金属拉伸试验屈服点影响因素分析

金属拉伸试验屈服点影响因素分析
金属拉伸试验屈服点影响因素分析

总第186期2011年第6期

HEBEI M ETALLU R GY

Total 1862011,

N umber 6收稿日期:2011-03-14

作者简介:徐海云(1973-),男,工程师,

1995年毕业于河北理工学院工业分析专业,现在河北钢铁集团宣化公司计量检验中心从事钢材检验工作,

E -mail :gxgzwh@126.com 金属拉伸试验屈服点影响因素分析

徐海云

(河北钢铁集团宣钢公司计量检验中心,河北宣化075100)

摘要:分析了金属拉伸试验屈服点的影响因素,诠释了屈服点选取时产生误差的原因以及应注意的事项,给出了宣钢公司操作经验供参考。关键词:拉伸;屈服点;打滑;变形;分析中图分类号:TG115.5

文献标识码:B

文章编号:1006-5008(2011)06-0012-03

ANALYSIS ABOUT INFLUENCE

FACTORS TO YIELD POINT IN METAL TENSION TEST

Xu Haiyun

(Measure and Inspect Center ,Xuanhua Iron and Steel Company ,Hebei Iron and Steel Group ,Xuanhua ,He-bei ,075100)

Abstract :It is analyzed the influence factors to yield point in metal tension test ,explained the reason for error in selecting yield point as well as keys being paid attention.Key Words :tension ;yield point ;skid ;deformation ;analysis

1前言

河北钢铁集团宣钢公司是以长材作为主打产品

面向市场的,所有产品均进行出厂检验,主要包括外观检验和物理性能检验两大部分,在物理性能检验

中又以拉伸试验为主要检测内容,

屈服强度是拉伸试验中的主要测试项,

测试的准确与否会直接影响到产品的合格与否,

也给用户判断强屈比带来影响。金属试样在受到外力作用时会产生变形。在受力的初始阶段,

变形与受到的外力基本成线性比例关系,这时若外力消失,材料的变形也将消失,恢复

原状,这一阶段通常称为弹性阶段。但当外力增大到一定程度后,变形与受到的外力将不再成线性比例关系,这时当外力消失后,材料的变形将不能完全消失,

外型尺寸将不能完全恢复到原状,这一阶段称为塑性变形阶段。钢材在使用过程中易受到各种各样的外力作用,产生变形,这种变形必须被限制在弹性范围之内,否则产品的形状将会发生永久变化,影响继续使用,严重的还会发生断裂等重大质量事故。比如像弹簧一样,在一定范围内拉伸弹簧是可以恢

复原状的,

但一旦拉伸力超出了弹簧的受力极限,弹簧就被破坏了,不可恢复到初始状态,成了报废品。

准确求取屈服点在力学性能试验中是非常重要的,在检测过程中由于受到各种因素的制约很难非常准确的求取,下面结合实际工作中遇到的问题分析影响屈服点的各个因素。2操作人员的影响

试验结果的准确程度很大程度上取决于试验人员的综合操作素质,尤其是在新的试验机不断更新换代,试验软件各厂家界面不统一的形势下。实际生产中受试验人员文化程度及操作水平的限制,在一些概念及操作上存在着一些误区,常出现如下的问题。

2.1

非比例应力与下屈服定义不作区分

虽然非比例应力与屈服都是反应材料弹性阶段

与塑性阶段的过渡状态的指标,

但两者有着本质的不同。下屈服是材料固有的性能,而非比例应力是通

过人为规定的条件计算的结果,在国标中规定它可以有不同变形量的非比例应力点,

如R p0.2,R p0.5等形式,但钢材的下屈服点只有一个。当材料存在下屈服点时是无需求取非比例应力的,只有材料没有明显的屈服点时才求取非比例应力。部分试验人员对此理解不深,以为上屈服、下屈服、非比例应力对每次试

