如何根据煤层的厚度确定工作面的长度和走向

如何根据煤层的厚度确定工作面的长度和走向
如何根据煤层的厚度确定工作面的长度和走向

1、如何根据煤层的厚度确定工作面的长度和走向?

答:放顶煤条件下,工作面走向一般为1000~2000m,工作面长度一般为100~200m。

2、放顶煤条件下,如何根据顶板性质布置巷道(不同用途的巷道位置、数量)?答:放顶煤条件下,一般煤层厚、储量较大,工作面走向较长,回采工作面相应的服务时间也较长。该条件下,确定矿井开拓方式(不同用途的巷道位置、数量)必须要考虑顶板的性质。通常开拓巷道、准备巷道布置在煤层底板岩石中,回采巷道布置在煤层中(跟煤层底板);顶板岩性较差、矿山压力较大时,要增大巷道的支护强度,同时工作面回采期间,要加强巷道的维护。

3、放顶煤如何软化煤层?

答:对煤层注水。

4、放顶煤条件下,怎样在煤体中进行瓦斯抽放?

答:从瓦斯抽放时间上讲,采用采前预抽(2~3年)、边采边抽、采空区抽放;从位置上讲,采用高位抽放、本煤层抽放、相邻煤层抽放;从措施上讲,采用开采解放层、区域性抽放、局部性抽放。

5、放顶煤条件下,如何进行通风、瓦斯管理?

答:放顶煤条件下,工作面需要风量大、瓦斯涌出量高。因此,必须加强通风、瓦斯管理。(1)、工作面一般采用“M”型、“W”型通风系统;(2)、工作面供风量1500~2000m3/min。必要时,还要加大工作面供风量;(3)、加强工作面、巷道的清理、维护,确保工作面通风断面;(4)、加强通风系统管理,确保系统稳定、可靠;(5)、工作面安设瓦斯监测监控系统,在工作面进风侧、回风侧、采煤机、工作面回风流中安设瓦斯探头。必要时,在工作面上还要加装瓦斯监测

监控探头;(6)、严格瓦斯检查管理制度,设专人按《煤矿安全规程》要求定时、不定时、定点、不定点检查工作面上、中、下、上隅角以及瓦斯涌出较大地点的瓦斯浓度;(7)、加强工作面防尘管理,煤机要安设内外喷雾;工作面支架(分组)上要安设自动或手动防尘喷雾;(8)、工作面、巷道要定期、定时清扫或洒水防尘;(9)、工作面进风流、回风流中,需安设风流净化设施;(10)、采用长孔、短孔对工作面煤体进行注水;(11)、工作面进风、回风侧巷道中,需安设隔爆设施;(12)、工作面管理人员、技术人员、维护人员、煤机手均要携带性能良好的瓦斯便携仪;(13)、加强工作面机电设备管理,杜绝失爆现象。所有机电设备(含通讯、照明)防爆等级要大于隔爆型;(14)、加强工作面内、外因火灾管理,定期检查工作面进风流、回风流、上隅角、巷道高冒、采空区一氧化碳浓度、温度等其它火灾指标。

6、如何预防内因火灾?

答:(1)、定期检查工作面进风流、回风流、上隅角、巷道高冒、采空区一氧化碳浓度、温度等其它火灾指标;(2)、巷道高冒时,

煤层的厚度变化及原因

第二节煤层的厚度变化及原因 煤层厚度是指煤层顶底板岩石之间的垂直距离。根据煤层结构,煤层厚度可分为总厚度、有益厚 度和可采厚度。煤层总厚度是顶底板之间各煤分层和夹层厚度的总和;有益厚度是指煤层顶底板之间 各煤分层厚度的总和;可采厚度是指在现代经济技术条件下适于开采的煤层厚度。按照国家目前有关 技术政策,根据煤种、产状、开采方式和不同地区的资源情况等规定的可采厚度的下限标准,称为最 低可采厚度。达到最低可采厚度以上的煤层,称可采煤层(图4-6)。 不同煤层的厚度有很大差别,薄者仅数厘米,俗 称煤线,厚者可达二百多米。考虑到开采方法的不 同,可采煤层的厚度可分为五个厚度级:煤厚0.3~ 0.5米为极薄煤层;0.5~1.3米为薄煤层;1.3~3.5 米为中厚煤层,3.5~8.0米为厚煤层;大于8米的 为巨厚煤层。 图4-6煤层的厚度煤层厚度是影响煤矿开采的主要地质因素之 一,煤层厚度不同,采煤方法亦不同;煤层发生分岔、变薄、尖灭等厚度变化,直接影响煤炭储量的 落实和煤矿正常生产。因此,研究煤层厚度变化的规律就成为煤田地质工作的重要课题之一。 煤层厚度的变化是多种多样的,但就其成因来说,可以分为原生变化和后生变化两大类。原生变 化是指泥炭层堆积过程中,在形成煤层顶板岩层的沉积物覆盖以前,由于各种地质作用的影响而引起 的煤层形态和厚度的变化;泥炭层被新的沉积物覆盖以后或煤系形成之后,由于构造变动、岩浆侵入、 河流剥蚀等地质作用所引起的煤层形态和厚度的变化,则称后生变化,现分别阐述如下。 一、煤层厚度的原生变化 煤层厚度的原生变化,主要包括聚煤坳陷基底不均衡沉降引起的煤层分岔、变薄、尖灭,沉积环 境和古地形对煤层形态和煤厚的影响以及河流、海水对煤层的同生冲蚀等。 (一)聚煤坳陷基底不均衡沉降引起的煤厚变化 煤系形成过程中,聚煤坳陷基底的沉降常常是不均衡的,如沼泽基底的差异性运动,同沉积褶皱、 同沉积断裂以及差异小振荡运动等,对于煤层的形态和厚度变化无不产生深刻的影响。 东北地区一些晚侏罗一早白垩世煤田,由于聚煤坳陷基底的差异性沉降运动,形成典型的“马尾 状,煤层。盆地边缘受同沉积盆缘断裂控制,沉降速度快,含煤岩系以洪积一冲积相粗碎屑岩为主,盆 地内部相对比较稳定,主要为湖泊、沼泽相沉积。从盆地中部向盆地边缘,煤层的形态和厚度变化大 致可划分为三个带:第一为厚煤带,层数少,厚度大,有时可达几十米至上百米,煤层结构比较复杂;

