心一点,不能野蛮施工。 在操作上要特别注意不要损坏热电偶,不然就会导致跟踪仪测量出来的温度曲线出现异常,影响产品的质量。 二、无线炉温测试仪的正确使用方法 温度测试仪可能你知道,但是大家对温度测试仪的操作方法知道多少,是不是只是照着说明书上面的看一看就开始操作起来了,而对于温度测试仪的操作要点仍然不了解多少。那么小编在这里就给大家详细介绍一下温度测试仪的具体操作方法。 1、首先将温度测试仪接通电源:断定“电压调理”旋钮已置“0”位,然后翻开电源开关。 2、设定“漏电流”值:按下开关“15”,调理“漏电流预置”电位器“14”将“漏电流”预置在所需值。 3、衔接被测件:依据被测件的需求,将测验线和被测件衔接好。 4、“守时测验”:将守时开关“17”置在“守时”方位,调理守时拨盘开关,设定所需的守时时刻,然后按下“发动”开关,并调理“电压调理”旋钮使输出电压至所需值。

体温枪使用说明

一、人体红外测温仪产品简介 HT-F03B型额温型人体红外线体温计(以下简称额温计)是一种利用红外接收原理测量人体的测温计。使用时,只须方便的将探测窗口对准额头位置,就能快速、准确的测得人体温度。红外线人体体温监测仪适用于人流量大的公共场合快速监测人体体表温度的专业仪器。具有非接触式测温、准确度高、测量速度快、超温语音报警等优点。特别适合于出入境口岸、港口、机场、码头、车站、机关、学校、影剧院等场合使用。 二、人体红外测温仪基本原理 一切温度高于绝对零度的物体均会依据其本身温度的高低发射定比例的红外辐射能量。辐射能量的大小及其按波长的分布与它的表面温度有着十分密切的关系。人体温度在(36~37℃)放射的红外波长为9~13чm。依据此原理便能通过准确的地测定人体额头的表面温度,修正额头与实际体温的温差便能显示准确的体温。 三、人体红外测温仪产品特点 1、专为测量人体额头温度设计,环境温度、额头温度动态补偿; 2、独家采用HEIMANN红外测温探头,测量精度高性能更稳定; 3、具有体温偏高时的声音提示功能(分型号); 4、可存储20次测量数据; 5、背光型液晶(LED)数字显示; 6、华氏、摄氏两种模式选择; 7、具自动关机节电功能; 8、体积小巧、结构合理、操作方便。 9、选用测量额温模式可以用来测量100°范围内发射率0.95的物体温度。 四、人体红外测温仪主要技术指标 (一)、正常工作条件: 1、环境温度:10℃~40℃; 2、相对温度:≤85%; 3、电源:DC3V(2节AA电池)。 (二)、基本尺寸:87mm×43mm×148mm(长×宽×高)。 (三)、重量:113g。 (四)、LCD显示分辨力:0.1℃。 (五)、测量范围:体温:30.0℃~42.0℃(86.0℉~107.6℉) 额温:0.0℃~110.0℃(32.0℉~230.0℉) (六)、消耗功率:≤50mw。 (七)、示值误差:±0.2℃。 (八)、测量时间:≤0.5秒。 (九)、测量距离:50mm-150mm。 (十)、自动关机时间:6秒。 (十一)、发射率:0.95 五、人体红外测温仪外形结构(见上图) 六、人体红外测温仪使用方法: 将探测头对准人本额头部位抠动把柄前的测温键体温计电源自动开启,并显示测量结果。 七、人体红外测温仪设置 (一)温度单位的选择 1、按压设置键持续3秒以上LED显示F1;

轮廓测量仪和三坐标测量机的区别

轮廓仪,顾名思义,测量产品表面轮廓尺寸的仪器。随着轮廓仪的迭代更新,现在的轮廓仪是一款对物体的轮廓、二维尺寸、二维位移进行测试与检验的精密设备,在汽车制造和铁路行业的应用十分广泛。 今天小编要为大家分享一下轮廓仪和三坐标测量机区别,希望能够帮助到大家。 1、用途的区别 轮廓仪可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定园弧和直线等。从而可测量园弧半径、直线度、凸度、沟心距、倾斜度、垂直距