2

1

河北冶金2011年第6期

验都存在,且需全部求取。

2.2

将具有不连续屈服的趋势当作具有屈服点金属材料拉伸试验时在有些测试过程中会发生异常现象,虽然变形继续发生,力值也继续增大,但力值的增大幅度却发生了由大到小再到大的过程,但波

动的幅度不是太大。从曲线上看,

有点象产生屈服的趋势。这样的现象经常发生在宣钢公司生产的盘条

螺纹钢的测试中。由于盘条螺纹钢规格较细,

在钢坯化学成分及轧制工艺的影响下,有时在拉伸试验时表现为屈服点不明显,尤其是在表盘式的试验机上,表针在行进过程中根本无任何的回摆和停顿。但有时由于受打滑、振动等因素的影响,会造成表针或曲线

的小幅度的回摆、

波动,从而形成假屈服点。见图1(电液伺服试验机拉伸曲线图)

图1拉伸试验中力-变形图(无明显屈服点)

2.3

表盘试验机读数误差

在表盘式试验机中读取屈服强度时,由于受夹持方式、器具、试样本身因素的影响造成阶段性的打滑,

在表盘上表现为指针不断地回摆,导致读取屈服力值时无法准确定位,形成人为读数的误差。3

试验机本身测控环节的影响

试验机测控环节是整个试验机的核心,随着科技的进步,宣钢现在约有60%的试验机采用了微机控制。由于自动测控知识仍属于比较尖端的技术领域,一旦在产品的设计中考虑不周,就会对结果产生严重的影响,并且难以分析其原因。

3.1

传感器放大器频率范围

由于目前的电液、电拉试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器,而这两类传感器都为模拟小信号输出类型,在使用中必须进行信号中继放大。而测试环境中存在着各种各样的电磁干扰信号,这种干扰信号会通过许多不同的渠道耦合到测量信号中一起被放大,结果使得有用信号被干扰。为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器中设置有低通滤波器。合

理地设置低通滤波器的截止频率,将放大器的频带限

制在一个适当的范围,就能使试验机的测量控制性能得到极大地提高。然而在实际的设计中,有时特意提高了数据的稳定性,而忽略了数据的真实性,将滤波器的频带设置的非常低。这样在滤掉干扰信号的同时,把有用信号也一起滤掉了。尤其是屈服表现为力值多次上下波动的情况,必定会引起数据曲线的失真。但同时要值得注意的一点是,如果放大器的频带设置太宽的话,会引入干扰信号,同样会产生错误的曲线。在购置试验机时一定要注意这一点。

3.2

控制方法的使用

金属拉伸试验发生屈服时应力与应变的关系

(发生屈服时,应力不变或产生上下波动,而应变则继续增大)GB /T228-2002推荐的控制模式为恒应变控制,而在屈服发生前的弹性阶段控制模式为恒应力控制,这在宣钢公司所有的试验机是不可能完成的。因为它要求在刚出现屈服现象时改变控制模式,但在试验未完成前是无法得知屈服产生于何处的,这是自相矛盾的控制。在实际生产过程中,一般都是用同一种控制模式来完成整个试验的。对于使用恒位移控制(速度控制)的试验机,由于在弹性阶段的应力速率与应变速率成正比关系,只要选择合

适的试验速度,

全程采用速度控制就可兼容两个阶段的控制特性要求。在使用力控制时,如果试验机

的响应特别快,屈服发生的过程时间就会非常短,如果数据采集的速度不够高,就会丢失屈服值,优异的控制性能反而变成了产生误差的原因。

4

测试软件设计的影响

在金属拉伸GB /T228-2002中是这样定义的:“屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点,应区分

