共点力平衡习题精选

共点力平衡习题精选
共点力平衡习题精选

1.下列情况下,物体处于平衡状态的是( )

A .竖直上抛的物体到达最高点时 B.做匀速圆周运动的物体

C .单摆摆球摆到最高点时 D.水平弹簧振子通过平衡位置时

2.下列各组的三个点力,可能平衡的有 ( )

A .3N ,4N ,8N

B .3N ,5N ,7N

C .1N ,2N ,4N

D .7N ,6N ,13N

3.右图是一种测定风力的仪器的原理图,质量为m 的金属球,固定在一细长的轻金属丝下端,能绕悬点O在竖直平面内转动,无风时金属丝自然下垂,有风时金属丝将偏离竖直方向一定角度θ,角θ的大小与风力大小F 有关,下列关于风力F与θ的关系式正确的是( )

A.F=mg ·tan θB.F=mg ·sin θC.F=mg ·cos θ D.F=mg ∕cos θ

4.如图1所示,在同一平面内,大小分别为1N 、2N 、3N 、4N 、5N 、 6N

的六个力共同作用于一点,其合力大小为( )

A .0

B .1N

C .2N

D .3

5.A 、B 、C 三物体质量分别为M 、m 、m 0,作如图所示的连接,绳

子不可伸长,且绳子和滑轮的摩擦均不计,若B 随A 一起沿水平桌面

向右做匀速运动,则可以断定( )

A .物体A 与桌面之间有摩擦力,大小为m 0g

B .物体A 与B 之间有摩擦力,大小为m 0g

C .桌面对A ,B 对A ,都有摩擦力,方向相同,大小均为m 0g

D .桌面对A ,B 对A ,都有摩擦力,方向相反,大小均为m 0g

6.人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所

示.以下说法正确的是( ) A .人受到重力和支持力的作用 B

.人受到重力、支持力和摩擦力的作用

C .人受到的合外力不为零 D

.人受到的合外力方向与速度方向相同

7.用一轻绳将小球P 系于光滑墙壁上的O 点,在墙壁和球P 之间夹有一矩形物块Q ,如图所示.P 、Q 均处于静止状态,则下列相关说法正确的是

A .P 物体受4个力

B .Q 受到3个力

C .若绳子变长,绳子的拉力将变小

D .若绳子变短,Q 受到的静摩擦力将增大

8.如图所示,质量为m 的楔形物块,在水平推力F 作用下,静止在倾角为θ的光滑固定斜面上,则楔形物块受到的斜面支持力大小为 ( )

A .Fsin θ

B .sin F θ

C .mgcos θ

D .cos mg θ 9.如图所示,用轻绳吊一个重为G 的小球,欲施一力F 使小球在图示

位置平衡(θ<30°), 下列说法正确的是( )

A .力F 最小值为θsin ?G

B .若力F 与绳拉力大小相等,力F 方向与竖直方向必成θ角.

C .若力F 与G 大小相等,力F 方向与竖直方向必成θ角.

D .若力F 与G 大小相等,力F 方向与竖直方向可成2θ角.

10、如图在水平力F 的作用下,重为G 的物体沿竖直墙壁匀速下滑,物体风θ m O 1N 2N 3N 4N 5N 6N 图1 60° 60° 60° 60° 60° 60° v θ F

P Q O

与墙之间的动摩擦因数为μ,物体所受摩擦力大小为( )

A.μF

B.μ(F +G)

C.μ(F -G)

D.G

11、甲乙叠放在水平面上,现给甲施加向右的力F ,使它们一起向右匀速运动,则甲对乙摩擦力f1和水平面对乙摩擦力f2分别为 ( )

A .f1=0,f2=F 向左

B .f1=F 向左,f2=F 向右

C .f1=0,f2=F 向右

D .f1=F 向右,f2=F 向左

12.如图所示,一定质量的物体在恒力F 作用下,沿天花板做

匀速直线运动,F 与水平方向成α角,物体与顶板间的动摩擦因数为μ,求物体对顶板的压力和物体受到的摩擦力分别为多大?

