(整理)铅酸蓄电池的性能检测

(整理)铅酸蓄电池的性能检测
(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测

一、容量

电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定

温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。

⑴起动电池的容量

a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。

b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。

c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。

d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。

⑵牵引电池的容量

a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。

b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次

达到额定容量。

⑶内燃机车用排气式电池的容量

电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。

⑷内燃机车用阀控密封式电池的容量

电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量

a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。

b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。

c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。

⑹固定型防酸式电池的容量

C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。

⑺固定型阀控密封式电池的容量

C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。

⑻小型阀控密封式电池的容量

C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。

⑼电动道路车辆用电池的容量

a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。

b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。

⑽电动助力车用密封式电池的容量

a. 额定容量,用C2表示,应在第3次循环内达到。

b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

c. 低温容量,用Cd表示,电池在零下15℃环境中静置24h,以I3(A)电流放电至单体电压1.60V,其容量应不低于0.7C2。

⑾储能用电池的容量

a. 10小时率容量,用C10表示,其放电容量应在第6次或之前不低于C10,应符合GB/T 22473-2008的规定。

b. 120小时率容量,用C120表示,其放电容量应在第7次或之前不低于0.80C120,其最大实际容量与最小实际容量差值不应大于5%。

c. 低温容量,用Cd表示,电池在零下10℃环境中静置10h,以I10(A)电流放电至单体电压1.80V,在第4次或之前其容量应不低于0.8C10。

⑿摩托车用电池的容量

额定容量,用C10表示,其要求应符合GB/T 23638-2009的规定。电池有阀控式和非阀控式两大类,两大类中有作起动用与非起动用的两大系列产品(详见GB/T 23638-2009中表1和表2)。

二、寿命

电池寿命因其使用方式不同,表述的方式也不同。不管使用方式不同,但电池使用寿命都以使用时间的长短(即经时寿命)表示或以电池在充/放使用的次数表示(即循环寿命)。

⑴起动用电池的循环耐久能力

a. A类电池完全充电的电池以5I20 (A)放电1h,再以14.80V (免维护14.40V)恒充2h,最大电流不超过10I20,组成一次循环。电池需连续进行32次此循环,开路静置72h后,再恒充2h。这就是A类电池的一个循环耐久试验单元。要求4个或4个以上循环耐久试验单元。

b. B类电池完全充电的电池以14.80V (免维护14.40V)恒充5h,最大电流不超过5I20,随后以5I20放电2h,组成一次循环。电池需连续进行14次此循环,以14.80V (免

维护14.40V)恒充2h,最大电流不超过5I20,开路静置70h。这就是B类电池的一个循环耐久试验单元。要求5个或5个以上循环耐久试验单元。

⑵牵引电池寿命

a. 普通型电池充/放循环完全充电的电池以1.25 I5 (A)电流放电3h,紧接着充电9h(以1.05 I5充电3h,0.25 I5充电6h),为一个循环。每49次充/放循环进行一次C5容量试验。若容量仍大于0.8C5,可继续进行下一个50次循环。循环次数应不低于800次。

b. 阀控式电池充/放循环完全充电的电池以1.05 I5 (A)电流放电3.5h,紧接着

14.40V恒充14h、1.05 I5放电3.5h为一个循环。每49次充/放循环进行一次C5容量试验。若容量仍大于0.8C5,可继续进行下一个50次循环。循环次数应不低于800次。

⑶内燃机用电池寿命

a. 循环耐久能力管式正极板电池循环次数应不少于750次(非管式正极板电池由制造商与用户协商确定)。

b. 内燃机用阀控电池的循环耐久能力,不低于10个起动能力单元。

⑷铁路客车用电池寿命

循环耐久能力2V或12V电池都不应低于6个循环单元(180次循环)。

⑸固定型防酸式电池寿命

a. 充/放循环寿命不低于1000次。

b. 使用寿命在正常浮充状态下运行,其寿命不得低于10年。

⑹电动道路车辆用电池寿命

循环耐久能力循环次数不应低于400次。

⑺固定型阀控密封电式池寿命

循环耐久能力(寿命)有三种,任选一种:

