直流电机速度控制模型建立

直流电机速度控制模型建立
直流电机速度控制模型建立

十二、直流电动机速度控制模型建立

如图所示,a R 和a L 分别为电枢回路电阻和电感,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系统,)(t u a 为电枢电压,)(t n 为电动机转动速度,)(t i a 为电枢回路电流。

通过调节电枢电压)(t u a ,控制电动机的转动速度)(t n 。电动机负载变化为电动机转动速度的干扰因素,用负载力矩)(t M d 表示。

根据直流电动机的工作原理及基尔霍夫定律,直流电动机有四大平衡方程:

(1)电枢回路电压平衡方程

)()()(t u E t i R dt

t di L a a a a a a =++ 式中,a E 为电动机的反电势。

(2)电磁转矩方程

)()(t ia K t M a w =

式中,)(t M w 为电枢电流产生的电磁转矩,a K 为电动机转矩系数。

(3)转矩平衡方程

)()()()(t M t M t fn dt t dn J d w a +=+

式中,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系数。

(4)由磁感应关系,得

)(t n K E b a =

根据上述的四个平衡方程式,可建立起系统的输出量、干扰量与输入量之间的传递函数

b

a a a a a a a a a K K f R s J R f L s L J K s U s N ++++=)()()(2 a

a a a d R s L K s U s M +-=)()( 建立起直流电动机的结构图为

直流电动机参数为 Ω

=0.2a R ,

015.0,015.0,5.0===b a a K K H L ,Nms f 2.0=,202.0m kg J a ?=。

得到系统的阶跃响应曲线为

基于MATLAB的直流电机速度控制仿真

密级: 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2012 —2016 年) 题目基于MATLAB的直流电机速度控制仿真学科部:信息学科部 专业:电气工程及其自动化 班级:电气122班 学号:7022812072 学生姓名:谢磊 指导教师:万旻 起讫日期:2015年12月至2016年5月31日

目录 目录 (1) 摘要: ........................................................................................................................................................... I Abstract:............................................................................................................................................................ II 第一章绪论 (1) 1.1 课题来源及意义 (1) 1.2 国内外发展现状 (1) 1.3研究目标及内容 (1) 1.3.1研究目标 (1) 1.3.2研究内容 (1) 第二章MATLAB介绍 (2) 2.1 MATLAB简介 (2) 2.2 MATLAB所蜕变的历史经过 (2) 2.3 MATLAB的特点 (2) 2.4 控制系统仿真中常用的函数介绍 (2) 2.5 Simulink的基本介绍 (3) 第三章直流电机速度控制系统的建模和仿真 (4) 3.1 直流电机的工作原理 (4) 3.3直流电机速度控制仿真研究原理 (5) 第四章直流电机速度控制仿真介绍 (6) 4.1 直流电机H桥关于H桥的驱动的设计 (6) 4.1.1、H桥驱动电路 (6) 4.1.2 使能控制和方向逻辑 (7) 4.2直流电机速度控制仿真图 (9) 4.3仿真的模拟 (9) 4.4 仿真的分析 (12) 第五章总结与展望 (13) 参考文献 (14) 致谢 (15)

直流电机控制设计(1)

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计题目_直流电机控制设计 学院__电子信息工程学院____班级_________ 学生姓名__________ 指导教师__________

日期_______ 课程设计任务书 (指导教师填写) 课程设计名称现代电子系统课程设计学生姓名专业班级 设计题目直流电机控制设计 一、课程设计目的 学习直流电机PWM的FPGA控制; 掌握PWM控制的工作原理; 掌握GW48_SOPC实验箱的使用方法; 了解基于FPGA的电子系统的设计方法。 二、设计内容、技术条件和要求 利用PWM控制技术实现直流电机的速度控制。 (1)基本要求: a.速度调节:4档,数字显示其档位。 b.能控制电机的旋转方向。 c.通过红外光电电路测得电机的转速,设计频率计用4位10进制显示电机的转速。 (2)发挥部分 a.设计“去抖动”电路,实现直流电机转速的精确测量。 b.修改设计,实现直流电机的闭环控制,旋转速度可设置。 c.其它。 三、时间进度安排 布置课题和讲解:1天 查阅资料、设计:4天 实验:3天 撰写报告:2天 四、主要参考文献 何小艇《电子系统设计》浙江大学出版社2008.1 潘松黄继业《EDA技术实用教程》科学出版社2006.10 齐晶晶《现代电子系统设计》实验指导书电工电子实验教学中心2009.8