上屈服强度和下屈服强度。

”宣钢技术中心物理性能试验现场所使用的电液

伺服、微机屏显、电子拉伸试验机全部采用PC 机作为控制、

采集、输出的载体完成标准或自定义的各类数据测试。在软件中可通过显示器实时观测到试验的各种曲线。在GB /T228-2002中屈服点只有定性的解释,而没有定量的说明,而计算机自动处理程序则要求采集系统给出定量的控制。因此形成了各试验机生产商条件判断不一致的现象。宣钢公司现有新三思、济南试金、上海申力、济南东测等多个厂家多种产品,在实际测试过程中体会到,同一根试样在分成几段后在不同类型的试验机上检测时屈服点总有一定的偏差。

3

1

总第186期HEBEI YEJIN

在实际测试中由于以下几个问题的存在造成屈服点的不一致现象。

(1)屈服强度力恒定的标准:由于各种干扰源的存在,计算机所采集的数据不会绝对保持恒定,这就需要给出一个允许的数据波动范围,GB /T228-2002未作定义,由各个试验机生产厂家自行定义。定义条件的不统一,导致所求结果有所差异。

(2)上下屈服强度的波动:若材料出现上下屈服点,则必然出现力值的上下波动,国标未给出明确的定量指标,取的太小,可能将干扰误求为上下屈服点,取得太大,则可能将部分上下屈服点丢失。目前宣钢公司使用的试验机均在系统中自定义了这个幅度的波动参数。在生产中仍还存在人工根据经验在测试曲线进行调整来求取屈服点的现象,

容易造成人为求取误差。5

夹具的影响

夹具的影响在宣钢公司作物理性能试验中发生的机率最高,约占到80%以上。主要表现为试样夹持部分打滑,由于试验机在使用一段时间后,各运动部件间会产生磨损现象,使得摩擦系数明显降低,最直观的表现为夹块的夹持面被磨平,在夹持试样后咬合力不够,摩擦力大幅度的减小。当试样受力逐渐增大达到最大静摩擦力时,拉伸的轴向力在瞬时大于了轴向的摩擦力后,试样就会打滑,在表盘上表现为大幅度的回摆,在微机图示中表现为曲线的异常上下波动,并且一般在试验过程中可听到明显的响声,产生虚假屈服现象,见图2

图2拉伸试验中力-变形图(图中曲线下V 形为打滑现象)

6结语

针对上述讨论,在尽可能选择精度高、运行稳定

的试验机的前提下,宣钢技术中心物理性能试验室在多次试验后总结出以下操作经验与同行交流:

(1)消除试验过程中的打滑现象。在条件允许情况下尽可能使用V 型钳口,必要时更换新的钳口。带状试样的钳口应定期检查,一旦发现有严重的磨损应及时更换。在钳口部分加MoS 2以增大钳口与试样的摩擦阻力。

(2)上、下屈服力判定的基本原则:屈服前的第一个峰值力(第一个极大力)判为上屈服力,不管其后的峰值力比它大或小。屈服阶段中如呈现两个或两个以上的下峰力,舍去第一个下峰值力(第一个极小值力),

取其余下峰值力中之最小者判为下屈服力。如只呈现一个下降下峰值力,此下峰值力判为下屈服力。在试验过程中如听到钳口打滑,此点回摆数据不计,在图示上如有较大的曲线波动视为打滑,不计此点数据,必要时进行人工修正。

(3)区分无明显屈服的基本原则:在尽可能消除设备打滑原因之后,如表盘式试验机无明显回摆

现象、

微机控制试验机曲线图上无明显波动曲线视为无明显屈服点,需再取样进行R p0.2的非比例应力点的测定。

(4)在无特殊情况下,尽可能采用位移控制试验的进程,在塑性变形之前(如无明显屈服点应在引伸计变形量超过0.5mm 以上)采用GB /T228-2002中规定的拉伸速率恒速试验。

(5)在长期积累试验数据的基础上,分析钢种的屈服点的范围及是否明显,对超出范围的重取样重点监控,对屈服点长期不明显的钢种要求全部使用引伸计来测定R p0.2非比例应力点。

参考文献

[1]GB /T 228-2002金属材料室温拉伸试验方法.