a. 浮充电循环耐久不应低于300次。

b. 过充电循环耐久6V和12V电池应不低于180d,2V电池应不低于240d。

c. 加速浮充电循环耐久6V和12V电池应不低于150d,2V电池应不低于180d。

⑻小型阀控密封式电池寿命

循环耐久能力(寿命)有两种,任选一种:

a. 充/放循环寿命不应低于300次。

b. 涓流充电寿命不应低于2年。

⑼电动助力车用密封式电池寿命

电池循环次数不应低于350次。

⑽储能用电池寿命

a. 阀控式循环周期3次。

b. 排气式循环周期4次。

⑾摩托车用电池寿命

循环耐久能力不应低于200次。

三、特性要求

因电池用途不同,要求电池具有适应本用途的特性。下按不同用途的电池分别表述。

⑴起动电池

●充电接受能力:充电电流Ica与C20/20之比不应低于3.0。

●荷电保持能力:以Is放电30s,电池端电压不应低于7.2V。

●电液保持能力:表面不得有电液渗漏溅出。

●耐振动性能:振动60s后(电流为Is)电池端电压不应低于7.2V。

●水损耗:a. 排气式电池不应大于4g/Ah(或2.66g/min);b. 阀控式电池按实际容量Ce(或实际储备容量)计算电池重量损失被2除之商不得大于1g/Ah(或