指导教师签字:2010年12月30日 摘要 利用FPGA可编程芯片及VHDL语言实现了对直编程实现流电机PWM控制器的设计,对直流电机速度进行控制。介绍了用VHDL语言编程实现直流电机PWM控制器的PWM的产生模块、转向调节模块、转速控制模块、去抖动电路模块、电机转速显示等模块功能。 采用CPU控制产生PWM信号,一般的PWM信号是通过模拟比较器产生的,比较器的一端按给定的参考电压,另一端接周期性线性增加的锯齿波电压。当锯齿波电压小于参考电压时输出低电平,当锯齿波电压大于参考电压时输出高电平。改变参考电压就可以改变PWM波形中高电平的宽度。若用单片机产生PWM信号波形,需要通过D/A转换器产生锯齿波电压和设置参考电压,通过外接模拟比较器输出PWM波形,因此外围电路比较复杂。 FPGA中的数字PWM控制与一般的模拟PWM控制不同,用FPGA产生PWM波形,只需FPGA 内部资源就可以实现。用数字比较器代替模拟比较器,数字比较器的一端接设定值计数器输出,另一端接线性递增计数器输出。当线性计数器的计数值小于设定值时输出低电平,当计数值大于设定值时输出高电平。与模拟控制相比,省去了外接的D/A转换器和模拟比较器,FPGA外部连线很少,电路更加简单,便于控制。脉宽调制式细粉驱动电路的关键是脉宽调制,转速的波动随着PWM脉宽细分数的增大而减小。 直流电机控制电路主要由三部分组成: (1)FPGA中PWM脉宽调制信号产生电路。 (2)FPGA中的工作/停止控制和正/反转方向控制电路。 (3)由功率放大电路和H桥组成的正反转功率驱动电路 关键词

基于Matlab的直流电机速度控制

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函 数 为 ()()0001 .0)15.0)(1.001.0(01 .02+++= +++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得: V=R*i+L +e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e=

由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩,:负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系 统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳态误差。积分环节作用的强弱取决于积分时间常数Ti,Ti增大, 系统超调量变小,响应速度变慢; 微分环节:主要作用是提高系统的响应速度,同时减少系统超调量,抵消系统惯性环节的相位滞后不良作用,使系统稳定性明显改善。 Td偏大或偏小,都会使超调量增大,调整时间加长。由于该环节所产 生的控制量与信号变化速率有关,故对于信号无变化或变化缓慢的系 统微分环节不起作用。 三、设计步骤 方法1: 搭建simulink模块,利用经验调节法整定PID参数,使整个系统满足调节时间小于2秒,超调小于5%,稳态误差小于1%。 1、搭建的simulink模块图如下:

直流电机速度控制模型建立

十二、直流电动机速度控制模型建立 如图所示,a R 和a L 分别为电枢回路电阻和电感,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系统,)(t u a 为电枢电压,)(t n 为电动机转动速度,)(t i a 为电枢回路电流。 通过调节电枢电压)(t u a ,控制电动机的转动速度)(t n 。电动机负载变化为电动机转动速度的干扰因素,用负载力矩)(t M d 表示。 根据直流电动机的工作原理及基尔霍夫定律,直流电动机有四大平衡方程: (1)电枢回路电压平衡方程 )()()(t u E t i R dt t di L a a a a a a =++ 式中,a E 为电动机的反电势。 (2)电磁转矩方程 )()(t ia K t M a w = 式中,)(t M w 为电枢电流产生的电磁转矩,a K 为电动机转矩系数。 (3)转矩平衡方程 )()()()(t M t M t fn dt t dn J d w a +=+ 式中,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系数。 (4)由磁感应关系,得 )(t n K E b a = 根据上述的四个平衡方程式,可建立起系统的输出量、干扰量与输入量之间的传递函数 b a a a a a a a a a K K f R s J R f L s L J K s U s N ++++=)()()(2 a a a a d R s L K s U s M +-=)()( 建立起直流电动机的结构图为

直流电动机参数为 Ω =0.2a R , 015.0,015.0,5.0===b a a K K H L ,Nms f 2.0=,202.0m kg J a ?=。 得到系统的阶跃响应曲线为