离、水平距离、台阶等形状参数。仪器还可对各种零件表面的粗糙度进行测试;可对平面、斜面、外园柱面、内孔表面、深槽表面、圆弧面和球面的粗糙度进行测试,并实现多种参数测量。 接触过一款三坐标测量机CMM,是意大利coord3的,对于这种cmm我自己认为有很大缺陷,当然也有优点。它可以测量模具产品,电子类产品,通讯类,汽车类等等很多。在一个工厂它的用途确实很广泛,但它的价格却也不菲。 2、结构的区别 轮廓仪由花岗岩平板、工作台、传感器、驱动箱、显示器、电脑和打印机等部分组成.测量时可选定被测零件的不同位置,设定各种测量长度进行自动测量,评定段内采样数据达数万个点。并可显示或打印轮廓形状及其尺寸,各种粗糙度参数及轮廓的支承长度率曲线等。 三坐标主要有机械系统,测头系统,电气控制硬件系统,数据处理软件系统组成。 以上就是深视智能小编对轮廓仪和三坐标测量机区别的分享内容,希望能够帮到有需要的朋友,深圳市深视智能科技有限公司重点针对机器视觉领域的三维

视觉系统产品线投入研发,推出激光轮廓仪,轮廓仪,激光轮廓传感器,激光轮廓扫描仪,激光轮廓测量仪,3D线扫相机,线扫描相机,3d激光测量仪,线激光扫描仪,3D激光扫描仪等产品,广泛应用于各大检测行业,欢迎来电咨询。

点着温度测定仪 使用说明书

GLMDW-02型 点着温度测定仪 使用说明书 武汉格莱莫检测设备有限公司

DW-02型点着温度测定仪是根据国家标准 GB4610-84《塑料燃烧性能试验方法—点着温度的测定》而设计的测试设备。点着温度可以相对比较各种材料在特定条件下的燃烧特性,本方法测试简单方便,可以为设计应用选材提供参考数据。另有DW-04型武汉格莱莫检测设备公司。一、试验步骤 打开电源,把锭炉加热到预定温度,并使之恒温,允许误差±2℃。 将装有1克试样的容器放入铜锭炉的孔中,盖上盖子(盖子预先放在锭炉上加热),并打开秒表。 将点火火焰置于盖的喷嘴上方2毫米处晃动,火焰长度10~15毫米左右。如果在开始5分钟内,喷嘴上没有(或有)连续5秒钟的火焰,则每次将炉温升高(或降低)10℃,用新的试样重新试验,直到测得喷嘴上出现连续5秒钟以上火焰时的最低温度为止,并记录此温度。 在每个预定的温度做三个试样,若有两个没有5秒钟以上的火焰,则将炉温度升高10℃,再做三个试样,如有两个出现5秒钟以上火焰的最低温度,将其修约到十位数,即为材料的点着温度。

在预热性塑料的测定中有发泡溢出现象时,可以将试样减少到0.5克,如果仍有溢出,则不能用本方法试验。 二、报告 在试验报告中,注明试验方法和参考标准,材料的鉴别特征,试样的来源、粒度和试 样量,试验的结果,观察到的现象(烟气、火焰颜色等)应详细记录。 三、试样粒度:制备成0.5-1.0毫米。 四、试样量:1克。 五、炉温:150℃~450℃之间任意点着温度恒 定不大于±2℃,在测试过程中,如果设定 温度与水银温度计指示不统一时,以水银 温度计为准,因为铂电阻的设定误差是全 量程的±1℃%。 六、试验结束时,应拨动开关气手柄,置于开 气,进行降温,使炉温降到常温。 七、仪器装箱清单 1.加热炉1台 2.控制器1台 3.4孔盖板(硅钙板)1个