煤层号

采矿证指定的开采煤层为8,9,10,16#煤层;划定矿区范围内可采煤层为8,9,10号煤层,从表4—1可以看出,可采煤层中:9号煤层可采为9—2号煤层,16号煤层中可采为16—2号煤层,因此本核实报告只对上述4个煤层进行叙述。 二。指定开采煤层分述 1,8号煤层 赋存于下二叠统P1SX1地层上部,,煤层厚度0.90—1.97米,平均厚度1.49米,区域属主要开采煤层,煤矿范围属全区可采煤层。 三。煤层 一,含煤性 该区含煤地层为上石炭统太原组和下二叠统山西组,共含煤20层,自上而下编为1—19号。上石炭统太原组第一岩段含14,15,16,17,18,19号煤层,称丙煤组,14号煤层为薄煤层或煤线,只个别点可采,16号煤层全区发育,为主要可采煤层,15,17—1号煤层属局部可采煤层,18号煤层为薄煤层,局部沉积。第二岩段含11,12,13号煤层,下二叠统山西组第一段含7,8,9—1,9—2,10号煤层,称乙煤组,其中7号煤层为薄煤层及煤线,局部沉积,9—2,10号煤层全区较发育,为全区主要开采煤层,8号煤层为局部可采煤层,第二岩段含5,6号煤层,第三,四岩段含2,3,4号煤层,称甲煤组,为薄煤层或煤线,仅个别点可采。

含煤地层平均总厚171.83米,平均煤层总厚15.01米,含煤系数8.7%,煤层结构属复杂至简单。 煤矿范围内含煤14层,煤层厚度,可采情况,煤层间距见表4—1. 矿区范围拐点坐标: 点号X坐标Y坐标 1 1,4382820.00 36408000.00 2,4382820.00 36407000.00 3,4383200.00 36407000.00 4,4383200.00 36407460.00 5,4383675.00 36407450.00 6,4383610.00 36406657.00 7, 4384720.00 36406610.00 8, 4384550.00 36407325.00 9, 4384165.00 36407370.00 10, 4383320.00 36408000.00 剔除16号煤层面积 1,4383200.00 36407460.00 2,4383200.00 36407000.00 3,4382820.00 36407000.00

综采工作面设计使用说明

山西大同李家窑煤业有限责任公司82205工作面设计说明书 矿别: 李家窑煤业 单位: 生产技术科 工作面名称: 82205工作面 二〇一七年一月十日

目录 前言 (3) 第一章工作面概况及地质特征 (3) 第一节概况 (3) 第二节地质特征 (4) 第二章采煤方法、设备选型及巷道布置 (6) 第一节采煤方法及设备选型 (6) 第二节工作面巷道布置 (7) 第三章工作面生产能力及生产系统 (9) 第一节工作面生产能力 (9) 第二节生产系统 (10) 第三节机电设备及供电 (16) 第五章技术经济指标 (53) 第六章安全技术措施 (54)

前言 根据《采矿设计手册》、《综采技术手册》及《煤矿安全规程》等有关规定及要求,对82205综采工作面进行设计,该工作面位于我矿+1240m 水平一盘区,预计2017年8月15日采出。 第一章工作面概况及地质特征 第一节概况 一、工作面位置及地表概况 本矿井位于大同煤田南东部,大同市左云县东南26km,小京庄乡李家窑村南,行政区划隶属左云县小京庄乡,经济类型为集体所有制企业,其地理坐标为:东经112°44′41″~112°47′52″,北纬39°45′57″~39°48′18″。 井田东南距北同蒲铁路40km,并有小峪及峙峰山运煤专用线于宋家庄站与北同蒲铁路相接,宋家庄站至大同52km,与大秦铁路相连;南至朔州到太原长303km。另外北东有同煤集团王村矿至大同的运煤专线。井田北东有左(云)~吴(家窑)公路,往南东与大运高速公路相接,井田南东有岱(岳)~马(营)公路与大运也相连,另外井田内和周边均有简易公路与以上两条公路相连,交通较方便。 该矿东与峙峰山煤业有限公司相邻,西北与整合后的左云县长春兴煤矿相邻。南、北无其它煤矿开采。 二、工作面参数 82205工作面为22#煤层综采工作面,本采面北部为已采82203工作面,南部为82207设计采面,西部为22#煤层82204采面。 工作面标高:1302~1333.5m 工作面走向长度:890m

煤层按倾角分类

煤层按倾角分类: 近水平煤层< 8 缓(倾)斜煤层 8 ~ 25 中(倾)斜煤层 25 ~ 45 急(倾)斜煤层> 45 按厚度分类: 薄煤层< 1.3m 中厚煤层~ 3.5m 厚煤层> 3.5m 稳定性分类: 稳定煤层 较稳定煤层 不稳定煤层 极不稳定煤层 评价煤质的常用指标:水分( W )、灰分( A )、挥发分( V )和固定碳( FC )、发热量( Q )、胶质层厚度( Y )、粘结指数()、含矸率。 中国煤的分类。 工业储量,可采储量,远景储量,设计损失煤量的概念。 A 、 B 、 C 、 D 级储量,煤炭储量分类表。钻孔柱状图,地质剖面图,煤层底板等高线图。常用的采掘工程图。 2. 煤田的划分 煤田、井田的概念。煤田划分为井田的原则及井田境界的划分方法。井田储量、矿井生产能力和服务年限以及三者之间关系: 我国各类矿井服务年限的要求。储量备用系数 K 的含义及取值。井型的概念。 井型分类。 大型矿井:矿井设计生产能力为 120 、 150 、 180 、 240 、 300 、 400 、 500 万 t/a 及 500 万 t/a 以上的矿井; 300 万 t/a 以上的矿井为特大型矿井。 中型矿井:矿井设计生产能力为 45 、 60 、 90 万 t/a 。 小型矿井:矿井设计生产能力为 9 、 15 、 21 、 30 万 t/a 。 3. 井田内的再划分 常用井巷名称及含义。阶段、水平、开采水平的概念。 井田划分为阶段和水平,阶段内再划分:采区式和带区式划分。采区走向长度和倾斜长度的确定。阶段再划分为带区的条件。采区和带区的开采顺序。 矿井主要生产系统:运煤系统、通风系统、运料排矸系统、排水系统。 开拓巷道、准备巷道、回采巷道的概念及范围。 4. 井田开拓 井田开拓及开拓方式的概念。开拓方式按井筒形式分为:立井开拓、斜井开拓、平硐开拓、综合开拓。 立井开拓:立井多水平分区式开拓的巷道布置及主要生产系统。立井单水平分带式开拓的巷道布置及主要生产系统,分带式开拓方式的优缺点及适用条件。 斜井开拓:斜井多水平分区式开拓的巷道布置及主要生产系统。斜井井筒的布置及适用条件,底板穿层斜井和顶板穿层斜井。 平硐开拓:平硐的形式:走向平硐和垂直走向平硐。两者的适用条件。 三种开拓方式比较和综合开拓。 5. 井田开拓中几个问题分析 上、下山开采的概念。上、下山开采在掘进方面、运输方面、排水方面通风方面的不同特点及其优缺点。下山开采的适用条件。 水平高度的概念。影响开采水平高度的主要因素。开采水平高度的确定。 开采水平大巷包括阶段运输大巷和阶段回风大巷。根据煤层数目和间距不同,阶段运输大巷有分煤层运输大巷、分组集中运输大巷及集中运输大巷。各种大巷布置方式的优缺点及适用条件。 井筒位置确定原则。