直流电机PID控制与仿真

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

直流电动机速度控制设计概述

第一章:概述 直流电动机是人类发明最早和应用的一种电机。与交流电机相比,直流电机因结构复、维护苦难,价格昂贵等缺点制约了它的发展,应用不及交流电机广泛。但由于直流电动机具有优良的启动、调速和制动性能,因此在工业领域中仍占有一席之地。 转速调节的主要技术指标是:调速范围D和负载变化时对转速的影响即静差率,以及调速时的允许负载性质等(静差率就是表示在负载变化时拖动装置转速降落的程度。静差率越小,表示转速稳定性越好,对生产机械,如机床加工的零件,其加工的精度及表面光洁度就越高)。而直流电动机的突出优点是恰好是能在很大的范围内具有平滑,平稳的调速性能,过载能力较强,热动和制动转矩较大。 因此,从可靠性来看,直流电动机仍有一定的优势。 调节直流电动机转速的方法有三种: (1)电枢回路串电阻; (2)改变励磁电流; (3)改变电枢回路的电源电压; 而本文从另一个角度来阐述直流电机的速度控制,即利用自动控制中的反馈来调节电机的平稳运行以达到各项性能指标。

第二章:系统数学模型 本系统的简化方框图为: 其对应的原理图为: 控制系统的被控对象为电动机(带负载),系统的输出量是转速w ,参数亮是Ui 。控制系统由给定电位器、运算放大器1(含比较作用)、运算放大器2(含RC 校正网络)、功率放大器、测速发电机、减速器等部分组成。 工作原理为:当负载角速度ω和电动机角速度m ω一致的时候,反馈电压为0,电机处于平衡状态即电动机运行稳定。当负载的角速度收到干扰的作用时,ω和m ω失谐,控制系 统通过反馈电压的作用来改变m ω直到达到新的一致使系统恢复稳定,电机稳定运行。

2.1直流电动机的数学模型: 直流电动机的数学模型。直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。图2.2是一个电枢控制式直流电动机的原理图。在这种控制方式中,激磁电流恒定,控制电压加在电枢上,这是一种普遍采用的控制方式。 设为输入的控制电压 电枢电流 为电机产生的主动力矩 为电机轴的角速度 为电机的电感 为电枢导数的电阻 为电枢转动中产生的反电势 为电机和负载的转动惯量 根据电路的克希霍夫定理 (2-1) 电机的主动转矩 (2-2) 其中为电机的力矩常数。 反电势 (2-3) 式中为电机反电势比例系数 力矩平衡方程

直流电机速度控制

目录 摘要.................................................. II 第1章绪论. (1) 第2章系统论述 (3) 2.1 总体方案 (3) 2.2 基本原理 (3) 2.3 原理框图 (3) 第3章系统的硬件设计 (5) 3.1 单片机最小系统的设计 (5) 3.2 电源电路设计 (6) 3.3 直流电机驱动电路设计 (7) 3.4 显示模块设计 (8) 3.5 按钮电路设计 (8) 3.6 元件参数选择 (9) 第4章系统的软件设计 (11) 4.1 总体方案 (11) 4.2 相关软件介绍 (12) 4.3 应用软件的编制、调试 (13) 第5章仿真结果与分析 (14) 5.1仿真电路图 (14) 5.2 仿真结果 (14) 第6章总结 (17) 参考文献 (18) 附录A:系统整体硬件电路图 (19) 附录B:程序代码 (20)

摘要 当今,计算机控制系统已经在各行各业中得到了广泛的应用和发展,而直流驱动控制作为电器传动的主流在现代化生产中起着主导作用。由于生产过程的不同要求,需要电动机进行不同转速的运转。为此,研究并制造高性能、高可靠性的直流电动机控制系统有着十分重要的显示意义。 本设计主要运用AT89C51单片机为核心硬件,对直流电动机进行速度控制。并且辅助以硬件部分的驱动、复位、LED显示等电路,软件部分对AT89C51进行模块化程序的输入,通过按钮控制,实现对直流电动机的正转、反转、加速、减速和停止等控制功能。同时,由LED与电动机转速显示控制效果。利用AT89C51芯片进行低成本直流电动机控制系统设计,简化系统构成、提高系统性能,满足了生产要求。 关键词:计算机控制 AT89C51单片机直流电动机

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函数为 ()()0001 .0)15.0)(1.001.0(01 .02 +++=+++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得:

V=R*i+L+e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e= 由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩, :负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳

直流电机的速度控制

EDA课程设计报告 直流电机的PWM调速 一、概述 直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。由于CPLD/FPGA性能优越,具有较佳的性能价格比,所以在工业过程及设备控制中得到日益广泛的应用。 PWM 调速系统与可控整流式调速系统相比有下列优点:由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。 二、PWM调速的原理

图(1) 图(1)是全桥型的电机驱动电路,利用的是三极管的电流放大来驱动电机。从图上我们可以看到当Q4和Q3导通时,电机正转;当Q1和Q2导通时,电机反转。 设电机速度从静止开始加速,如图(2)所示,首先Q3,Q4必须维持导通一段时间,此时电机所承受的电压约为供电电压U,称之为强加速。待速度接近目标速度时,加速可以减缓,此时Q3,Q4和Q1,Q2轮流导通,只是Q3,Q4在一个周期内所导通的时间t on比Q1,Q2导通的时间t off长一些,在此称为弱加速。任何时刻,电机所承受的平均电压U O,表示为U O = U×(t on-t off)( t on +t off)。如果速度已经达到目标,便可以调整t off 和t on的时间比例使之相等,此时平均电压为0,是定速控制。由此可知,平均电压若为正值时,是加速控制;负值时是减速控制;为零时即达到匀速。 图(2) 三、程序的设计 在整个程序设计中,我们可以把他分成几个部分

直流电机速度控制

直流电机速度控制 调节系统 调节系统是一类通常能提供稳定输出功率的系统。 例如,电机速度调节器要能在负载转矩变化时仍能保持电机速度为恒定值。即使负载转矩为零,电机也必须提供足够的转矩来克服轴承的粘滞摩檫影响。其它类型的调节器也提供输出功率,温度调节器必须保持炉内的温度恒定,也就是说,即使炉内的热量散失也必须保持炉温不变。一个电压调节器必须也保持负载电流值变化时输出电压恒定。对于任何一个提供一个输出,例如速度、温度、电压等的系统,在稳态下必定存在一个误差信号。 电气制动 在许多速度揑制系统中,例如轧钢机,矿坑卷扬机等这些负载要求频繁地停顿和反向运动的系统。随着减速要求,速度减小的比率取决于存储的能量和所使用的制动系统。一个小型速度控制系统(例如所知的伺服积分器)可以釆取机械制动,但这对大型速度控制器并不可行,因为散热很难并且很昂贵。 可行的各种电气制动方法有: 1.回馈制动。 2.涡流制动。 3.能耗制动。 4.反向(接)制动。 回馈制动虽然并不一定是最经济的方式,但却是做好的方式。负载中存储的能量通过工作电机(暂时以发电机模式运行)被转化成电能并被返回到电源系统中。这样电源就充当了一个收容不想要的能量的角色。假如电源系统具有足够的容量,在短时回馈过程中最终引起的端电压升高会很少。在直流电机速度控制沃特-勒奧那多法中,回馈制动是固有的,但可控硅传动装置必须被排布的可以反馈。如果轴转速快于旋转磁场的速度,感应电机传动装置可以反馈。有晶闸管换流器而来的廉价变频电源的出现在变速装置感应电机应用中引起了巨大的变化。 涡流制动可用于任何机器,只要在轴上安装一个铜条或铝盘并在磁场中旋转它即可。在大型系统中,散热问题很重要的,因为如果长时间制动,轴、轴承和电机的温度就会升高。 在能耗制动中,存储的能量消粍在回路电阻器上。用在小型直流电机上时,电枢供电被断开,接入一个电阻器(通常是一个继电器、接触器或晶闸管)。保持磁场电压,施加制动降到最低速。感应电机要求稍微复杂一点的排布,定子绕组被从交流电源上断开,接到直流电源上。产生的电能继而消粍在转子回路中。能耗制动应用在许多大型交流升降系统中,制动的职责是反向和延长。

单闭环直流电机速度控制系统研究报告

一.实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅<晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1-1PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用。 PWM控制集成芯片,其内部电路结构及各引脚如图1-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波<即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图1-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律<通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。 图1-2 SG3525内部结构 图1-3 直流电机控制系统 5.PID原理 过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 1.模拟控制系统 图1-4 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 2.微机过程控制系统