4

1

实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 (a) (b) 图1-1 试件的截面形式 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA PL L ?= ? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε ???=???= 1 )(000A P A L PL E 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢): 图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸 进入弹性阶段。 σ 1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs : σs = A P SL 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

工力实验实验报告

实验一金属材料拉伸实验 拉伸实验是测定材料在常温静载下机械性能的最基本和重要的实验之一。这不仅因为拉伸实验简便易行,便于分析,且测试技术较为成熟。更重要的是,工程设计中所选用的材料的强度、塑形和弹性模量等机械指标,大多数是以拉伸实验为主要依据。 1.1实验目的 1、验证胡可定律,测定低碳钢的E。 2、测定低碳钢拉伸时的强度性能指标:屈服应力Rel和抗拉强度Rm。 3、测定低碳钢拉伸时的塑性性能指标:伸长率A和断面收缩率Z 4、测定灰铸铁拉伸时的强度性能指标:抗拉强度Rm 5、绘制低碳钢和灰铸铁拉伸图,比较低碳钢与灰铸铁在拉伸树的力学性能和破坏形式。 1.2实验设备和仪器 万能试验机、游标卡尺,引伸仪 1.3实验试样 本试验采用经机加工的直径d =10 mm的圆形截面比例试样,其是根据国家试验规范的规定进行加工的。它有夹持、过渡和平行三部分组成(见图2-1),它的夹持部分稍大,其形状和尺寸应根据试样大小、材料特性、试验目的以及试验机夹具的形状和结构设计,但必须保证轴向的拉伸力。其夹持部分的长度至少应为楔形夹具长度的3/4(试验机配有各种夹头,对于圆形试样一般采用楔形夹板夹头,夹板表面制成凸纹,以便夹牢试样)。机加工带头试样的过渡部分是圆角,与平行部分光滑连接,以保证试样破坏时断口在平行部分。平行部分的长度Lc按现行国家标准中的规定取Lo+d ,Lo是试样中部测量变形的长度,称为原始标距。 1.4实验原理 按我国目前执行的国家GB/T 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。 将试样安装在试验机的夹头中,固定引伸仪,然后开动试验机,使试样受到缓慢增加的 拉力(应 根据材料 性能和试 验目的确 定拉伸速 度),直到 图2-1 机加工的圆截面拉伸试样 拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。

《金属材料室温拉伸试验方法》GBT228-2002实施要点

《金属材料室温拉伸试验方法》GBT228-2002实施要点2006-11-04 15:061 引言 国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。 2 GB/T228-2002标准的适用范围 标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≦0.1mm。对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。③常用的引伸计不适用于此类型产品试样的试验。试样的夹持方法需要特殊夹头等。 3 室温的温度范围 标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。 4 标准中的引用标准 标准中的第二章引用了6个国家标准,即: GB/T2975-1998钢及钢产品力学性能试验取样位置和试样制备(eqv ISO377:1997) GB/T8170-1987数值修约规则 GB/T12160-2002单轴试验用引伸计的标定(idt ISO9513:1999) GB/T16825-1997拉力试验机的实验(idt ISO7500—1:1986) GB/T17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢(eqv ISO2566—1:1984)GB/T17600.2—1998钢的伸长率换算第2部分:奥氏体钢(eqv ISO2566—2:1984) 标准中通过注日期引用的这6个国家标准是构成GB/T228—2002标准本身不可缺少的部分,应遵照被引用的6个标准中的相关规定和要求,其中被引用的5个标准分别等同和等效相应的国际标准。目前,GB/T8170—1987《数值修约规则》还没有相对应的国际标准。 5 性能和术语定义 5.1性能定义 为了与国际接轨,性能的定义按照国际标准的规定。与原GB/T228—1987相比较,屈服强度与抗拉强度的定义有明显差异,其他性能的定义无实质性差异。 新标准将抗拉强度定义为相应最大力(Fm)的应力,而最大力(Fm)定义为试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。按照这一定义,如图1所示的拉伸曲线,最大力应为曲线上的B点,而不是旧标准中的取其A点的力(上屈服力)计算抗拉强度。 新标准中屈服强度这一术语的含义与旧标准中的屈服点有所不同,前者是泛指上、下屈服强度性能;而后者既是泛指屈服点和上、下屈服点性能,也特指单一屈服状态的屈服点性能(ζs)。因为新标准已将旧标准中的屈服点性能ζs归入为下屈服强度ReL(见标准中的图2d)。所以,新标准中不再有与旧标准中的屈服点性能(ζs)相对应的性能定义。也就是说新标