13.如图,在细绳C 点系一重物G ,细线两端A 、B 分别固定在墙上,使

得AC 保持水平,BC 与水平方向成30°角,已知细绳最多只能承受200N

的拉力,那么在C 点悬挂物的重力最多为多少?

14.如图所示,光滑斜面倾角为?=30θ,一个重20N 的物体在斜面上静止不动.轻质弹簧原长为10cm ,现在的长度为6cm .

(1)求弹簧的劲度系数;

(2)若斜面粗糙,将这个物体沿斜面上移6cm ,弹簧与物体相连,下端固

定,物体仍静止于斜面上,求物体受到的摩擦力的大小和方向.

15.有一个直角支架AOB ,AO 水平放置,表面粗糙, OB 竖直向下,表面光滑.AO

上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不

可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P

环的支持力F N 和摩擦力f 的变化情况是 ( )(整体法 隔离法)

A .F N 不变,f 变大

B .F N 不变,f 变小

C .F N 变大,f 变大

D .F N 变大,f 变小

O A B P Q

共点力平衡习题精选

1.下列情况下,物体处于平衡状态的是( ) A .竖直上抛的物体到达最高点时 B.做匀速圆周运动的物体 C .单摆摆球摆到最高点时 D.水平弹簧振子通过平衡位置时 2.下列各组的三个点力,可能平衡的有 ( ) A .3N ,4N ,8N B .3N ,5N ,7N C .1N ,2N ,4N D .7N ,6N ,13N 3.右图是一种测定风力的仪器的原理图,质量为m 的金属球,固定在一细长的轻金属丝下端,能绕悬点O在竖直平面内转动,无风时金属丝自然下垂,有风时金属丝将偏离竖直方向一定角度θ,角θ的大小与风力大小F 有关,下列关于风力F与θ的关系式正确的是( ) A.F=mg ·tan θB.F=mg ·sin θC.F=mg ·cos θ D.F=mg ∕cos θ 4.如图1所示,在同一平面内,大小分别为1N 、2N 、3N 、4N 、5N 、 6N 的六个力共同作用于一点,其合力大小为( ) A .0 B .1N C .2N D .3 5.A 、B 、C 三物体质量分别为M 、m 、m 0,作如图所示的连接,绳 子不可伸长,且绳子和滑轮的摩擦均不计,若B 随A 一起沿水平桌面 向右做匀速运动,则可以断定( ) A .物体A 与桌面之间有摩擦力,大小为m 0g B .物体A 与B 之间有摩擦力,大小为m 0g C .桌面对A ,B 对A ,都有摩擦力,方向相同,大小均为m 0g D .桌面对A ,B 对A ,都有摩擦力,方向相反,大小均为m 0g 6.人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所 示.以下说法正确的是( ) A .人受到重力和支持力的作用 B .人受到重力、支持力和摩擦力的作用 C .人受到的合外力不为零 D .人受到的合外力方向与速度方向相同 7.用一轻绳将小球P 系于光滑墙壁上的O 点,在墙壁和球P 之间夹有一矩形物块Q ,如图所示.P 、Q 均处于静止状态,则下列相关说法正确的是 A .P 物体受4个力 B .Q 受到3个力 C .若绳子变长,绳子的拉力将变小 D .若绳子变短,Q 受到的静摩擦力将增大 8.如图所示,质量为m 的楔形物块,在水平推力F 作用下,静止在倾角为θ的光滑固定斜面上,则楔形物块受到的斜面支持力大小为 ( ) A .Fsin θ B .sin F θ C .mgcos θ D .cos mg θ 9.如图所示,用轻绳吊一个重为G 的小球,欲施一力F 使小球在图示 位置平衡(θ<30°), 下列说法正确的是( ) A .力F 最小值为θsin ?G B .若力F 与绳拉力大小相等,力F 方向与竖直方向必成θ角. C .若力F 与G 大小相等,力F 方向与竖直方向必成θ角. D .若力F 与G 大小相等,力F 方向与竖直方向可成2θ角. 10、如图在水平力F 的作用下,重为G 的物体沿竖直墙壁匀速下滑,物体风θ m O 1N 2N 3N 4N 5N 6N 图1 60° 60° 60° 60° 60° 60° v θ F P Q O

物体的受力分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b 中物体A 沿竖直面下滑,接触面粗糙。图c 中物体A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。

典型共点力平衡问题例题

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 .