直流电机PID转速闭环调速控制系统

基于uC/COS的直流电机PID转速闭环调速控制系统Proteus仿真实现 在工业自动控制系统和各种智能产品中常常会用用电动机进行驱动、传动和控制,而现代智能控制系统中,对电机的控制要求越来越精确和迅速,对环境的适应要求越来越高。随着科技的发展,通过对电机的改造,出现了一些针对各种应用要求的电机,如伺服电机、步进电机、开关磁阻电机等非传统电机。但是在一些对位置控制要求不高的电机控制系统如传动控制系统中,传统电机如直流电机乃有很大的优势,而要对其进行精确而又迅速的控制,就需要复杂的控制系统。随着微电子和计算机的发展,数字控制系统应用越来越广泛,数字控制系统有控制精确,硬件实现简单,受环境影响小,功能复杂,系统修改简单,有很好的人机交换界面等特点。 在电机控制系统开发中,常常需要消耗各种硬件资源,系统构建时间长,而在调试时很难对硬件系统进行修改,从而延长开发周期。随着计算机仿真技术的出现和发展,可用计算机对电机控制系统进行仿真,从而减小系统开发开支和周期。计算机仿真可分为整体仿真和实时仿真。整体仿真是对系统各个时间段对各个对象进行计算和分析,从而对各个对象的变化情况有直观的整体的了解,即能对系统进行精确的预测,如Matlab就是一个典型的实时仿真软件。实时仿真是对时间点的动态仿真,即随着时间的推移它能动态仿真出当时系统的状态。Proteus是一个实时仿真软件,用来仿真各种嵌入式系统。它能对各种微控制器进行仿真,本系统即用Proteus对直流电机控制系统进行仿真。 在系统软件开发中开发中可用操作系统,也可不用操作系统。如用操作系统,程序可实现模块化,并能对系统资源进行统筹管理,最主要的是可实现多任务运行。如果需要多任务并行运行,并且需要一定的时间间隔,某些任务对时间的要求不高时,如不用操作系统则要占用定时器资源,并且对栈空间和硬件资源很难进行管理,所以在这种情况下需要操作系统。本系统用操作系统uC/COS. uC/COS是一个完整的、可移植、可固化、可剪裁的占先式实时多任务内核.uC/COS 已经有很多产品成功使用的案例且得到美国军方的认证,说明了该系统的可靠性。uC/COS 源代码公开,代码短,源代码大部分是使用ANSI C编写的,移植性和裁减性好,功能强大,能可靠应用于各种控制系统中。 系统构成

直流电机速度控制-

组员: 班级:研1308 授课教师:徐洪泽 电子信息工程学院 日期:2013-11-24

目录 1、整体设计 (1) 2、硬件搭建过程 (3) 一、单片机最小系统 (3) 二、RS232串口模块 (3) 一、电机驱动模块 (4) 四、测速模块 (5) 五、上位机显示与控制 (7) 3、闭环系统的PID控制实现 (8) 一、控制算法 (8) 二、PID参数的整合 (8) 4、问题探讨与实验总结 (9) 一、问题探讨 (9) 二、实验总结 (9) 5、附录:总体程序 (10) 一、程序流程说明 (10) 二、源代码 (10) 三、实物图 (20)

1、 整体设计 本系统旨在实现直流电机的速度闭环控制。微控制器接受上位机和测速机构的速度信号,以其偏差作为PID 控制算法的输入,同时用微控制器产生H 桥所需的PWM 控制信号,PWM 的占空比为微控制器PID 控制算法的输出。通过控制PWM 的占空比来控制电机电枢电压,从而达到控制电机转速的目的。 图1.直流电机速度控制系统框图 图中:r —期望转速; b —转速测量值; e —期望转速与实际转速偏差; n —转速输出值。 直流电机转速为: U IR n K U -= Φ -Φ-其中: 电枢端电压电枢电流电枢电路总电阻;电机结构参数;每极磁通量。 ;I-;R-K- 本系统采用对电枢电压进行控制的电枢控制法,而电枢电压的控制采用开关驱动方式,即使驱动电机的半导体功率器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。