测温仪原理

红外测温原理简介 红外测温仪分类 红外测温仪通过物体发出的红外辐射能量大小来确定物体的温度。理论上讲,任何高于绝对零度的物体都能发出红外辐射能量。红外测温仪按测量波长的多少可分为单色测温仪、双色测温仪、多色测温仪。 单色红外测温仪原理 目前市场上的单色测温仪,多为窄波段测温仪。它的测温原理是通过物体某一狭窄波长范围内发生的辐射能量,来决定温度的大小。测温仪测量的是一个区域内的平均温度,测量值受发射率、镜头的污染以及背景辐射的影响。 物体发出辐射能量的大小与发射率有一定关系。发射率越大,物体发出的红外线能量越大。物体的发射率与物体表面的状态有一定关系,表面的粗糙度、亮暗程度、不同材质都会影响发射率。所以在使用单色测温仪时,常会有一张不同材质的发射率表。 (2)双色测温仪原理 不同大气窗口下,选用的探测器类型 窗口1 Si (硅) 窗口2 Ge (锗)InGaAs (铟镓砷) 窗口3 PbS(硫化铅) ExInGaAs (扩展型铟镓砷) 窗口4 PbSe(硒化铅) Thermopile (热电堆) 窗口5 Thermopile (热电堆) 窗口6 发射率变化、镜头的污染以及背景辐射的影响,与波长的选择有关系。选择特殊波长范围 的测温仪,能够使单色测温仪尽量克服传输介质的干扰。比如水蒸汽、各种气体等其它物质的影响。选择短波长测温,可以使红外测温仪受发射率的影响降到最低。长波长测温仪通常用来测量 低于200℃的目标或特殊介质的测量。

双色红外测温原理 比色测温仪又称双色测温仪。它是利用邻近通道两个波段红外辐射能量的比值来决定温度的大小。比值与温度的关系是线性的,这是由探测器的性能决定的。 双色测温仪能够消除水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,双色测温仪测量绝大数灰体材料时不需要修正双色系数,双色测温仪测量一个区域内最高温度的平均值。 思捷光电的双色红外测温仪可以克服严重水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,即使检测信号衰减95%,也不会对测温结果有任何影响。软、硬件设计适用于一百万倍信号动态范围的可靠检测,满足用户对仪器的精度和分辨率等要求。 双色测温仪与单色测温仪比较的优势 双色测温不会随物体表面的状态而变化(表面粗糙度不一样、或表面的化学状态不一样),不会影响测温的准确性,而单色测温仪就会有影响。

轮廓测量仪操作规程

轮廓测量仪操作规程 轮廓测量仪能够对各种工件轮廓进行长度、高度、间距、水平距离、垂直距离、角度、圆弧半径等几何参数测量,并且具有强大的CNC功能,能进行一系列操作自动化,可高效率地进行测量作业。 一.操作步骤 1.测量前准备。 2.开启电脑、打开机器电源开关、检查机器启动是否正常。 3.擦净工件被测表面。 二.测量 1.将测针正确、平稳、可靠地移动在工件被测表而上。 2.工件固定确认工件不会出现松动或者其它因素导致测针与工件相撞的情况出现。 3.在仪器上设置所需的测量条件。 4.开始测量。测量过程中不可触摸工件更不可人为震动桌子的情况产生。

5.测量量完毕,根据图纸对结果进行分析,标出结果,并保存、打印。 三.保养 1.每天开机前及测量完毕后用高织纱棉布沾无水酒精清洁工装表面、测针、轨道。2.平时不使用时将所有电源关闭,且将测针的保护套套上。 3.严禁用扫帚清扫地面,以免灰尘扬起。 4.对仪器进行全面的维护和精度调整。 四.维护 1.测力标定 如图1所示。此界面用于对测针扫描时测量力的设置。 (图1)测力标定界面 测力标定示意图,如图2所示。 (图2)测力标定示意图