(1)长为30cm的细绳的力是多少? (2)圆环将要开始滑动时,重物G的质量是多少? (3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 .

Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得T≈8N, (2)圆环将要滑动时,得m G g=Tctgθ,m G=0.6kg。 (3)前已证明φ为直角。 例4]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩 擦因数求当物体做匀速 直线运动时,牵引力F的最小值和 方向角θ。 [分析]本题考察物体受力分析: 由于求摩擦力f时,N受F制约,而 求F最小值,即转化为在物理问题 中应用数学方法解决的实际问题。 我们可以先通过物体受力分析。据平衡条件,找出F与θ关系。进一步应用数学知识求解极值。 [解]作出物体m受力分析如图2,由平衡条件。 ∑F x=Fcosθ-μN=0 (1) .

受力分析及物体平衡典型例题解析

受力分析及物体平衡典型例题解析

专练 3 受力分析 物体的平衡 、单项选择题 1.如图 1所示,质量为 2 kg 的物体 B 和质量为 1 kg 的物体 C 用轻弹簧连接并竖直地静置于水平地面上. 再将一个质 量为 3 kg 的物体 A 轻放在 B 上的一瞬间, 弹簧的弹力大 小为(取 g =10 m/s 2)( ) A .30 N C .20 N D .12 N 答案 C 2.(2014 ·上海单科, 9)如图 2,光滑的四分之一圆弧轨道 AB 固 定在竖直平面 内, A 端与水平面相切,穿在轨道上的小球在 拉力 F 作用下,缓慢地由 A 向 B 运动,F 始终沿轨道的切线 方向,轨道对球的弹力为 F N ,在运动过程中 ( ) A .F 增大,F N 减小 B .F 减小, F N 减小 C .F 增大,F N 增大 D .F 减小, F N 增大 解析 对球受力分析,受重力、支持力和拉力,根据共点力平 衡条件,有: F N =mgcos θ和 F =mgsin θ,其中 θ为 支 持力 F N 与竖直方向的夹角;当物体向上移动时, θ 变 大,故 F N 变小, F 变大;故 A 正确, BCD 错误. 答案 A (2014 ·贵州六校联考, 15)如图 3 所示,放在粗糙水平面 上的物体 A 上叠 放着物体 B.A 和 B 之间有一根处于压 缩状态的弹簧,物体 A 、B 均处于静止状态.下列说 法中正确的是 ( ) C .地面对 A 的摩擦力向右 D .地面对 A 没有摩擦力 解析 弹簧被压缩,则弹簧给物体 B 的弹力水平向左,因此物体 B 平衡 时必 受到 A 对 B 水平向右的摩擦力, 则 B 对 A 的摩擦力水平向左, 故 A 、 B .0 3. A .B 受到向左的摩擦力 B .B 对 A 的摩擦力向右

共点力的平衡练习(有答案)