0.67g/min)。

●干荷电起动能力:以Is放电5s,电池电压不低于9.0V;以Is放电100s,电池电压不低于6.0V。

●干荷电在未加电液条件下储存后的起动能力:以Is放电100s,电池电压不低于

6.0V

●气密性:应具有良好的气密性。

●耐温变性(塑料槽电池):在65℃环境下静置24h后,气密性合格。

●封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下

封口剂不溢流。

●储存期:电池储存24个月(在相对湿度80%、温度10~30℃环境中)容量和低温

起动能力符合要求。

⑵牵引电池

●荷电保持能力:完全充电的电池在电液平均温度20±2℃,开路存放28d,储存后的容量不低于额定容量的85%。

●高倍率放电能力:以5I5(A)电流放电至单体1.50V,持续时间不低于30min。

●封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

●密封性能:在规定条件下,电池与空气隔断5s,电池内压稳定不变。

⑶内燃机车用排气式电池

●电解液:电解液密度(在完全充电后)1.260g/cm3±0.005g/cm3。

●封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

●低温起动能力:按规定电流放电至单体0.60V,时间≥95s,电池在规定电流放电至7s时,单体不低于0.75V。

●荷电保持能力:完全充电的电池在25±2℃环境中放置21d,其容量损失不应大于储存前容量的10%。

●充电接受能力:充电接受值不少于0.5Is。

●振动:按规定振动后,容量应保持其额定容量,而且不应有机械伤痕,电池表面无电液渗漏。

⑷内燃机车用阀控密封式电池

●常温起动能力:在常温25±2℃起动电流Is(A)放电7s时,电压≥1.1V/单体;放电110s时,电压≥1.0V/单体。

●荷电保持能力:完全充电的电池在25±2℃环境中放置28d,其容量损失不应大于储存前容量的5%。

●充电接受能力:充电接受值不少于0.5Is。

●密封反应效率:密封反应效率不应低于90%。

●防爆性能:电池外部遇明火时,其内部不应发生燃烧和爆炸。

●安全阀动作:安全阀应在1~49kPa范围内自动开启与关闭。

●气密性:电池除安全阀外,**各处要保持良好的气密性,应能承受30kPa压力。

⑸铁路客车用电池

●密封反应效率:密封反应效率不应低于90%。

●大电流放电特性:按规定电流放电后,电池的导电部分不应熔化,且电池槽不能有大于2mm的变形及发生漏液现象。

●荷电保持能力:完全充电的电池在25±2℃环境中放置28d,其容量保持率应大于96%。

●充电接受能力:电池所能接受充电电流值不小于1.4Is(A)。

●过充电能力:试验完成后,电池则面不应有大于2mm的变形及发生漏液现象。

●防爆性能:电池外部遇明火时,其内部不应发生燃烧和爆炸。

●防酸雾能力:充电电量每1Ah析出的酸雾量不应大于0.025mg。

●安全阀动作:安全阀应在1~49kPa范围内自动开启与关闭。

●气密性:电池除安全阀外,**各处要保持良好的气密性,应能承受30kPa压力并保持不少于30s,电池各处不得有泄漏;压力释放后,电池不应有残余变形。

●振动试验:按规定振动后,电池容量不应减少。

⑹固定型防酸式电池

●气密性:电池应能承受4kPa的正压或负压,电池各处均应保持良好的气密性。

●瞬间放电:30~500Ah电池按规定方法放电,持续时间不小于10s。

●自放电:电池静置28d,其容量损失不超过5%。

●防酸性能:按规定方法试验,电池应无酸雾逸出。

●安全性能:按规定方法试验,电池应无本体爆炸。

●最大放电电流:按规定方法试验与电流连续放电,电池极柱不熔断或变形,外观不应有异常。

●涓流充电与电液储存能力:按规定给电池充电,6个月后电池容量(C10)不低于额定值,同时在6个月试验运行期内,电池应符合:

a. 电解液密度不应超出参试电池电解液平均密度值的±0.025g/cm3;

b. 单体电池端电压不应超出参试电池端电压平均值的0.1~0.05V;

c. 电解液损耗不得超过最高与最低液面之间的电解液储量的50%。

●封口剂性能:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

●储存期:按规定储存2年,应符合规定要求。

⑺电动道路车辆用电池

●高倍率放电性能:按规定放电时间不低于30min、单电压不低于1.0V。

●荷电保持能力:按规定试验,容量保持率应大于85%。

●快速充电能力:按规定试验放电容量不低于0.80C2。

●密封反应效率(阀控式):密封反应效率不低于95%。

●排气阀动作(阀控式):排气阀应在1~49kPa范围内自动开启与关闭。

●安全性:电池完全充电后,在25±5℃环境中,以0.7I3(A)连续充电5h,电池外观

无异常、无漏液。

●耐振动能力:按规定振动试验后,电池外观及端电压均应正常。

●水损耗:按规定进行试验,计算水损耗。

●防爆性能:按规定进行熔断5A保险丝引爆而应不引起电池内部爆炸。

●峰值功率试验:按规定进行试验,按P(峰值功率)公式计算:

P=[4V2(I2-I1)]÷[9(V1-V2)]

式中:P为峰值功率;I1、I2分别为对应电压为V1、V2时的电流。

⑻固定型阀控密封式电池

●安全性能要求:

a. 气体析出量:按单体电池每Ah·h对外释放气体量Ge在标准状态下应符合规定值:

Ⅰ. Ge≤0.04mL/(Ah·h) (浮充/V);

Ⅱ. Ge≤1.70mL/(Ah·h) (均充/V)。

b. 大电流耐受能力:按规定试验,电池槽、盖不应变形或熔化,电池端子、极柱、汇流排不应熔化或熔断。

c. 短路电流与内阻水平:按规定试验,示出其短路电流值与内阻计算值。

d. 防爆能力:按规定试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

e. 防酸雾能力:按规定试验,每充电1Ah析出的酸雾量不应大于0.025mg。

f. 排气阀动作:按规定试验,排气阀在1~49kPa范围内可靠地开启与关闭。

g. 耐接地短路能力:按规定试验,不应有腐蚀、灼烧迹象及槽、盖的炭化。

h. 材料的阻燃能力:按规定试验,槽、盖的有焰燃烧时间应≤10s,有焰加无焰焰燃烧时间应≤30s。

i. 抗机械破损能力:按规定试验,槽体不应有破损及漏液。

●使用性要求:

a. 端电压均衡性:按规定试验。

Ⅰ. 静态:2V电池开路电压最高与最低差≤0.02V;6V电池开路电压最高与最低差≤0.05V;12V电池开路电压最高与最低差≤0.1V。

Ⅱ. 动态:2V电池≤0.09V;6V电池≤0.24V;12V电池≤0.24V;

b. 连接电压降:按规定试验,电池与电池之间连接电压降≤0.01V。

c. 其余各项分别在容量与寿命条款中已叙述。

⑼小型阀控密封式电池

● 7min率和27min率放电:按规定进行试验,60I20(A)电流放电至电池单体电压

1.60V,放电时间不少于7min;20I20(A)电流放电至电池单体电压1.60V,放电时间不少于27min。

●最大放电电流试验:按规定进行试验,300I20(A)电流放电5s,检查导电处有无熔断,外观是否正常。

●过放电试验:按规定进行试验,最后进行容量检查应不低于0.75C20。

●过充电试验:按规定进行试验,实际容量0.95C20,外观不得出现异常。

●气体析出或密封反应效率(任选一项):

a. 气体析出:按规定进行试验,析气量≤0.05mL/(Ah·h)。

b. 密封反应效率:按规定进行试验,密封反应效率>90%。

●排气阀:按规定进行试验,排气阀在1~49kPa范围内可靠地开启与关闭。

●安全性:按规定进行试验,电池外观无异常、无漏液等现象。

●防爆性:按规定进行试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

●荷电保存:按规定进行试验,电池容量保存率>75%Ce。

●耐振动性:按规定进行振动试验,电池端电压不得低于额定电压。

●耐冲击性:按规定进行振动试验,电池端电压不得低于额定电压,外观不得有漏液等异常现象。

⑽电动助力车用密封式电池

●大电流放电特性:按规定进行试验,放电持续时间不低于15min。

●容量保存率:按规定进行试验,电池容量的保存率R不低于85%。

●充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值应不小于2.0。

●过充电:按规定进行试验,电池容量不低于0.75C2,外观不得出现异常。

●密封反应效率:按规定进行试验,密封反应效率不小于95%。

●排气阀:按规定进行试验,排气阀在1~49kPa范围内可靠地开启与关闭。

●安全性:按规定进行试验,电池外观无异常、无漏液等现象。

●耐振动能力:按规定进行耐振动试验,电池端电压不得低于额定电压,外观不得有漏液等异常现象。

●电池组合一致性:按规定进行试验,电池组中各电池的端电压差不大于0.40V。

●防爆能力:按规定进行试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

⑾储能用电池

●容量一致性:按规定进行试验,电池最大与最小实际容量之差不应大于5%。

●密封性能:按规定进行试验,电池在与空气隔断后5s内,电池内部压力稳定不变。

●充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值:

a. 排气式电池:不小于3.0;

b. 阀控式电池:不小于20。

●荷电保存能力:按规定进行试验,电池开路静置28d后剩余容量不低于0.85C10。

●水损耗:按规定进行试验,按实际容量Ce计算,电池重量损失不得大于2g/(Ah)。

⑿摩托车车电池

●气密性(仅适用于非带液电池):按规定进行试验,应保持良好的气密性并能承受20kPa正压或负压。

●排气阀动作(仅适用于阀控电池):按规定进行试验,排气阀在1~49kPa范围内

可靠地开启与关闭。

●安全性:按规定进行试验,电池外观无异常、无漏液等现象。

●密封反应效率(仅适用于阀控电池):按规定进行试验,密封反应效率不小于95%。

●低温起动能力:按规定进行试验,以80I10(A)电流放电5s时,电池单体电压不低于1.55V;放电90s时,电池单体电压不低于1.00V。

●充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值应不小于1.5。

●荷电保存能力:按规定进行试验,电池开路静置21d后:

a. 非起动用电池:剩余容量不低于0.80C10;

b. 起动用电池:放电5s时,单体电池平均电压不低于1.50V;放电45s时,单体电池平均电压不低于1.00V。

●电解液保持能力:按规定进行试验,电池外表不得出现漏液等异常现象。

●耐振动能力:按规定进行耐振动试验后,电池容量不应小于0.95C10,且电池表

面无损伤、无漏液和变形。

●干荷电性能:按规定进行试验。

a. 非起动用电池:首次容量不低于0.75C10。

b. 起动用电池:首次起动放电5s,单体电压≥1.55V;放电90s,单体电压≥1.00V。

c. 干荷电储存性能:

Ⅰ. 非起动用电池储存1年,容量不低于0.6C10。

Ⅱ. 起动用电池储存0.5年,80I10(A)放电5s,单体电压≥1.50V,放电45s,单体电压≥1.00V。

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

蓄电池容量测试操作说明

1准备工作: 1.1工具准备 1.2资料准备 检修票,通信电源蓄电池组维护测试记录表(半年), 1.3注意事项 放电仪的选用: 注意蓄电池放电仪型号选用,48V蓄电池放电仪(型号:IDCE-4815CT)只能用48V蓄电池测试,UPS蓄电池放电仪(型号:IDCE-6006CT)只能用于UPS蓄电池测试。切勿混用。 2操作步骤: 2.1手续办理: 2.1.1信息确认: 把测试事宜及内容告知管理处相关人员,了解测试站点近期市电供电情况,是否存在市电供电异常,确认测试站点当日及第二日市电供电正常,才进行测试,否则,不得进行测试。 2.1.2资料报备: (1)填写检修申请票,并由管理处相关人员签字确认,完成维护报备工作;

(2)通知网管中心,测试前将测试内容和涉及的设备向网管中心值班人员报备。 2.2检查记录: 2.2.1设备检查 (1)设备检查记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及开关电源的其它设置参数,检查蓄电池组的现有容量是否100%。 (2)检查所有的电池端子是否处于拧紧状态 (3)检查电池是否有漏液、酸雾等异常。 2.2.2仪器检查 按照设备清单清点配件是否齐全, 面板介绍 2.3开机与参数设置 2.3.1开机 UPS电源系统: 1)断开待测电池组断路器(注意:严禁两个断路器同时断开),如下图:

2)接交流电源,打开仪表上的市电开关,正常开机 40V蓄电池: 1)断开开关电源柜内的待测电池组熔断丝(注意:两组熔断丝严禁同时断开) 2)把正负极电缆接入仪器正负极接口,另一端与蓄电池正负极相连,然后先打开仪表 市电开关,再合上F1空开,仪表正常开机。(拆下的电池线铜鼻子做好绝缘保护)

铅酸蓄电池的原理与性能

铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中 正负两极的活性物质和电解质起电化反应,对电池产生电流 起着主要作用,如图4-1所示。 在电池部,正极和负极通过电解质构成电池的电路,在 电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极 活性物质产生不同的电极电位,有着较高电位的电极叫做正 极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿 命长,成本较低,能输出较大的 能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅 (Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起 化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在 正、负极板间电位差(电动势)的作用下,电流Ⅰ从 正极流出,经负载流向负极,也就是说,负极上的 电子经负载进入正极,如图4-3。同时在蓄电池部 产生化学反应: . 学习.资料.

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明 铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。充电过程中,电解液相对密度基本以直线逐渐上升。这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。 第二阶段:端电压上升较平稳,至单格电压2.4V。该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。 第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。 第四阶段:该阶段过充电阶段,端电压不再上升。为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。 铅蓄电池充电终了的特征是: (1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。 (2)电解液中产生大量气泡,呈现“沸腾”状态。 3.蓄电池的充放电控制技术 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。 (1)充电过程阶段的划分 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。充电过程一般分为主充、均充和浮充3个阶段。充电末期主要是以恒小电流长时间充电的涓流充电流为主(充电倍率小于0.1C时,称为涓流充电)。