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

实验一金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率’-:。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉 强度 :「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397 — 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品 种、规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机 加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397 — 86。 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A 。。按标距(I 。)与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例 试样。按国家标准 GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 表1-1 试样 标距 | I 。, (mm) 截面积A 0 ,(mm 2 ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 J A 。或 10 d 任意 任意 短 5.65 JA 。或 5 d 四. 实验原理 (一)塑性材料弹性模量的测试: 实验 金属材料的拉伸实验 夹持过渡 (b

金属拉伸试验试样

lo小于25mm,为保证测量精度,亦可采用。 但在特殊情况下,根据产品标准或双方协议要求采用lo=4do或8do的试样时,亦应遵照执行。此时,对矩形试样,lo应分别等于根号Fo或根号Fo,对于脆性材料,亦可采用lo=。或根号Fo的试样。 定标距试样系原始标距lo与原始横截面积Fo或直径间do间无所述比例关系。其标距lo和平行长度l,应按有关标准或双方协议规定执行。 拉伸试样的分类 棒材试样 对棒材(包括方和六方形等),一般采用圆形试样,其平行部分直径通常为3~25mm。而各部分尺寸之允许偏差及表面加工粗糙度符合图1的和表2的规定。对钢、铜材通常采用do=10mm,lo=5do的比例试样,但有时为了考核产品的整体性能,也可取制do>25mm或尽可能大的圆形试样进行试验。通常铝材尺寸偏小,试样可按有关标准或

双方协议规定执行。对软金属,经双方同意,可采用较低表面粗糙度,但对高强材料,则要求高的加工表面粗糙度,直至抛光。 试样分为带头不带头的两种,仲裁试验时应采用前者,后者一般用于不宜或不经机加工而整拉的棒材。 板材试样 对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为~25mm),采用10、、15、20、25和30mm六种比例试样,尽可能采用lo=而的短比例试样。试样厚度一般应为原轧制厚度,但在特殊情况下也允许多号用四面机加工的试样。通常试样宽度与厚度之比不大于421或821,其试样按表10规定散制,对铝钱材则一般可采用较小宽度。对厚度小于的薄板(带),亦可采用定标距试样。试样各部分允许机加工偏

差及侧边加工粗糙度应符合图2和表3的规定,对四面机加工的矩形试样,其机加工偏差应用于圆形试样,如表2所示。 根据有关标准要求,对厚钢板亦可取制垂直轧制面(Z向)的拉伸试样,此时应按钢板厚度及表2的规定,采用带头圆形试样为宜。必要时,可焊钢板于两端,以利夹持。对中、薄高强度板材,亦可采用头部带销孔的试样,以免其在拉伸过程中的卷曲现象。矩形试样分为带头和不带头的两种,带头试样两头部轴线与平行部分轴线间的偏差不得大于。仲裁试验时应采用带头试样。 管材试样

大学物理-拉伸法测弹性模量 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为 01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量 忽略及图中的相似几何关系, 可以得到 n B b l ??= ?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 N p f x ?= , 又在仪器关系上, 有x=2B , 则N p f B ??=21 , (100=p f )。 由上可以得到平面镜到标尺的距离B 。