共点力平衡练习 1、有三个共点力,大小分别为2N 、3N 、4N ,它们合力的最大值为 9 N ,最小值为 0 N 。 2、如图所示,物体B 的上表面水平,B 上面载着物体A ,当它们一起沿固定斜面C 匀速下滑的过程中物体A 受力是:( B ) A 、只受重力; B 、只受重力和支持力; C 、有重力、支持力和摩擦力; D 、有重力、支持力、摩擦力和斜面对它的弹力。 3、把一木块放在水平桌面上保持静止,下面说法中哪些是正确的:( C ) A 、木块对桌面的压力就是木块受的重力,施力物体是地球 B 、木块对桌面的压力是弹力,是由于桌面发生形变而产生的 C 、木块对桌面的压力在数值上等于木块受的重力 D 、木块保持静止是由于木块对桌面的压力与桌面对木块的支持力二力平衡 4、在力的合成中,下列关于两个分力(大小为定值)与它们的合力的关系的说法中,正确的是:( D ) A 、合力一定大于每一个分力; B 、合力一定小于分力; C 、合力的方向一定与分力的方向相同; D 、两个分力的夹角在0°~180°变化时,夹角越大合力越小。 5、如图所示,恒力F 大小与物体重力相等,物体在恒力F 的作用下,沿水平面做匀速运动,恒力F 的方向与水平成θ角,那么物体与桌面间的动摩擦因数为:( C ) A 、θcos ; B 、θctg ; C 、θ+θsin 1cos ; D 、θtg 。 6、物体A 、B 、C 叠放在水平桌面上,用水平力F 拉B ,使三者一起匀速向右运动,则:( AC ) A 、物体A 对物体 B 有向左的摩擦力作用; B 、物体B 对物体 C 有向右的摩擦力作用; C 、桌面对物体A 有向左的摩擦力作用; D 、桌面和物体A 之间没有摩擦力的作用。 7、如图所示,F 1、F 2为两个分力,F 为其合力,图中正确的合力矢量图是:( AC ) 8、如下图所示,甲、乙、丙、丁四种情况,光滑斜面的倾角都是α,球的质量都是m ,球都是用轻绳系住处于平衡状态,则:( BC )

受力分析、共点力的平衡练习题(标准答案)

受力分析共点力的平衡 1.如图所示,物块A、B通过一根不可伸长的细线连接,A静止在斜面上,细线绕过光滑的滑 轮拉住B,A与滑轮之间的细线与斜面平行.则物块A受力的个数可能是( ) A.6个B.4个C.5个D.2个 【答案】 B 2.如图所示,A和B两物块的接触面是水平的,A与B保持相对静止一起沿固定粗糙斜面匀速 下滑,在下滑过程中B的受力个数为( ) A.3个B.4个C.5个D.6个 【答案】 B 3.如图所示,在斜面上,木块A与B的接触面是水平的.绳子呈水平状态,两木块均保持静 止.则关于木块A和木块B的受力个数不可能是( )

A.2个和4个B.3个和4个C.4个和4个D.4个和5个 【答案】 B 4.如图所示,位于倾角为θ的斜面上的物块B由跨过定滑轮的轻绳与物块A相连.从滑轮到 A、B的两段绳都与斜面平行.已知A与B之间及B与斜面之间均不光滑,若用一沿斜面向 下的力F拉B并使它做匀速直线运动,则B受力的个数为( ) A.4个B.5个C.6个D.7个 【答案】 D 5.如图所示,固定的斜面上叠放着A、B两木块,木块A与B的接触面是水平的,水平力F 作用于木块A,使木块A、B保持静止,且F≠0.则下列描述正确的是( )

A.B可能受到3个或4个力作用B.斜面对木块B的摩擦力方向一定沿斜面向下 C.A对B的摩擦力可能为0D.A、B整体可能受三个力作用 【答案】 D 6.如图所示,在恒力F作用下,a、b两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们 受力情况的说确的是( ) A.a一定受到4个力B.b可能受到4个力 C.a与墙壁之间一定有弹力和摩擦力D.a与b之间一定有摩擦力 【答案】AD 7.如图所示,物体B的上表面水平,当A、B相对静止沿斜面匀速下滑时,斜面保持静止不动, 则下列判断正确的有( )