第三章 含煤地层与煤层

第三章含煤地层与煤层 第一节含煤地层 我省的聚煤时期有四期:一是石炭二叠纪月门沟群(包括石炭世本溪组、早二叠世太原组、山西组及石盒子组下部地层);二是早中侏罗世淄博群的坊子组;三是古近纪的五图群和新近纪临朐群的山旺组;四是零星分布的第四纪泥炭层。现对各时期含煤地层岩石特征和分布规律分述如下: 一、石炭二叠纪含煤地层 图3.1.1 山东省石炭系—三叠系露头分布及地层区划图(采用山东岩石地层) 1.月门沟群;2.石盒子组;3.石千峰组;4.二马营组;5.重要断层;6.二级、三级地层分区界线;7.鲁西地层分区; 8.济南—淄博地层小区;9.济宁—临沂地层小区;10.华北平原地层分区;11.鲁东地层分区我省石炭二叠纪煤系地层在沂沭断裂带以西普遍分布,沂沭断裂带中,仅

有零星分布(如莒县)(图3.1.1),断裂带以东未见古生代地层发育。在鲁西,无论是鲁中隆起区,还是鲁西南坳陷区、鲁西北坳陷区,石炭二叠系均广泛分布,只是后期由于受历次构造运动抬升,而剥蚀作用的强度不一,各地石炭二叠系的保留厚度有很大差别。其中除淄博、章丘等煤田保留较全外,其它大部分煤田,石盒子组中、上部地层及石千峰群多被剥蚀,石盒子组以下含煤地层,一般都有所保留。在鲁西北地区,在聊考及齐广断层的作用下,新生界喜山期盖层下陷幅度很大,石炭二叠系埋藏较深,剥蚀和保存的情况还不甚清楚,据胜利油田的钻孔资料分析,在凹陷的某些地区,可能有晚二叠世晚期的地层保留(图3.1.2)。 b) (一)石炭纪含煤地层-本溪组(C y 我省的石炭系与华北其它地区一样,缺失下石炭世地层,只发育上石炭世本溪组。主要是一套陆表海碳酸盐台地与泻湖、堡岛体系相交替的含煤沉积建造。沉积厚度差别较大,一般总厚 8~60m。在鲁西广泛分布,多被上覆地层所掩盖,仅有淄博、新汶等地有出露。现叙述如下: 主要由紫色、黄绿色泥岩、页岩为主,夹铝质页岩、铝土矿,底部常具不规则铁矿层,上部偶夹黄灰色砂岩,局部含薄煤层。以奥陶系古风化界面为界,与马家沟组平行不整合或(微角度)不整合接触。同时由于该古风化的剥蚀面凹凸不平,致使本组沉积厚度各地变化较大,有时即使在同一煤田,其厚度也同样不稳定,一般厚为8~60m。沂沭断裂带以西的本溪组厚度自西向东和向东北、东南有增厚之趋势。而且本组底部普遍发育有紫色铁质泥岩(山西式铁矿层)、黄灰-灰白色铝土质泥岩、高岭石粘土岩,及青灰-灰白色铝土岩(G层铝土岩),将这段铁铝岩系称湖田段。局部地区(枣庄、新汶、沾化一带)湖田段之上的碎屑岩变薄或尖灭,湖田段即相当于本溪组,自南向北时代由老至新。与下伏马家沟组平行不整合接触,顶以太原组最底部一层稳定分布的灰岩(草埠沟灰岩或徐家庄灰岩)之底为界与之整合接触。常见植物化石有:Linopteris brong- niartii,Neuropteris gigantea,Bergeria等。属晚石炭世。 主要矿产有铝土矿、硬质耐火粘土矿、G层铝土岩中伴生镓元素。 (二)二叠纪含煤地层 我省的二叠纪含煤地层有早二叠世太原组、山西组、石盒子组中下部地层。

煤矿工作面综采设计

一、地质概况: (一)工作面位置、范围及井上下对照关系 工作面地面位置:位于许疃镇与集南王家附近,地表为季节性河流和农田。 该面位于82采区左翼第二区段,南侧为81采区7114工作面,北侧为82采区上山。上邻8221工作面(尚未开拓),下邻8225工作面(尚未开拓),顶部7123及7223工作面已回采完毕。 工作面概况:该面可采走向长600 m,倾斜长152m。总面积约91200 m2。工作面标高- 410.9~- 460.0m。 (二)煤层及围岩情况: 82煤层属二迭系下石盒子组,该煤层由亮煤和半亮煤组成,具有玻璃光泽,该工作面煤层厚度1.9~2.46米,平均2.18米,结构简单,赋存较稳定。倾角一般在4°~28°左右,平均16°,该煤层与上覆72煤层的层间距为8.95~16.23米,平均为15.78米,与下伏83煤层的层间距0.45~2.1米,距下部铝质泥岩约12.5米。 该工作面顶板为细砂岩,厚度平均为13.86m上部水平层理,浅灰色;中部灰白色细砂,以石英为主,局部含菱铁鲕粒,厚层状;下部灰白色,夹大量植物根部化石而呈波状层理。 该工作面直接底为泥岩,厚度平均为1.27m,灰色,富含植物根部化石,其下为83煤,玻璃光泽。老底为泥岩,厚度平均为4.6m灰色,靠上部较厚,部分地点略带褐色。 (三)地质构造情况:

根据三维勘探资料及72煤层回采的资料,该区域内共发育断层10条,其中三维地震勘探7条,7223回采揭露3条。对8223有一定影响的各断层参数如下: (四)水文地质情况: 本工作面的水文地质条件较简单。该工作面掘进施工时将会出现顶板滴,淋水等现象,对掘进工作面有一定影响。预计涌水量5~10t/h。 8223工作面位于7123工作面、7223工作面采空区下方,由于7123工作面、7223工作面老空区积水,将会对8223工作面掘进施工构成水害威胁。 掘进工作面的充水水源为82煤层顶板砂岩裂隙水及上覆7223老空区积水,特别是在断层等裂隙发育处,滴、淋水现象较严重。 (五)工作面瓦斯、煤尘及地温情况:

中国煤炭分类、煤质指标的分级

煤质指标的分级

中国煤炭分类(2008-06-19 10:04:30) 中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤; 对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf 在于28%以下,则应划分为焦煤类。 这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

煤层最低开采厚度及回采率的规定

中华人民共和国国家发展和改革委员会令 第17号 为合理开发和保护煤炭资源,提高煤炭资源回采率,根据《中华人民共和国煤炭法》及有关规定,我委对《生产矿井煤炭资源回采率暂行管理办法》(煤炭工业部令〔1998〕第5号)进行了修订,形成了《生产煤矿回采率管理暂行规定》,现予发布,自2013年1月9日起施行。 主任张平 2012年12月9日

生产煤矿回采率管理暂行规定 第一章总则 第一条为合理开发和保护煤炭资源,提高煤炭资源回采率,根据《中华人民共和国煤炭法》及有关规定,制定本规定。 第二条本规定适用于在中华人民共和国境内从事煤炭生产的煤矿企业。 第三条煤矿企业应当执行煤炭开采相关规定,遵循合理开采程序,加强煤炭资源管理,达到本规定要求的煤炭资源回采率。 第四条煤矿企业主要负责人对本企业生产煤矿回采率负第一责任人责任,总工程师负技术责任。 第五条国家发展改革委、国家能源局负责全国生产煤矿回采率的监督管理。 县级以上地方人民政府煤炭行业管理部门负责本行政区域内生产煤矿回采率的监督管理。 第六条煤矿设计单位应当严格执行有关规定,采区设计回采率不得低于本规定的要求。 第二章回采率标准 第七条生产煤矿回采率的确定应当坚持安全效益、分类指导的原则,煤矿企业必须合理开采煤炭资源。 第八条煤矿企业必须开采井田范围内的可采煤层。可采煤层的标准如下表: 区实际情况制定。 第九条具备下列情形之一的可采煤层,经具有相关资质单位论证并报请省级煤炭行业管理部门批准,可以不采或者暂时不采: (一)具有重大灾害威胁的(水、火、冲击地压、煤与瓦斯突出等); (二)受地质构造影响严重、岩浆侵蚀破坏严重、不稳定煤层局部达到可采厚度的孤立块段,开采其他煤层又不会造成破坏的; (三)受其他煤矿、煤层开采影响,无法安全开采或者开采极为困难的。

超厚煤层分布与成因模式_胡社荣

0引言 从煤炭开采的角度,可采煤层的厚度可分为5个厚度级:煤厚0.3~0.5m 为极薄煤层;0.5~1.3m 为薄煤层;1.3~3.5m 为中厚煤层;3.5~8.0m 为厚煤层;大于8m 的为巨厚煤层[1]。然而,澳大利亚的吉普斯兰盆地的煤层总厚700多m ,单层煤厚230m ;加拿大哈溪煤田二号露天区煤厚510m ;我国胜利煤田胜利东二号露天煤矿6煤层厚244.7m ,三个煤层在聚煤中心区近于合并,煤层最厚处达320.65m ;我国吐哈盆地沙尔湖坳陷西山窑组总煤厚301m ,单层煤厚 217.4m 。有人将单层煤厚度超过60m 的称之为超厚 煤层[2],也有人将40m 作为超厚煤层的起点[3]。石炭纪至新近纪,各纪都有煤层厚度超过40m 的超厚煤 层发育。人们从不同的角度对煤层的成因进行研究, 特别是对巨厚煤层的成因,提出了多种成因模式。研究这类超厚煤层的成因,对于盆地内煤炭资源的勘探与开采,乃至于煤田地质学理论与聚煤规律学说皆具有重要的意义。 本文就世界单层煤厚度大于40m 的煤田(矿区)的情况与其成因模式作一简单阐述。 1世界超厚煤层分布 自石炭纪以来至新近纪,世界上煤层单层厚度超过40m 的煤田或煤矿区的一些简要情况如表1所示[1~15]。从超厚煤层的分布规律来看,古近-新近纪是超厚煤层发育最多的时代。 2超厚煤层成因 关于煤层的成因,有“原地堆积”和“异地堆积”之说;在解释厚煤层形成的原因时,也经历了含煤地层“旋回说”到运用“层序地层学”解释煤层成因的阶段。对于厚度大于8m 的巨厚煤层,尤其是煤层单层厚度大于40m 的超厚煤层,其成因研究文献较少。 作者简介:胡社荣,男,教授,中国矿业大学(北京)地球科学与测绘 工程学院。 收稿日期:2011-01-05责任编辑:唐锦秀 超厚煤层分布与成因模式 胡社荣1,蔺丽娜1,2,黄灿1,彭纪超1,陈大野1,郝国强1 (1.中国矿业大学,北京100083;2.中国科学院地质地球物理研究所,北京100029) 摘要:煤厚的分级主要是从煤炭开采的角度来确定的,大于8m 的厚煤层一概以巨厚煤层来称之。世界上,煤层总厚最大的是澳大利亚的吉普斯兰盆地,总厚达到700多米;加拿大哈溪煤田二号露天区则为单层煤厚最大的矿区,煤厚达510m ;中国内蒙古自治区胜利煤田胜利东二号露天煤矿,单层(6煤层)厚达244.7m ,总煤厚达320.65m 。从沉积、层序地层与构造诸角度出发,依据现代泥炭堆积与阴沉木堆积等现象进行厚煤层的成因研究,对异地成煤及一些超厚煤层的成因模式进行了介绍和初步评价。关键词:超厚煤层;单层煤厚;累计煤层总厚;成因模式中图分类号:P618.11 文献标识码:A Distribution and Genetic Model of Extra-thick Coal Seams Hu Sherong 1,Lin Lina 1,2,Huang Can 1,Chen Daye 1and Hao Guoqiang 1 (1.China University of Mining and Technology (Beijing),Beijing 100083;2.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029) Abstr act:Coal thickness gradation is mainly from coal mining point of view,thick coal seams thicker than 8m have a general designation of extra-thick coal seam.The Gippsland Basin in Australia has thickest total thickness of coal seams in the world;it can be 700m more as high.The No.2surface coalmine,Hat Creek coalfield,Canada is the mine area with largest single seam thickness of 510m.The Shengli East No.2surface coalmine,Shengli coalfield,Inner Mongolia,China has single seam (No.6coal seam)thickness of 244.7m,total coal thickness 320.65m.Start from deposition,sequence stratigraphy and structural points of view,based on modern peat and buried wood accumulations carried out thick coal seam genetic study.Finally the paper has introduced and preliminarily assessed allochthonous coal-forming and some extra-thick genetic models. Keywords:extra-thick;single coal seam thickness;accumulated total coal seam thickness;genetic model 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.23No.01Jan .2010 第23卷1期2011年1月 文章编号:1674-1803(2011)01-0001-05 doi :10.3969/j.issn.1674-1803.2011.01.01