注意:请在专业人员的指导下进行测力标定和测杆摆动调整! 下针尖测力设置:如图2所示。 1)把电子称放置在测量位置下方,把电子称清零(注意:电子称开机后自动清零,电子称 显示的单位应为“g”)。 2)控制测针移到电子称上方。 3)软件上先设置“测力大小”(普通工件测力一般为7g),然后点击“设置”按钮,则输 入框变为可编辑状态。 4)点击“向下测力”(绿色标志表示选中),此时测针向下接触电子称。 5)同时在主界面观察Z0光栅值,看摆杆是否处于水平位置(注意:测力标定应在摆杆处 于水平位置时进行操作,摆杆处于水平位置时的Z0光栅值主要由机械安装确定,一般情况下,此时Z0光栅值等于0.000mm,具体参数见“测力标定”界面的提示值),若不处于水平位置,则上下移动Z轴使Z0光栅值等于提示值即可。 6)观察电子称的读数应在7g左右(注意:读数前先轻轻抬起摆杆,再轻轻放下,不能通 过摆杆的重力和张力落下,然后重复3-5次观察电子称读数),若不是7g左右,则应通过调整“向下位置”下方的角度值来调整测力,然后点击“保存”按钮。 7)重复步骤(5),直至测力正常。 2.编码器标定 如图3所示。此界面用于使用激光干涉仪对光栅示值进行标定,非专业人员不允许随意操作。

温度检测电路工作原理及各器件的参数

温度检测电路工作原理及各器件的参数 在空调整机上,常用到温度传感器检测室内、外环境温度和两器盘管温度,下面根据常用温度检测电路介绍其工作原理及注意事项。 1.电路原理图 2. 工作原理简介温度传感器RT1(相当于可变电阻)与电阻R9形成分压,则T端电压为:5×R9/(RT1+R9);温度传感器RT1的电阻值随外界温度的变化而变化,T端的电压相应变化。RT1在不同的温度有相应的阻值,对应T端有相应的电压值,外界温度与T端电压形成一一对应的关系,将此对应关系制成表格,单片机通过A/D采样端口采集信号,根据不同的A/D值判断外界温度。 3. 各元器件作用及注意事项3.1 RT1与R9组成分压电路,R9又称标准取样电阻,该电阻不可随意替换,否则会影响控温精度。 3.2 D7与D8为钳位二极管,确保输入T端电压不大于+5V、不小于0V;但并不是所有情况下均需要这两个二极管,当RT1引线较短时可根据实际情况不使用这两个二极管。 3.3 E5起到平滑波形的作用, 一般选10uF/16V电解电容,当RT1引线较长时,要求使用100uF/16V电解电容;若E5漏电,T端电压就会被拉低,导致:制冷时压缩机不工作,制热时压缩机不停机。 3.4 R11和C7形成RC滤波电路,滤除电路中的尖脉冲;C7同样会出现E5故障现象。 3.5 电路中,RT1就是我们常说的感温头,实际上它是一个负温度系数热敏电阻,当温度升高时它的阻值下降,温度降低时阻值变大。50℃时,阻值为3.45KΩ。25℃时,为10KΩ;0℃时,为35.2KΩ 。

具体温度与阻值的关系见附表。若RT1开路或短路,空调器不工作,并显示故障代码;若RT1阻值发生漂移(大于或小于标准阻值)则空调器压缩机或关或常开或出现保护代码。空调温度传感器原理及故障分析空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷

土壤温度测量仪的使用原理及操作方法

土壤温度测量仪的使用原理及操作方法 土壤温度影响着植物的生长、发育和土壤的形成。土壤中各种生物化学过程,如微生物活动所引起的生物化学过程和非生命的化学过程,都受土壤温度的影响。 土壤温度越高,作物的生长发育越快。一年内某时段出现低温或高温,常常给农业生产带来危害。作物的种子必须在适宜的土壤温度范围内才萌发。 过高的土壤温度使植物根系组织常加速成熟,根系木质化的部位几乎达到根尖,降低了根表面的吸收效率。土壤温度低,作物根系吸水缓慢,当气候条件适于蒸腾时,植株地上部分常呈现脱水或缺水。土壤温度过低,常使冬作物的分孽节或根系产生冻害,强低温延续的时间长短和降温及冻融的速度都影响到冻害的程度。土壤温度影响作物的生理过程,所以对土壤温度的检测是至关重要的。 长期以来传统的温湿度数据记录方式通常采用的是人工记录或普通记录仪用墨水在记录纸上绘制曲线,其体积庞大、精度低、墨水易堵塞、费时费力,后来出现的巡检仪、无纸记录仪也因体积大、成本高,需外接电源,而未能在农业科研中大量使用,因此,土壤温度测量仪在上述的条件下,应运而生了。 什么是土壤温度测量仪? 土壤温度测量仪主要由土壤温度传感器、数据记录仪、通讯设备和上位机软件组成,用来测量和记录土壤湿度及温度。广泛应用于农业、林业、地质等方面土壤温湿度测量及研究。土壤温度测量仪被列入基层农技推广服务体系建设项目必备的仪器设备,是农业高科技发展的得力助手。