力与物体的平衡典型例题与习题

力与物体的平衡 题型一:常规力平衡问题 解决这类问题需要注意:此类题型常用分解法也可以用合成法,关键是找清力及每个力的方向和大小表示!多为双方向各自平衡,建立各方向上的平衡方程后再联立求解。 [例1]一个质量m 的物体放在水平地面上,物体与地面间的摩擦因数为μ,轻弹簧的一端系在物体上,如图所示.当用力F 与水平方向成θ角拉弹簧时,弹簧的长度 伸长x ,物体沿水平面做匀速直线运动.求弹簧的劲度系数. [解析]可将力F 正交分解到水平与竖直方向,再从两个方向上寻求平衡关系!水平方向应该是力F 的分力Fcos θ与摩擦力平衡,而竖直 方向在考虑力的时 候,不能只考虑重力和地面的支持力,不要忘记力F 还有一个竖直方向的分力作用! 水平: F cos θ=μF N ① 竖直:F N + F sin θ=mg ② F =kx ③ 联立解出:k = ) sin (cos θμθμ+x mg [变式训练1] 如图,质量为m 的物体置于倾角为θ的斜面上,先用平行于斜面的推力F 1作用于物体上,能使其能沿斜面匀速上滑,若改用水平推力作用于物体上,也能使物体沿斜面匀速上滑,则两次力之比F 1/F 2=? 题型二:动态平衡与极值问题 解决这类问题需要注意: (1)三力平衡问题中判断变力大小的变化趋势时,可利用平行四边形定则将其小和方向均不变的一个力,分别向两个已知方向分解,从而可从图中或用解析法判断出变力大小变化趋势,作图时应使三力作用点O 的位置保持不变. (2)一个物体受到三个力而平衡,其中一个力的大小和方向是确定的,另一个力的方向始终不改变,而第三个力的大小和方向都可改变,问第三个力取什么方向这个力有最小值,当第三个力的方向与第二个力垂直时有最小值,这个规律掌握后,运用图解法或计算法就比较容易了. [例2] 如图2-5-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α < 450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化? [解析]取O 为研究对象,O 点受细线AO 、BO 的拉力分别为F 1、F 2,挂重力的细线拉力 F 3 = mg .F 1、F 2的合力F 与F 3大小相等方向相反.又因为F 1的方向不变,F 的末端作射线平 行于F 2,那么随着β角的减小F 2末端在这条射线上移动,如图2-5-3(解)所示.由图可以看出,F 2先减小,后增大,而F1则逐渐减小. [变式训练2]如图所示,轻绳的一端系在质量为m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置.然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平拉力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( ) A.F 逐渐减小,f 逐渐增大,N 逐渐减小 B.F 逐渐减小,f 逐渐减小,N 保持不变 图2-5-3

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法 1. 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2. 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。 矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。 3. 相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。 4. 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。 6. 正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。不宜分解待求力。 7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。 三. 重难点分析: 1. 怎样根据物体平衡条件,确定共点力问题中未知力的方向? 在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。 2. 一个物体受到n个共点力作用处于平衡,其中任意一个力与其余(n-1)个力的合力有什么关系? 根据二力平衡条件,一个物体受n个力平衡可看作是任意一个力和其余(n-1)个力的合力应满足平衡条件,即任意一个力和其余(n-1)个力的合力满足大小相等、方向相反、作用在同一直线上。 3. 怎样分析物体的平衡问题 物体的平衡问题是力的基本概念及平行四边形定则的直接应用,也是进一步学习力和运动关系的基础。 (1)明确分析思路和解题步骤 解决物理问题必须有明确的分析思路.而分析思路应从物理问题所遵循的物理规律本身去探求。物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象.在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果.由上述分析思路知,解决平衡问题的基本解题步骤为: ①明确研究对象。 在平衡问题中,研究对象常有三种情况: <1> 单个物体,若物体能看成质点,则物体受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上。 <2> 物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带。 <3> 几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象。 ②分析研究对象的受力情况 分析研究对象的受力情况需要做好两件事:

共点力的平衡练习题

一、选择题 1.如图所示,在倾角为θ的斜面上,放着一个质量为m 的光滑小球,小球被竖直的木板 挡住,则小球对木板的压力大小为 ( ) A .mg cos θ B .mg tan θ C .mg cos θ D .mg tan θ 2.如图2所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗 口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们 处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比m 2m 1 为 A. 33 B. 23 C. 32 D. 22 3.一只蚂蚁从半球形小碗内的最低点沿碗壁向上缓慢爬行,在其滑落之前的爬行过程中受力情况是 ( ) A .弹力逐渐增大 B .摩擦力逐渐增大 C .摩擦力逐渐减小 D .碗对蚂蚁的作用力逐渐增大 4.如图所示,一箱苹果沿着倾角为θ的斜面,以速度v 匀速下滑,在箱子中夹有一只质 量为m 的苹果,它受到周围苹果对它作用力的方向是 ( ) A .沿斜面向上 B .沿斜面向下 C .竖直向上 D .垂直斜面向上 5.如图所示,质量m 1=10 kg 和m 2=30 kg 的两物体,叠放在动摩擦因数为0.50的粗糙水平地面上,一处于水平位置的轻弹簧,劲度系数为k =250 N/m ,一端固定于墙壁,另一端与质量为m 1的物体相连,弹簧处于自然状态,现用一水平推力F 作用于质量为m 2的物体上,使它缓慢地向墙壁一侧移动,当移动0.40 m 时,两物体间开始相对滑动,这时水平推力F 的大小为 ( ) A .100 N B .300 N C .200 N D .250 N 6.如图5所示,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( ) A .L + μm 2g k B .L + μm 1+m 2g k C .2L + μ2m 1+m 2g k D .2L + 2μ m 1+m 2g k 7.如图6所示,a 、b 是两个位于固定斜面上的完全相同的正方形物块,它们在水平方向的外力F 的作用下处于静止状态.已知a 、b 与斜面的接触面都是光滑的,则下列说法正确的是 ( ) A .物块a 所受的合外力大于物块b 所受的合外力 B .物块a 对斜面的压力大于物块b 对斜面的压力 C .物块a 、b 间的相互作用力等于F D .物块a 对斜面的压力等于物块b 对斜面的压力 8.如图所示,斜面倾角为θ(θ为锐角)两个物体A 和B 相接触放在粗糙的斜面上,当他们加速下滑时,下面对A 、B 之间相互作用力的析正确的是 ( ) A .当m B >m A 时,A 、B 之间有相互作用力;当m B ≤m A 时,A 、B 之 图6

高中物理受力分析(动态平衡问题)典型例题(含答案)【经典】(可编辑修改word版)

3 5 知识点三:共点力平衡(动态平衡、矢量三角形法) 1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕 O 点转至水平位置,则此过程中球对挡板的压力 F 1 和球对斜面的压力 F 2 的变化情况是( ).答案 B A .F 1 先增大后减小,F 2 一直减小 B .F 1 先减小后增大,F 2 一直减小 C .F 1 和 F 2 都一直减小 D .F 1 和 F 2 都一直增大 2、 (单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于 O 点.现用水平力 F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平, 此过程中斜面对小球的支持力 F N 以及绳对小球的拉力 F T 的变化情况是( ).答案 D A .F N 保持不变,F T 不断增大 B .F N 不断增大,F T 不断减小 C .F N 保持不变,F T 先增大后减小 D .F N 不断增大,F T 先减小后增大 3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力 F 1、半球面对小球的支持力 F 2 的变化情况正确的是( ). 答案 B A .F 1 增大,F 2 减小 B .F 1 增大,F 2 增大 C .F 1 减小,F 2 减小 D .F 1 减小,F 2 增大 4、(单选)如图所示,一物块受一恒力 F 作用,现要使该物块沿直线 AB 运动,应该再加上另 一个力的作用,则加上去的这个力的最小值为( ).答案 B A .F cos θ B .F sin θ C .F tan θ D .F cot θ 5.(单选)如图所示,一倾角为 30°的光滑斜面固定在地面上,一质量为 m 的小木块在水平力 F 的作用下静止在斜面上.若只改变 F 的方向不改变 F 的大小,仍使木块静止,则此时力 F 与水平 面的夹角为( ).答案 A A .60° B .45° C .30° D .15° 6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力 F 作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这 一过程中( ). 答案:AD A .细线拉力逐渐增大 B .铁架台对地面的压力逐渐增大 C .铁架台对地面的压力逐渐减小 D .铁架台所受地面的摩擦力逐渐增大 7、(多选)(苏州调研)如图所示,质量均为 m 的小球 A 、B 用两根不可伸长的轻绳连接后悬挂于 O 点,在外力 F 的作用下,小球 A 、B 处于静止状态.若要使两小球处于静止状态且悬线 OA 与竖直方 向的夹角 θ 保持 30°不变,则外力 F 的大小( ).答案 BCD A .可能为 mg B .可能为 mg 3 2 C .可能为 2mg D .可能为 mg 8、(单选)如图所示,轻绳的一端系在质量为 m 的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆 MN 上.现用水平力 F 拉绳上一点,使物体处于图中实线位置,然后改变 F 的大小使 其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力 F 、环与杆 的摩擦力 F 摩和环对杆的压力 F N 的变化情况是( ).答案 D A .F 逐渐增大,F 摩保持不变,F N 逐渐增大 B .F 逐渐增大,F 摩逐渐增大,F N 保持不 变