采煤工作面液压支架的选型

液压支架的选型 一、确定架型 按顶板分类方案对液压支架的架型进行初选。 根据煤炭部(81)煤科字第429号文件关于《缓倾斜煤层工作面顶板分类》方案,按稳定性不同直接顶分为四类,按来压强度不同将老顶分为四级,并分别提出相应的架型、支护强度和顶板管理方法。 1、顶板分类(级) 直接顶分为四类,见〔Ⅰ〕。 老顶分为四级,见〔Ⅰ〕。 2、架型与支护强度初选 正确选择支架的架型,对于提高综采工作面的产量和效率,充分发挥综采设计的效能,实现高产高效,是一个很重要的因素。在具体选择架型时,首先要考虑煤层的顶板条件,〔Ⅰ〕表9-1就是根据国内外液压支架的使用经验,提出了各种顶板条件下适用的架型。它是选择支架架型的主要依据。 对于不同类(级)顶板,其架型、支护强度的选择见〔Ⅰ〕。 液压支架架型的选择除了取决于顶板条件之外,还应考虑以下因素,并结合各类支架的不同性能和特点,最终选择一种较为合理的架型。 ⑴厚度 煤层厚度不但直接影响到支架的高度和工作阻力,而且还影响到支架的稳定性。当煤层厚度大于2.5~2.8m(软煤取下限,硬煤取上限)时,选用抗水平推力强且带护帮装置的掩护式或支撑掩护式支架。当煤层厚度变化较大时,应选用调高范围大的支架。 ⑵煤层倾角 煤层倾角主要影响支架的稳定性,倾角大时易发生倾倒、下滑等现象。当煤层倾角大于 00 18时,应同时具有防滑防倒装置。 10~15时,应设防滑和调架装置,当倾角超过0 ⑶底板性质 底板承受支架的全部载荷,对支架的底座影响较大,底板的软硬和平整性,基本上决定 了支架底座的结构和支承面积。选型时,要验算底座对底板的接触比压,其值要小于底板的允许比压(对于砂岩底板,允许比压为1.96~2.16Mpa,软底板为0.98Mpa左右)。 ⑷瓦斯涌出量 对于瓦斯出量大的工作面,支架的通风断面应满足通风的要求,选型时要进行验算。 ⑸地质构造 地质构造十分复杂,煤层厚度变化又较大,顶板允许暴露面积和时间分别在5~82 m和20m in以下时,暂不宜采用液压支架。 二、主要参数计算和支架型号的确定 1、支护强度(工作阻力) 支架的结构尺寸确定之后,与支架重量和成本关系最大的参数是支架的支护强度。从理论上分析,合理的支护强度应正好与顶板压力相平衡。支护强度过大,不仅增加支架重量和设备投资,而且给搬运、安装带来困难;过小则会造成顶板过早下沉、离层、冒落,使顶板破碎,造成顶板维护困难。因此支护强度的大小应取决于工作面采场矿压的大小。但由于目前对采场矿压的大小还不能进行准确的定量计算,这样目前主要以经验法或实测数据,来确