天能阀控铅酸蓄电池电池检测标准

附件一:阀控铅酸蓄电池的检 测 1、检测方法、判断标准 1.1万用表电压检测法 情况一:蓄电池在短期内突然出现放电时间或行驶里程骤降。 步骤:a.电池间连接线检查。检查电池间连接线是否连接牢固有无松动,连接线有无腐蚀断丝; b.放电。将电池总电压放至测量值,即单格电压达到1.8V(6V电池为 5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等)迅 速测量每单只电池的电压并按照不同方位电池做好电压记录; e.补充电。如有△U值大于以上参考值,对这只电池作好记号便于找到,并作以 下补充电; (1)用车载充电器充电至充电完成; (2)用单只充电器对△U值大于以上参考值的电池进行补电; (3)重复b至d步骤; (4)如△U值仍大于参考值,用车载充电器充电至充电完成后更换这只落后电池。 f.平衡适应阶段。为更好使更换的电池达到与其它电池间平衡和适应过程前期 务必按以下操作,切勿作深放电;

(1)充电后放电深度在30%左右进行充电为宜,即如正常可行驶100公里,在行驶30公里左右停止; (2)用车载充电器充电至充电完成; (3)以此浅放电循环至少3次以上方可,建议放电深度不大于70%为宜(即在平缓的路况行驶时感觉车速下降动力不足),如长期进行深 放电会造成电池间压差增大,电池容量、寿命快速下降的风险。 情况二:蓄电池在一定期间内放电时间或行驶里程短大于电池正常衰减且后续未出现急剧下降; 步骤:a.充电后电压记录。用车载充电器充电至充电完成,断开充电器静止2小时测量每单只电池电压并按照不同方位电池做好电压记录, 充满电即单格电压在2.2V左右(6V电池为6.6V/单只,8V电池 为8.8V/单只,12V电池为13.2V/单只),作为判断电池是否因充 电器问题未充满电; b.放电1。将电池总电压放至测量值,即单格电压达到1.8V(6V 电池为5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断是否可能因电池单只落后导致,如单只落后按情况一d 至f进行,如电压正常继续以下操作; d.放电2。将电池总电压放至截止电压,即单格电压达到1.65V (6V电池为4.95V/单只,8V电池为6.6V/单只,12V电池为9.9V/ 单只); e.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断控制器欠压保护是否设置太高导致;

蓄电池实验报告doc

蓄电池实验报告 篇一:直流系统蓄电池充放电试验报告 2 篇二:蓄电池测试 报告 蓄电池测试报告 使用单位:凯翔电池型号:产品名称:制造厂商:测试单位:凯翔测试人员:测试日期:打印日期:测试站点:凯翔 05 XX-11-10 XX-02-20 电流曲线图: 特性比较图: 单体条形图: 容量分析: 篇三:实验报告01--车用蓄电池技术状况的检查 实验一车用蓄电池技术状况的检查 实验时间:XX年9月29日实验地点:A-08 107 指导教师:亢凤林 一、实验目的 1、认识铅酸免维护蓄电池 2、高效放电计在检测蓄电池技术状况中的正确使用; 3、认识和正确使用蓄电池充电机。 二、实验设备

蓄电池、12V高率放电计; GZL-24V-60型过载保护硅整流充电机。 三、实验方法及步骤 1、观察6-QW-54蓄电池外观; 记录:可以看到两个接线柱:红色的一个标有“+”,另一个黑色标有”—”两个都是螺栓接线柱,一个蓄电池技术状态观察窗口,从外边可以看到蓝色的圆点 2、观察蓄电池技术状态指示器 记录:看到蓝色的圆环中间位黑色的圆点 记录分析:说明技术状态良好存电充足 3、12V高率放电计的正确使用; (1)使用高率放电计辨别蓄电池正负极 方法步骤:把高效放电计两个接线端接在蓄电池的两极,要保证两个接线柱都与电极接触完好,通过观察高效放电计的只是灯判定蓄电池的正负极。 (2)使用高率放电计辨别蓄电池技术状态 方法步骤:保持高效放电计的两个接线端接通蓄电池的两极,通过观察放电计上的电压表示数,观察时间最好不超过五秒。 测量数据:11.2V 数据分析:11—12V技术状态良好,9-11V技术状态较好,小于9V技术状态不好。通过本次测量电压表示数为11.2V