金属的拉伸实验(实验报告)

金属的拉伸实验一 一、实验目的 1、测定低碳钢的屈服强度二S、抗拉强度匚b、断后延伸率「?和断面收缩率'■ 2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图( F —「丄曲线) 3、分析低碳钢的力学性能特点与试样破坏特征 二、实验设备及测量仪器 1、万能材料试验机 2、游标卡尺、直尺 三、试样的制备 试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其 长度I。称为“标矩”。两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。直径d0= 20mm ,标矩 I。=2O0nm(k 1 0或I0 =100mm(l0 =5d0)的圆形截面试件叫做“标准试件”,如因原 料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。 四、实验原理 在拉伸试验时,禾U用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F —△L曲线。图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲 线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材 料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的 拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点 便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横 截面面积并将横坐标(伸长△ L)除以试样的原始标距I。得到的曲线便与试样尺寸无关,此曲线称为应力一应变曲线或R —;曲线,如图2 —12所示。从曲线上可以看出,它与拉伸 图曲线相似,也同样表征了材料力学性能。 爲一上屈服力:①一下屈服力'厂最尢力;叫一断裂后塑性伸恰业一彈性佃长 團2—11低碳钢拉伸曲线 拉伸试验过程分为四个阶段,如图2—11和图2-12所示。 (1 )、弹性阶段OC。在此阶段中拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2-12所示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。

ASTM E8M-09 中文版 金属材料拉伸试验方法

金属材料拉伸试验的标准试验方法 1 范围 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 除非另有规定,室温应定为10—38℃。 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2 参考文件 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法

E6 力学性能试验方法相关术语 E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL [%])——在试样出现缩颈、断裂或者二者都出现之前, U 所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

有色金属细丝拉伸试验方法

《有色金属细丝拉伸试验方法》国家标准编制说明 (征求意见稿) 国标(北京)检验认证有限公司 二〇一八年十月十八日

《有色金属细丝拉伸试验方法》 编制说明 1工作简况 1.1项目背景和立项意义 随着科学技术的进步与国民经济的发展,对于有色金属材料在数量、品种、质量及成本等方面不断提出新的要求;对其化学成分、物理性能以及产品的可靠性、稳定性等方面的要求也越来越高,这就需要高精度、高可靠性的工艺、装备、控制技术与检测技术。室温拉伸力学性能是有色金属产品的一项基础性能,国内外针对金属材料的室温拉伸力学性能检测方法,制定和实施了很多标准,例如GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》、GB/T 16865-2013《变形铝、镁及其合金加工制品拉伸试验用试样及方法》、GB/T 34505-2017《铜及铜合金材料室温拉伸试验方法》、ASTM E8/E8M《金属材料拉伸试验方法》、ASTM B557/ B557M《变形及铸造铝、镁拉伸试验方法》、JIS Z 2241《金属材料拉伸试验方法》等,对规范有色金属材料的力学性能检测起到了很大作用。但是,对于有色金属细丝产品来说,由于这些产品的特殊性,不适合采用这些标准方法进行室温拉伸力学性能检测,主要原因有: 1) 横截面积很小的产品,按照标准中建议的量具分辨力测定横截面积,其准确度可能明显超过±2%的要求。例如,直径小于0.05mm的金属细丝,用分辨力0.001mm 的量具测量引起的误差超过±2%,这样,其横截面积测量误差超过±2%。 2) 试样原始标距的标记采用常规的划细线、打小冲点等方法不可行。 3) 试验机的力值范围和分辨力都很小,与常规试验机不同;常规的引伸计也不太可能直接用于这些产品试样的试验。 4) 试样的夹持方法需要特殊的方式等等。 由于上述这些原因,需要针对有色金属细丝产品,制定专门的拉伸试验方法标准,规范有色金属细丝拉伸试验,提高有色金属细丝产品力学性能检测的准确性和可靠性。 国家标准GB 10573-89《有色金属细丝拉伸试验方法》颁布实施二十多年以来,为规范我国有色金属合金丝材的性能检测提供了依据,在有色金属细丝产品的生产贸易以及质量控制方面都起到了巨大的作用。不过,随着我国有色金属合金制造行业的快速发展,有色金属丝材产品的种类也逐渐丰富,我国的有色金属及合金丝、线、条材的标准体系也在发生着不断变化,而且随着现代检测手段和设备的不断更新换代,现行的国家