共点力平衡练习题(有答案)

1. 如图所示,在一细绳B 点系住一重物,细绳AB 、BC 两端分别固定在竖直墙面上,使得AB 保持水平,BC 与水平方向成30o角,已知三段细绳最多都只能承受200N 的拉力;那么为使三段细绳都不断裂,BD 段最多能悬挂多重的物体? 1.100N 2.甲、乙两球的半径均为R ,质量相等,用轻绳悬挂起来,如图所示,已知AB 段绳的拉力为F=120N ,绳BD=BC=R ,求: (1)绳BD 和BC 受到的拉力T 。(2) 甲、乙两球间的相互作用力N 的大小。 69.28N 34.64 3.如图所示,A 、B 都是重物,A 被绕过小滑轮P 的细线所悬挂,B 放在粗糙的水平桌面上.滑轮P 被一根斜短线系于天花板上的O 点,O ′是三根细线的结点,细线bO ′水平拉着物体B ,cO ′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若悬挂小滑轮的斜线中的拉力是F =203N ,∠cO′a=120°,重力加速度g 取10m/s2,则下列说法正确的是 (BC ) A .弹簧的弹力为20N B .重物A 的质量为2kg C .桌面对物体B 的摩擦力为103N D .细线OP 与竖直方向的夹角为60° 4.如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g 。若接触面间的摩擦力忽略不计,求石块侧面所受弹力的大小为多少? 解:楔形石块受力如图,根据力的合成可得: 2cos(90)mg F α=?-,所以0 2cos(90) 2sin mg mg F αα= =- 5、质量为kg m 4=的物体放置在粗糙的水平面上,如图在水平向右的N F 201=的作用下使其向右匀速运动。当改为斜向下的2F 作用时仍然可以使物体向右匀速运动,已知2F 与水平方向之间的夹角为0 37=α。(COS37° =0.8, Sin37°=0.6,g=10m/s2)试求: (1)2F 的大小?(2)在第(1)问的前提下,若该物体匀速运动的初速度是10 m/s,要使物体不撞到前方30m 处的障碍物,力2F 最多作用多长的时间?(若物体在水平面上运动,只受滑动摩擦阻力时,其加速度大小为5 m/s2) (1) N f m g N f F μ==-=-001 联立①②③代入数据 解得,5.0=μ 当施加2F 力时,对 α α m

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

专题04 共点力平衡的七大题型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练 专题04 共点力平衡的七大题型 【专题导航】 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二三个力互相不垂直,但夹角(方向)已知。 (3) 热点题型三三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四矢量三角形法类 (6) 热点题型五相似三角形法类 (9) 热点题型六单位圆或正弦定理发类型 (10) 热点题型七衣钩、滑环模型 (12) 【题型演练】 (14) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法 ②力的正交分解法 ③正弦定理(拉米定理)法 ④相似三角形法 ⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止P点。设滑块所受支持力为N F。OF与水平方向的夹角为 。下列关系正确的是()

A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 【解析】 解法一 力的合成法 滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ , F N =mg sin θ 。 解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ, 联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】

动态平衡试题,死结和活结

★★★★★高一物理培优讲义2 分析动态平衡问题 1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。 2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。 3.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。 解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键 4.典型例题: 例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为 G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐 渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的 大小如何变化? 例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的 压力为F N1,球对板的压力为F N2.在将板BC逐渐放至水平的过程中,下列 说法中,正确的是() A.F N1和F N2都增大 B.F N1和F N2都减小 C.F N1增大,F N2减小 D.F N1减小,F N2增大 思考:1如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点 A向上移动而保持O点的位置不变,则A点向上移动时 () A.绳OA的拉力逐渐增大; B.绳OA的拉力逐渐减小; C.绳OA的拉力先增大后减小; D.绳OA的拉力先减小后增大。 例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α, 在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板 与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力 大小如何变化?