在Altium Designer summer 09中画出直流电机速度控制系统的详细设计原理如下图所示。 微控制器采用STC89C52RC单片机,单片机和上位PC机通过RS232进行通信,通过单片机的外部中断对编码器输出脉冲进行计数、单片机的P0.0和P0.1口输出PWM波形信号。外部中断INT1对光电编码器脉冲计数,单片机在一定时间间隔内即可计算出电机的转速。 当电机的实际速度小于目标速度时,LED0指示电机加速;当大于目标速度时,LED1指示电机减速。 图2.直流电机速度控制系统详细设计图

直流电动机PID控制的仿真研究

直流电动机PID控制的仿真研究 直流电机长期以来都在调速系统领域占据主导地位,在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制,同时具有良好的启动性能。在分析直流电机主要性能指标的基础上,提出了通过Matlab对直流电机模型进行仿真,分析系统参数是否满足设定要求的方法。 标签:直流电机; PID;仿真 中图分类号:TB 文献标识码:A 文章编号:16723198(2012)14018102 0 引言 长期以来,直流电机被广泛应用于调速系统中,而且一直在调速系统领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的启动性能,能较平滑和经济地调节速度。因此采用直流电机调速可以得到良好的动态特性。本文在分析直流电机主要性能指标,如设定时间,超调量,稳态误差,上升时间,调整时间,等等。以及控制方法的PID控制,即通过控制比例、积分、微分参数分析系统的稳态曲线,并且在这个基础上提出了通过Matlab对直流电机模型进行仿真,分析系统参数是否满足设定要求的方法。 1 直流电机调速方法简介 直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调速范围要求不大的场合。20世纪30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。 直流电机的转速n和其他参量的关系可表示为: n=Ua-IaRaCEφ上式中: Ua-电枢端电压(V); Ia-电枢电流(A); Ra-电枢电路总电阻(Ω); φ-励磁磁通(wb); CE-电势系数。CE=pN60a,p为电磁对数,a为电枢并联支路数,N为导体数。 综上所述可以看出,式中Ua、Ra、φ三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速

基于MATLAB的直流电机双闭环调速系统的设计与仿真95824

《机电控制系统分析与设计》 课程大作业一 基于MATLAB的直流电机双闭环调速系统的 设计与仿真 : 班级: 学号: 年月

一. 设计要求与设计参数: 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定转速48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==**im nm U U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。 试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%; 空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。

二. 设计过程 1. 计算电流和转速反馈系数 电流反馈系数:A A V I U im /V 25.14210nom *=?==λβ; 转速反馈系数:r V r V n U nm min/02.0min /50010max *?===α 2. 电流环的动态校正过程和设计结果 (1) 确定时间常数 由已知条件知滤波时间常数=oi T 0.2ms=0.0002s ,按电流环小时间常数环节的近似处理方法,取 (2) 选择电流调节器结构 电流环可按典型I 型系统进行设计。电流调节器选用PI 调节器,其传递函数为 (3) 选择调节器参数 超前时间常数==0.008s 。 电流环超调量≤i σ5%考虑,电流环开环增益:取,因此 于是,电流调节器的比例系数为 (4) 检验近似条件 电流环的截止频率 1) 近似条件一: 现在,,满足近似条件。 2) 近似条件二: 现在,,满足近似条件。 3) 近似条件三: 现在,,满足近似条件。 (5) 编制MATLAB 程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲 线和单位阶跃响应曲线 根据设计过程和结果,建立如下图所示的经过小参数环节合并并简化后的电流 环动态结构图。

直流电机控制调速程序

#include #include #define uchar unsigned char #define uint unsigned int uint ting=0,zhengz=0,fanz=0,deng=0,k=30,m=0,n=0; /**************************end*********************/ ///////////////////////电机car///////////////// sbit en1=P1^7; /* L298的Enable A */ sbit s1=P1^2; /* L298的Input 1 */ sbit s2=P1^3; /* L298的Input 2 */ sbit en2=P1^6; /* L298的Enable B */ sbit s3=P1^4; /* L298的Input 3 */ sbit s4=P1^5; /* L298的Input 4 */ uchar t=0; /* 中断计数器*/ uchar tt=0; uchar m1=0; /* 电机1速度值*/ uchar tmp1; /* 电机当前速度值*/ uchar m2=0; /* 电机1速度值*/ uchar tmp2; /* 电机当前速度值*/ /////////////////////////end/////////////////// void delay(uint m) { uchar i,j; for(i=0;i=-100 && speed<=100) // { //if(index==1) /* 电机1的处理*/

相关文档
最新文档