JIS-Z-2241:2011金属材料拉伸试验方法

目次 1 适用范围....................................................................................... .................................... . 1 2 规范性引用文件................................................................................................................ .... 1 3术语和定义............................................................................................................................... 1 4 符号和说明 (2) 5原理........................................................................................................................ ............. . (8) 6 试样 (18) 6.1形状及尺寸..................................................................................................... .. (18) 6.2试样种类............................................................................................... ......... . (18) 6.3试样加工..................................................................................................... .. (19) 7 原始横截面积的测定 (21) 8 原始标距的标记 (21) 9 试验设备的准确度 (22) 9.1试验机 (22) 9.2延伸计 (22) 10 试验条件 (22) 10.1试验零点的设定 (22) 10.2试样夹持方法 (22) 10.3试验速度 (23) 11 上屈服强度的测定 (24) 12 下屈服强度的测定 (25) 13 规定塑性延伸强度的测定 (25) 14 规定总延伸强度的测定 (25) 15 规定残余延伸强度的验证和测定 (25) 16 屈服点延伸率的测定 (26) 17 最大力塑性延伸率的测定 (26) 18 最大力总延伸率的测定 (26) 19 断裂总延伸率的测定 (26) 20 断后伸长率的测定 (27) 21 断面收缩率的测定 (28) 22试验报告 (28) 23测量不确定度 (29) 23.1一般 (29) 23.2试验条件 (29) 23.3试验结果 (29) 附录A(参考附录)计算机控制拉伸试验机使用的建议 (30) 附录B(规范性附录)厚度0.1mm~<3mm 薄板和薄带使用的试样类型 (31) 附录C(规范性附录)直径或厚度小于4mm 线材、棒材和型材使用的试样类型 (34) 附录D(规范性附录)厚度等于或大于3mm 板材和扁材以及直径或厚度等于或大于4mm 线材、棒材和型材使用的试样类型 (35) 附录E (规范性附录)管材使用的试样类型 (43) 附录F(参考附录)考虑试验机柔度估计的横梁分离速率 (46)

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器 (0-150mm,0.01) 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施

力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ???????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】

<一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2 以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0 n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0 ‘ ,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微