力的平衡经典习题及答案

力的平衡经典习题 1、如图所示,两个完全相同的光滑球的质量均为m,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中 A.A、B两球间的弹力不变 B.B球对挡板的压力逐渐减小 C.B球对斜面的压力逐渐增大D.A球对斜面的压力逐渐增大 2、如图所示,不计滑轮质量与摩擦,重物挂在滑轮下,绳A端固定,将B端绳由B移到C或D(绳长不变)其绳上张力分别为T B,T C,T D,绳与竖直方向夹角θ分别为θB, θC, θD则 A. T B>T C>T D θB<θC<θD B. TB

高一物理共点力平衡经典习题

第1页 高一物理第(14)次作业卷 时间:2015年 12月 日 任课教师: 班级: 学生姓名: 主备人:常丽丽 1.用推力作用在重力为G 的小球使它始终静止在倾角为θ的光滑斜面上,外力通过小球的球心,则 A. 推力最小值为Gtan θ B. 推力最小值为Gsin θ ( ) C. 推力最大值为G/cos θ D. 推力必须沿斜面向上才能使小球静止 2.如图所示,一小球用轻绳悬于O 点,用力F 拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态。为了使F 有最小值,F 与竖直方向的夹角θ应该是( ) A .90° B .45° C .15° D .0° 3.将三根伸长可不计的轻绳AB 、BC 、CD 如图连接,现在B 点 悬挂一个质量为m 的重物,为使BC 绳保持水平且AB 绳、CD 绳与水平天花板夹角分别为60o 与30o ,需在C 点再施加一作用力,则该力的最 小值为( ) A .mg B .mg 21 C .m g 33 D .m g 63 4.如图所示,A 、B 两物体的质量分别是m A 和m B ,整个系统处于静止状态,滑轮的质量和一切摩擦不计。如果绳的一端由P 点缓慢向左运动到Q 点,整个系统始终处于平衡状态,关于绳子拉力大小F 和两滑轮间绳子与水平方向的夹角α的变化,以下说法中正确的是( ) A .F 变小,a 变小 B .F 变大,a 变小 C .F 不变,a 不变 D .F 不变,a 变大 5.如图所示.在倾角为θ的光滑斜面和档板之间放一个光滑均匀球体,档板与斜面夹 角α。初始时90αθ+<。在档板绕顶端逆时针缓慢旋转至水平位置的过程下列说法正确的是( ) A .斜面对球的支持力变大 B .档板对球的弹力变大 c .斜面对球的支持力变小 D .档板对球的弹力先变小后变大 6 .如图所示,物体P 左边用一根轻弹簧和竖直墙原长.若再用一个从零开始逐渐增大的水平力F 向右拉相连,放在粗糙水平面上,静止时弹簧的长度大于P ,直到把P 拉动.在P 被拉动之前的过程中,弹簧对P 的弹力N 的大小和地面对P 的摩擦力f 的大小的变化情况是( ) A .N 始终增大,f 始终减小 B .N 先不变后增大,f 先减小后增大 C .N 保持不变,f 始终减小 D .N 保持不变,f 先减小后增大 7.如图所示,物体B 通过动滑轮悬挂在细绳上,整个系统处于静止状态,动滑轮的质量和一切摩擦均不计。如果将绳的左端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,绳的拉力F 和绳子与竖直方向的夹角θ的变化情况是 ( ) A .F 变大,θ变大 B .F 变小,θ变小 C .F 不变,θ变小 D .F 不变,θ变大

相关文档
最新文档