采煤工作面合理支护密度的确定

采煤工作面合理支护密度的确定 发表时间:2017-09-20T16:50:15.863Z 来源:《防护工程》2017年第12期作者:孙继冬 [导读] 同时还直接决定了煤矿企业生产的安全性,而在支付建设之中支柱的密度是支护建设的关键点。 七台河市茄子河区煤炭生产安全管理局 摘要:为了保证煤矿开采施工具备良好的稳定性,需要工作人员能在做好煤矿支护工程的建设工作同时,在进行支柱结构建设中控制 好支柱结构的密度。本文就采煤工作方面合力确定支护密度进行了分析。 关键词:采煤;支护;密度 在煤矿正常的开采发展过程中,为了保证开采工作能具有良好的安全性以及稳定性,以保证工作人员具有良好的人身安全防护,需要 煤矿企业在生产建设的同时,做好煤矿方面的支护工作,支护建设工作的质量不仅影响了煤矿企业的生产效率,同时还直接决定了煤矿企业生产的安全性,而在支付建设之中支柱的密度是支护建设的关键点。 1煤矿之中支护建设的重要原则 煤矿之中在实施支护建设的阶段中,通常会使用单根支柱的方式来完成支护系统的建设但由于煤矿类型多样化,并且每种类型的煤矿 都有其特点,所以在一些较为特殊的煤矿之中,还需要能使用有针对性的支护方式来完成支付系统的建设,进一步保证煤矿具有良好的稳定质量,为工作人员采矿作业制造一个安全稳定的工作环境。而是在实际的支护建设过程中,如果采用了单根支柱模式的支护体系建设,那么就要注意支护结构的柱间距离以及相应的角度、支柱长短数值等方面的情况,并在支柱体系统建设中能采用科学的方式进行布局。在支护系统建设的过程中,需要施工人员能科学的进行支护系统设计以及施工。在施工中也要掌握支护系统建设的关键点。首先,在实施支柱结构建设的阶段,要保证这些支柱结构都能排列在同一条直线上,当然,如果一些煤矿的矿道在开采过程中出现了弯曲,那么也要根据实际情况灵活的进行优化。而在支柱结构建设中江所有支柱排列在同一条直线上,就能使得工作面所承受的力量能达到一种均匀分布的情况,否则其压力就会集中在某一部分区域中,并且压力的数值也会显著提升,这样也就会对煤矿的安全稳定造成影响。 其次,在进行支柱结构建设的阶段,必须要充分的遵守设计的要求以及设计规范,尤其是对支出结构数量方面的要求必须进行严格的 执行,同时要杜绝施工人员私自减少支柱数量的情况,支柱结构的布局、安排以及建设数量都是经过科学测算的,并达到了均衡压力的目标。一旦在支柱结构的施工阶段缩减了支柱数量,那么就会使得压力分布出现不均匀的情况,进而导致煤矿结构出现坍塌和其他情况,影响矿下工作人员的生命安全。煤矿企业为了保证支柱结构能具有良好的建设质量,需要开采人员能按照行制定好的开在计划以及相应规定进行开采作业,并在开采中严格的遵守已经制定好了开采进度规划,如果在开采中出现了随意开展或者加速开采的情况,那么也就可能会导致支柱结构在建设方面无法跟上施工开采速度,进而导致支护结构的建设存在间距过大,或者说是间距过小的情况。 第三,在进行支柱结构制造以及设计的阶段之中,要能有效的控制好支柱结构的长短。如果支柱结构过短,那么在实施支撑建设的阶 段支柱就无法达到设计阶段所要求的支撑力目标,使得支撑住存在支撑力不足的情况。而相对的如果支撑住长度过长,那么由于受到空间局限性的影响使得支护结构的角度不能满足设计阶段的要求,在这样的情况下同样会导致支柱结构失去支撑的效果,影响了煤矿工程整体的稳定性。 最后,要控制好支柱结构的柱间距离。如果支柱结构的柱间距离在建设中存在过大的情况,那么也就会使得其间隔面积超出预期目 标,进而造成支柱结构稳定性下降。而如果支柱之间的距离过小,那么虽然能保证顶板结构具有良好的稳定性,但是由于空间有限、支柱过于密集,就会给施工人员的工作带来不便。 2采煤工作面合理支护密度的确定 合理的确定采煤工作面的支护密度对于保证采煤作业的正常高效生产具有很大影响作用,因此,在确定支护密度时必须要综合考虑施 工现场的地质条件,以及作业需要,根据支护工程施工有关规定与技术要求进行,以实现最佳的支护密度值。 2.1影响支护密度的因素 在采煤工作面的支护密度确定中,其主要的影响因素有顶板压力的大小;支柱类型、性能、质量的优劣;工作面支护布置的方式以及 生产管理水平的高低、操作是否合理,工作面推进快慢,工作面的规章制度是否健全,执行是否认真等多个方面。 2.2工作面顶板压力计算 支柱所承受的载荷由下列三个部分组成:直接顶的重量作用到支柱上的载荷Q1;由于裂隙影响,而使老顶不能形成平衡拱那部分岩石 重量及老顶周期压力影响,通过直接作用到支柱上的载荷Q2;由于支柱性能改变及操作质量影响使支柱所承受的附加载荷Q3。由于矿田煤层顶板多为I?Ⅱ类顶板,因此,以I.Ⅱ类顶板特点为依据。通过煤层采高计算直接顶垮落高度和岩石重量,并用系统数考虑老顶和支护质量的影响,对顶板压力做以计算。 2.3单体液压支柱的选型与实际工作阻力的计算 2.3.1支柱选择的依据:不同型号的支柱工作阻力,支护密度的大小也不同.因此。在确定支护密度之前,要对支柱进行选型,以确定支 柱的额定工作阻力。为此,以计算支柱的最大与最小高度,做为支柱选型的依据。 2.3.2单体液压支柱实际工作阻力的计算,在工作面上由于单体液压受支柱完好情况、支柱支护质量、控顶距变化、支柱在工作面中所 处的位置及支柱增阻特性等不同因素的影响.其实际可能达到的工作阻力变化是很大的。因此不能用说明书上的工作阻力直接进行支护密度的计算,必须用支柱实际可能达到的阻力计算支护的密度。 2.4支柱支护密度的确定 (1)支护密度的选择计算。由于支柱实际可能达到的工作阻力Ps和顶板压力Pi已经确定,因此,可用下式计算工作面的支护密 度.Ni=Pi/Ps,式中Ni--顶板支护密度,根/立方米;Pi一顶板单位面积上的压力;PF一支实际可能达到的工作阻力。而工作面实际支护密度还要受场支架布置方式、下料、行人、机道宽度、通风断面等条件的限制,因此,必须通过对采场支架布置图的支护密度进行计算,才能验算其是与M值相符合与否。 (2)s

7煤层地质情况

7煤层地质情况 是区内主要的可采煤层,也是辅助标志层(B 辅);位于煤系的上部,上距5-3煤层底界10.5~29.0m ,平均21.63m ;下距10煤层顶界5.5~20.5m ,平均10.79m 。 该煤层见煤点共63点,煤层总厚1.00~3.43m,平均2.33m ,一般2.00~2.60m ;大于1.30m 占90%;大于2.00m 者占68%;大于2.00m 者分布于井田东西两区域。有益厚度1.00~3.06m ,平均2.20m 。可采性指数为100%、煤层的变异系数为23.7%,属稳定型煤层(表3-10)。 表3-10 7煤层厚度稳定性评价表 7煤层为简单至较简单结构,含矸石者占41%,含矸1~2层,绝大多数含矸1层,一般位于煤层中部,矸石者总厚0.07~0.89m ,平均0.30m ;含矸点主要横向分布在井田中部,见图4.2.5~3;据本次勘探统计岩性为泥岩,偶见粘土岩。 该煤层的直接顶板以粉砂质泥岩为主,其次是泥质粉砂岩、泥岩,少数为粉砂岩、细砂岩;未见伪顶。直接底板以泥质粉砂岩、泥岩、粉砂质泥岩为主,其次是细砂岩,少数点见粉砂岩;偶见伪顶,岩性为泥岩。 综上所述,7煤层层位稳定,全区发育,属全区可采的稳定型中厚煤层。控制程度高(表3-11),煤层对比可靠,煤层厚薄区域划分较清楚,该煤层与1、3煤层同属本井田最主要可采煤层。 表3-11 7煤层控制程度表(以总厚度统计) 7煤层瓦斯 可燃物瓦斯含量为7.00~21.11ml/g ,平均12.97ml/g ;煤的瓦斯含量为5.25~16.12ml/g ,平均9.45ml/g ;瓦斯成分:CH 4为67.98~98.39%、平均91.09%;C 02~ C 0 8为0.35~2.48%、平均1.01%;CO 2为0.16~1.92%、平均1.14%;N 2平均2.44%。