托普云农土壤温度测量仪使用原理: 1、小巧美观便于携带,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。 2、采集设置:在无人看守的情况下使用,可设置定时采集,也可手动采集。自动记录数据并存储。 3、交直流两用,内置锂电池供电:3.7v4Ah锂电池,具有充电保护、电压过低提示功能。也可长时间放置记录地点。 4.带GPS定位功能,可实时显示采集点经纬度并保存。(选配) 5.带语音播报功能,可对超限值进行语音报警设置,对超标的参数实时普通话语音播报,亦可直接播报出实时的环境参数值 6.数据保存功能强大,设备内部Flash可存储最近3万条数据,标配4G内存卡可无限存储,亦可与Flash中数据同时存储 7.既可在主机上查看数据,也可导入计算机进行查看 8.意外断电后,已保存在主机里的数据不丢失。 9.探头具有一致性,主机可通过集线器接入不同类型的传感器,互不影响精度。 10.将传感器插入主机后便可手动搜集到多钟不同类别的传感器(类似于U 盘和电脑相连接能自动感应)。 11.仪器具有32通道同时检测的扩展功能,可以实现多点同步检测,可按需要自行组合。 12.有线RS485通讯,传感器通讯电缆最远可达到100米 13.低功耗设计,增加系统监控和保护措施,防止电源短路或外部干扰而损坏,避免系统死机。 土壤温度测量仪上位机软件功能: 1、显示每种参数过程曲线趋势,最大值、最小值、平均值显示查看,放大、缩小功能。 2、具有设置超限区域着色功能,显示更直观,为客户带来更多便捷。 3、可将存储记录的数据以EXCEL格式备份保存,方便以后调用。 4、每种参数的报表、曲线图均可选择时段查询查看,并可通过计算机打印。 5、曲线坐标均可自行设置和移动,分析历史走向更清晰、时间把握更明朗。 土壤温度测量仪技术参数: 土壤温度范围:-40℃-100℃ 精度:±0.5℃ 分辨率:0.1℃

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

轮廓测量仪原理及应用

轮廓测量仪概述 SJ5700轮廓测量仪是一款集成表面粗糙度和轮廓测量的测量仪器;采用进口高精度光栅测量系统、高精度研磨导轨、高性能非接触直线电机、音圈电机测力系统、高性能计算机控制系统技术,实现对各种工件表面粗糙度和轮廓进行测量和分析。通过高精度研磨导轨、高性能直线电机保证测量的高稳定性及直线度,采用进口高精度光栅测量系统建立工件表面轮廓的二维坐标,计算机通过修正算法对光栅数据进行修正,最终还原出工件轮廓信息并以曲线图显示出来,通过软件提供的分析工具可对轮廓进行各种参数分析。 轮廓仪为全自动测量设备,操作者只需装好被测工件,在检定软件上设定扫描的开始、结束位置,点击“开始”按钮,测针会自动接 触工件表面,并按设定的位置扫描;可高精度地测量精密加工零部件的粗糙度和轮廓形状,再选择所需评价参数即可进行评价。 系统软件为简体中文操作系统,操作方便。

轮廓测量仪功能 SJ5700 轮廓测量仪可测量各种精密机械零件的素线轮廓形状参数,角度处理(坐标角度,与 Y 坐标的夹角,两直线夹角)、圆处理(圆弧半径,圆心到圆心距离,圆心到直线的距离,交点到圆心的距离,直线到切点的距离)、点线处理(两直线交点,交点到直线距离,交点与交点距离,交点到圆心的距离)、直线度、凸度、对数曲线、槽