金属材料拉伸试验方法探讨

龙源期刊网 https://www.360docs.net/doc/1211112158.html, 金属材料拉伸试验方法探讨 作者:侯琳 来源:《科学与信息化》2020年第14期 摘要:金属材料在现代机械中的应用十分广泛,将金属材料应用到机械工程中,要注重技术材料的性能,进而使其可以的满足应用需求。在将金属材料应用到机械中,要注重金属材料的拉伸性能,金属材料的这一性能会对其应用造成直接影响。因此,在对金属材料进行应用时,要通过试验方式对金属材料的拉伸性能进行检验,明确金属材料性能,这对于应用金属材料的应用来说意义重大。 关键词:金属材料;金属性能;拉伸试验;试样 力学性能是金属材料可靠性和性能的一项关键标志,而拉伸性对金属材料的具体应用会造成直接影响。对于金属材料拉伸性能可以采取拉伸性试验进行确定,进而获取到金属材料的各项性能,实现对金属材料的合理应用。 1金属材料拉伸试验 通过拉伸试验对金属材料性能进行检查,这是对金属材料质量,以及生产进行检查的一项重要内容,通过拉伸试验对金属材料性能进行检查,可以获取到金属材料的各项指标参数内容,也是反应金属材料力学性能检测的一项重要因素。但是,从实际情况来看,在进行金属材料拉伸试验期间,拉伸试验会受各项不同因素影响,这会对最终的试验结果,以及各项参数内容造成一定影响。此外,各项影响因素不仅会对影响试验结果,而且也会对金属材料应用造成不良影响,因此,在金属材料拉伸实验室,相关作业人员要从实际情况出发,做好相应分析工作,提高试验结果准确性,确保金属材料能够满足应用需求。 2拉伸性试验的具体要求 金属材料拉伸性试验要在室温环境下完成相应的测定,测定试样的横截面大小的尺寸大小不得小于0.1mm2。而针对横截面较小的试样,例如毛细管、金属箔等各种不同类型的试样,因为横截面小,分辨率无法满足具体要求,在实际施工期间划细线、打小冲点等方法进行作业的,都无法实现对试样的准确标记,同时,在小横截面尺寸试验在进行拉伸试验时,也适合采用引伸计,因此,在具体试验时,要采取单独协议。在室温情况下对金属材料进行拉伸试验,要将室温温度控制在10-35℃以内,若温度低于10℃,或者高于35℃,则不再是室温环境。需要特别注意的是,若材料在10~35℃温度范围内十分敏感,要在更加严格的温度内进行试验,通常要将试验温度控制在18~22℃之间,进而确保最终能够获取到精准试验结果。 3金属材料拉伸性试验具体分析

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB 中华人民共和国国家标准 GB/T228-2002 eqv ISO 6892:1998 金属材料室温拉伸试验方法 Metallic materials——Tensile testing at ambient temperature 发布 GB/T228-2002 目次 前言Ⅲ ISO前言Ⅳ 1 范围1 2 引用标准1 3 原理1 4 定义1 5 符号和说明5 6 试样6 7 原始横截面积(So)的测定7 8 原始标距(Lo)标记7 9 试验设备的准确度7 10 试验要求8 11 断后伸长率(A)和断裂总伸长率(At)的测定8 12 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定9 13 屈服点延伸率(Ae)的测定9 14 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定10 15 规定非比例延伸强度(Rp)的测定10 16 规定总延伸强度(Rt)的测定11 17 规定残余延伸强度(Rr)的验证方法11 18 抗拉强度(Rm)的测定11 19 断面收缩率(Z)的测定12 20 性能测定结果数值的修约14 21 性能测定结果的准确度14

22 试验结果处理15 23 试验报告15 附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16 附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于 4mm线材、棒材和型材使用的试样型17 附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试 样类型20 附录D(标准的附录)管材使用的试样类型21 附录E(提示的附录)断后伸长率规定值低于5%的测定方法24 附录F(提示的附录)移位方法测定断后伸长率24 附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25 附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26 附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。2)举例27 附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28 附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31 附录L(提示的附录)新旧标准性能名称和符号对照34 GB/T228-2002 前言 本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。在主要技术内容上与ISO6892:1998相同,但部分技术内容较为详细和具体,编写结构不完全对应。补充性能测定结果数值的修约要求和试验结果处理。增加试样类型。删去附录F(提示的附录)计算矩形横截面试样原始标距用计算图尺;删去附录L(提示的附录)参考文献目录。增加附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(RP);增加附录L(提示的附录)新旧标准性能名称和符号对照。 本标准合作并修订原国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。对原标准在以下方面的技术内容进行了较大修改和补充: ——引用标准; ——定义和符号; ——试样; ——试验要求; ——性能测定方法; ——性能测定结果数值修约; ——性能测定结果准确度阐述。 自本标准实施之日起,代替GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。 本标准的附录A∽D都是标准的附录。 本标准的附录E∽L都是提示的附录。 本标准由原国家冶金工业局提出。 本标准由全国钢标准化技术委员会归口。

相关文档
最新文档