综采工作面设备选型设计与计算

前言 综合机械化采煤,是加速我国煤炭工业发展,大幅度提高劳动生产率,实现煤炭工业现代化的一项战略措施。综合机械化采煤不仅产量大、效率高、成本低,而且能减轻笨重的体力劳动、改善作业环境,是煤炭工业技术的发展方向。我国综采技术日趋成熟,生产水平、工艺水平均已进入世界先进行列。综合机械化采煤设备选择的是否合适,决定着设备能否正常运行、能否达到优越的技术经济效果以及能否获得良好的安全环境。影响设备选型的原始因素有两类:一类是围岩的岩石特征和地质条件,包括顶底板岩石的力学性能、煤层厚度、煤质硬度、倾角和构造等;另一类是围岩(缓倾斜煤层为顶板)的工程特征,如顶板移动规律和它与支架相互作用的状况等。为了更好地发挥机械化的效益,应根据不同的地质和煤层赋存条件、采煤机械化设备的合理选型计算、设备配套、设备布置以及与之相适应的工作面有关参数选择等,是综合机械化开采设备的重要内容。为此,结合我们专业的教学内容和安排,编写了《综采工作面设备选型设计与计算》指导书,以供学生课程设计参考。 书中如有缺点和错误,恳请读者批评指正。 编者 2006.10

目录 第一章概述 (1) 一、设计题目、任务和要求、设计条件 二、选型的基本原则 第二章采煤机的选型 (2) 一、初选采煤机(确定型号) 二、滚筒 三、电机功率 四、牵引力 五、防滑设备 六、采煤机允许的最大牵引速度 七、采煤机喷雾供水装置 八、采煤机的稳定性 第三章刮板输送机选型 (11) 一、初选刮板输送机 二、运输能力的验算 三、刮板输送机电机功率的验算及电机的数量 四、刮板链强度验算 第四章液压支架的选型 (15) 一、确定架型 二、主要参数计算和支架型号的确定 三、性能验算 四、支架布置台数 第五章乳化液泵站的选型 (23) 一、乳化液泵 二、乳化液泵的电机功率 三、乳化液箱容积的验算 四、乳化液 第六章配套验算 (27) 一、通风计算 二、设备的空间尺寸配套关系 三、综采工作面布置图 参考书 (30) 附录1:采煤机技术特征表 (31) 附录2:刮板输送机技术特征表 (43) 附录3:缓倾斜煤层回采工作面顶板分类方案 (44) 附录4:经济型、轻型系列综采设备 (45) 附录5:液压支架技术特征表 (46) 附录6:三机配套附图 (47)

采煤工作面合理支护密度的确定

采煤工作面合理支护密度的确定 【摘要】本文主要分析了煤炭开采过程中,关于采煤工作面的支护密度的确定问题。文章首先分析了采煤工作面合理支护的基本原则,继而从影响支护密度的因素、工作面顶板压力的计算、单体液压支柱的选择以及支柱支护密度的确定等几方面详细探讨了采煤工作面支护系统中支护密度的合理确定方法及注意事项。 【关键词】采煤工作面;顶板压力;支护密度;确定 在煤炭企业的日常开采生产工作中,为了确保生产的正常稳定和开采人员的安全,都需要对采煤工作面进行必要的支护,支护系统工程的施工质量以及支护方式的合理性与否是直接影响到开采效率与安全的关键。为此,必须要加强对采煤工作面支护作业的管理,确保支护系统的稳定可靠。而其中,支护密度的合理确定不但能够保证采煤生产顺利进行,而且能够降低支护成本,减少支护设施对开采工作的影响,提高生产效率,节约成本,增大生产经济效益。本文中笔者就从实践经验出发,来探讨在采煤工作面应当如何确定支护系统的最佳支护密度。 1、采煤工作面合理支护的基本原则 一般情况下,采煤工作面的支护系统大都是以单根支柱进行支护,除非是顶板的情况较为特殊,方才采用一些特殊的支护形式与单根支柱结合使用来实现工作面的支护体系,以确保顶板的稳定性,为采煤作业提供一个安全稳定的作业空间。其中,在采用单根支柱作为支护体系的主要支护方式时,需要从支柱的柱距、排距、排数、角度以及长短等各个方面对支柱的支护方式进行合理布局,以确保支护质量。因此,在采煤工作面进行支护系统施工时,需要做到按照一定的支护布置原则来进行设计施工。 首先,支柱的排列应当处于一条直线上,当然这样排列的前提条件是采煤工作面的煤壁是呈直线形态的,这样才能保证工作面的所有部位都处于一种均匀受力的状态,形成一定的压力集中点。否则压力集中点处的顶板压力会是其他部位顶板压力的数倍,这样就极易使顶板因失控而掉落。 其次,支柱的排数必须要满足设计要求,不可擅自减少支柱的排数,否则就会降低整个支护系统的支撑作用,从而发生切工作面的事故。另外,要确保采煤作业是完全按照相关规定合理开采,并遵照一定的推进顺序进行开采,否则支柱的排距就无法根据开采进度合理推进,从而出现排距过大或过小的状况,影响支护系统的稳定性。 第三,要保证支柱的长度恰当合理。若支柱过短,则无法达到预期的初撑力要求,无法起到支撑作用。而支柱过长,就会使支柱的角度难以满足要求,同样也会形成无效的支柱。