深、槽宽、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等形状参数。 轮廓测量仪性能特点 1、高精度、高稳定性、高重复性:完全满足被测件测量精度 要求。 1) 选用国际领先的高精度光栅测量系统和高精度电感测量系 统,测量精度高; 2) 自主研发高精度研磨导轨系统,导轨材料耐磨性好、保证 系统稳定可靠工作; 3) 高性能直线电机驱动系统,保证测量稳定性高、重复性好; 2、智能化管理与检测软件系统: 仪器操作界面友好,操作者很容易即可基本掌握仪器操作,使用十分简便。 1) 10多年积累的实用检定软件设计经验,向客户提供简洁、 实用、快速的操作体验; 2) 功能强大、自动处理数据、打印各种格式的检定报告,自 动显示、打印、保存、查询测量记录; 3) 测量围广,可满足绝大多数类型的工件粗糙度轮廓测量; 4) 可自动和手动选取被测段进行评定,可依据客户要求进行 软件功能的定制; 5) 纯中文操作软件系统,更好的为国用户服务; 6) 打印格式正规、美观。检定数据可存档,或集中打印,不 占用检定操作时间;

传感器原理与应用习题第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

接触式轮廓测量仪与非接触式轮廓测量仪对比分析

接触式轮廓测量仪与非接触式轮廓测量仪对比分析 前言:目前市场上的轮廓测量仪主要有接触式轮廓测量仪和非接触式轮廓测量仪,本文将从功能、原理、应用三个方面对这两种轮廓测量仪进行对比分析。 功能 1.接触式轮廓测量仪(以中图仪器SJ5700为例)可测量各种精密机械零件的素线轮廓形状参数,角度处理(坐标角度,与Y坐标的夹角,两直线夹角)、圆处理(圆弧半径,圆心到圆心距离,圆心到直线的距离,交点到圆心的距离,直线到切点的距离)、点线处理(两直线交点,交点到直线距离,交点与交点距离,交点到圆心的距离)、直线度、凸度、对数曲线、槽深、槽宽、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等形状参数。 2.非接触式轮廓测量仪(以中图仪器SuperView W1光学3D轮廓仪为例)适用于各类

光滑、连续光滑和适度粗糙物体表面从毫米到亚微米、纳米尺度的3D形貌轮廓、坐标、厚度、粗糙度、体积、表面纹理等测量。 ●工作原理 1.接触式轮廓测量仪测量原理为直角坐标测量法,即通过X轴、Z轴传感器,测绘出被测零件的表面轮廓的坐标点,通过电器组件,将传感器所测量的坐标点数据传输到上位PC 机,软件对所采集的原始坐标数据进行数学运算处理,标注所需的工程测量项目。 2.非接触式轮廓测量仪是利用光学显微技术、白光干涉扫描技术、计算机软件控制技术和PZT垂直扫描技术对工件进行非接触测量,还原出工件3D表面形貌宏微观信息,并通过软件提供的多种工具对表面形貌进行各种功能参数数据处理,实现对各种工件表面形貌的微纳米测量和分析的光学计量仪器。 ●典型应用 1.接触式轮廓测量仪广泛应用于机械加工、汽车、摩托车、精密五金、精密工具、刀具、模具、光学元件等行业。适用于科研院所、大专院校、计量机构和企业计量室。 在汽车、摩托车、制冷行业,可测汽车、摩托车、压缩机的活塞、活塞销、齿轮和气门顶杆的母线参数等.并可测量各种斜形零件的参数。 在轴承行业,可测内外套圈的密封槽形状(角度、倒角R、槽深、槽宽等);各种滚子轴承的滚子和套圈母线的凸度、角度、对数曲线; 电机轴、圆柱销、活塞销、滚针轴承、圆柱滚子轴承、直线轴承的滚动体和套圈的直线度;球轴承沟道的沟曲率半径及沟边距;双沟轴承的沟心距;四点接触轴承(桃形沟)的沟心距和沟曲率半径等。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

相关文档
最新文档