如何根据煤层的厚度确定工作面的长度和走向

1、如何根据煤层的厚度确定工作面的长度和走向? 答:放顶煤条件下,工作面走向一般为1000~2000m,工作面长度一般为100~200m。 2、放顶煤条件下,如何根据顶板性质布置巷道(不同用途的巷道位置、数量)?答:放顶煤条件下,一般煤层厚、储量较大,工作面走向较长,回采工作面相应的服务时间也较长。该条件下,确定矿井开拓方式(不同用途的巷道位置、数量)必须要考虑顶板的性质。通常开拓巷道、准备巷道布置在煤层底板岩石中,回采巷道布置在煤层中(跟煤层底板);顶板岩性较差、矿山压力较大时,要增大巷道的支护强度,同时工作面回采期间,要加强巷道的维护。 3、放顶煤如何软化煤层? 答:对煤层注水。 4、放顶煤条件下,怎样在煤体中进行瓦斯抽放? 答:从瓦斯抽放时间上讲,采用采前预抽(2~3年)、边采边抽、采空区抽放;从位置上讲,采用高位抽放、本煤层抽放、相邻煤层抽放;从措施上讲,采用开采解放层、区域性抽放、局部性抽放。 5、放顶煤条件下,如何进行通风、瓦斯管理? 答:放顶煤条件下,工作面需要风量大、瓦斯涌出量高。因此,必须加强通风、瓦斯管理。(1)、工作面一般采用“M”型、“W”型通风系统;(2)、工作面供风量1500~2000m3/min。必要时,还要加大工作面供风量;(3)、加强工作面、巷道的清理、维护,确保工作面通风断面;(4)、加强通风系统管理,确保系统稳定、可靠;(5)、工作面安设瓦斯监测监控系统,在工作面进风侧、回风侧、采煤机、工作面回风流中安设瓦斯探头。必要时,在工作面上还要加装瓦斯监测

监控探头;(6)、严格瓦斯检查管理制度,设专人按《煤矿安全规程》要求定时、不定时、定点、不定点检查工作面上、中、下、上隅角以及瓦斯涌出较大地点的瓦斯浓度;(7)、加强工作面防尘管理,煤机要安设内外喷雾;工作面支架(分组)上要安设自动或手动防尘喷雾;(8)、工作面、巷道要定期、定时清扫或洒水防尘;(9)、工作面进风流、回风流中,需安设风流净化设施;(10)、采用长孔、短孔对工作面煤体进行注水;(11)、工作面进风、回风侧巷道中,需安设隔爆设施;(12)、工作面管理人员、技术人员、维护人员、煤机手均要携带性能良好的瓦斯便携仪;(13)、加强工作面机电设备管理,杜绝失爆现象。所有机电设备(含通讯、照明)防爆等级要大于隔爆型;(14)、加强工作面内、外因火灾管理,定期检查工作面进风流、回风流、上隅角、巷道高冒、采空区一氧化碳浓度、温度等其它火灾指标。 6、如何预防内因火灾? 答:(1)、定期检查工作面进风流、回风流、上隅角、巷道高冒、采空区一氧化碳浓度、温度等其它火灾指标;(2)、巷道高冒时,

采煤工作面设计规范

采煤工作面设计规范 一、范围 1、本规范规定了采煤工作面设计的程序、依据、技术内容、设计说明书编写的格式。 2、本规范适用于综采工作面、综采放顶煤工作面、水采工作面的设计。 二、设计程序 1、采煤工作面设计由矿生产技术部门按采煤工作面衔接安排,确定工作面设计或项目设计负责人。 2、由矿总工程师组织有关科(部)室,根据采区设计研究确定采煤工作面设计的具体原则。 3、设计负责人根据设计指令下达设计通知单,通知有关单位提供相关基础资料或者通知各专业根据相关基础资料进行专业设计。 4、设计负责人或者各专业根据确定的设计原则及收集的相关资料进行采煤工作面设计。 5、编制采煤工作面设计说明书。 6、由矿总工程师组织有关单位负责人对采煤工作面设计进行审查。经修改通过后报送长治公司进行审核备案。 三、设计依据 1、长治公司批准的采区设计。 2、矿总工程师批准的掘进地质说明书。 3、采面位置、范围,井上、下关系及四邻采面的地质情况。包括煤层赋存情况、水文地质、瓦斯及二氧化碳等有害气体赋存情况与涌出特征,煤层爆炸倾向,煤层自燃发火倾向及分类情况。 4、采面内煤层顶底板岩性特征、岩移特点及上、下煤层间及夹矸关系;邻近工作面同一煤层的矿压观测资料。 5、邻近工作面及边界小窑采空区、积水情况资料。 6、编制内容必须符合《矿产资源法》、《矿山安全法》、《煤矿安全规程》、《煤炭工业矿井设计规范》、《煤炭工业小型矿井设计规范》等国家有关安全生产的法律法规、技术标准和规范的要求。

7、采煤工作面设计的编制必须以经集团、公司和政府有关部门批准的设计文件(矿井设计、矿井改扩建设计、水平延深设计、区域设计等)和经审批的采区地质说明书为依据。 四、工作面设计内容 1、工作面所处位置及编号,所采煤层位置(编号),巷道布置、巷道断面,支护形式及支护材料的选择计算,掘进设备。 2、工作面几何尺寸、位置、边界、煤柱,邻近工作面开采情况,采动对地面的影响预测及采取的相应措施,工作面储量计算及回采率。 3、采煤方法、生产工艺、顶板管理、设备选型、生产能力及其确定的依据、可采期及工作制度。 4、根据煤层赋存条件、顶底板岩性和矿压资料,确定液压支架选型设计和顶板管理方法。 5、通风、运输、供电、注浆、供排水、综合防尘、煤层注水、防灭火、瓦斯抽放、钻场钻孔、防治水、通讯照明和监测监控等系统的设施选型、布置和能力配套的设计,并附各种系统图及相关图纸。 6、综合防尘、防火、防瓦斯、煤尘爆炸的隔爆设施、措施及灌浆系统的确定。 7、防治瓦斯、煤层突出、火灾、透水及其它危险现象的安全技术措施。 8、采煤工作面主要技术经济指标。 9、六大系统(监测监控系统、井下人员定位系统、压风自救系统、供水施救系统、通讯联络系统、紧急避险系统包括避难硐室和救生舱)设计。 五、采煤工作面设计说明书的编制 设计说明书包括封面、会审签字表、会审记录表、章节目录、章节内容及附图。 概述 1、工作面的井上下位置及对地表的影响、盖山厚度和四邻关系、主要大巷的关系。 2、工作面周围开采状况。 3、工作面所采煤层及开采顺序。 4、该工作面计划接替时间及安装时间。

相关文档
最新文档