铅酸蓄电池的原理与性能

. 铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。同时在蓄电池内部产生化学反应:

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

铅酸蓄电池在线监测系统

铅酸蓄电池在线监测系统 关键字:铅酸蓄电池在线监测系统蓄电池内阻仪蓄电池放电仪蓄电池检测仪 当前,蓄电池的检测和监测已逐渐成为一个热点问题,电力系统、电信系统、移动通讯系统及其他信息产业领域都对蓄电池的检测和监测提出了相应的要求,各大生产厂商都在积极开发相关产品。 从信息安全和供电安全角度来说,电池监测本身与电池具有同样的重要性。在高度现代化的当今社会,很难想象电力网停电、电信网瘫痪给社会政治、经济带来的损失。为了避免这样的损失,在相应的设备上都使用电池作为备用电源,这样,即使电力网停电,也可以从容地采用其他应急手段,避免重大损失的发生。电池如同其他电子元件一样,同样存在早期失效问题,而且电池还存在正确运行的问题,电池监测正是要从这两个角度来提高系统的可靠性,也就是说一方面监测可以保证电池处于正确的运行状态,另一方面监测可以发现即将失效的电池。所以电池监测对重要系统的运行安全具有重要的意义。 电池监测并不是一个新的概念,它的历史几乎同铅酸电池的历史一样长,只是由于电子技术和信息技术的发展才给它注入了新的概念。从使用者的角度说,仅仅对电池组电压和电池组电流进行监测的产品已经不能满足需要,具有单体电池电压监测乃至具有电池内阻监测的产品正在被越来越多地采用。另一方面,新技术已经广泛采用,继电器触点式电池切换逐渐消失代之以先进的电子式切换,单片机技术使监测产品具有了强大的功能,数字信号处理技术使监测产品具有更高的精度和更低的成本。这一领域的各种应用使新一代电池监测产品正从各个角度不断完善。 蓄电池用户最关心的问题是电池监测产品能否满足他们应用系统的安全要求。而市场上销售的电池监测产品并非都能令用户满意。从国内外的研究结果来看,单体电池电压监测除了能够发现电池短路和电池断路这样类型的电池失效外,对电池容量下降很难发现,电池容量下降是电池失效的最主要模式,目前只有电池内阻监测可以有效地发现这样的电池。 产品的性能和成本是用户最关心的两个问题。电池组运行参数监测产品对电池组的正确运行帮助很大,对电池失效基本没有检测能力;具有单电池电压监测的产品可以发现如电池短路和电池断路这样类型的严重失效电池,对电池容量下降基本没有检测能力;具有电池内阻监测的产品可以满足高安全性要求的应用需要。电池组运行参数监测产品具有最低成本;极有单电池电压监测的产品具有较低的成本;具有电池内阻监测的产品成本较高。也有针对特定大批量需求用户的高性能的产品可供选用。由于应用系统的安全性要求,系统不能随时停机维护,在线监测能更好满足这方面的需求。在线监测还能提高效率,更加准确可靠地完成电池监测任务。电池监测问题和网络有着密不可分的关系。网络安全除了与软件、系统管理等问题有关,还与硬件有着密切关系,而电池监测则是应该重点考虑的问题之一。另一方面,从监测自动化角度来说,网络化监测是电力、通讯行业的特点,这就要求电池监测产品具有网络兼容性。 针对蓄电池用户关心的问题,本公司特推出以下产品来解决: 蓄电池内阻测试仪,PITE3915内阻仪采用最先进的交流放电测试方法,能够精确测量蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。客户可以根据自身情况选择按键操作和液晶触摸两种操作方式。它既可以对蓄电池进行成组测量,也可以进行单节测量。 蓄电池活化仪,PITE3930/3932智能蓄电池活化仪,是专用于日常维护中对落后蓄电池处

铅酸蓄电池的主要性能指标

铅酸蓄电池的主要性能指标 1. 铅酸蓄电池的主要性能指标 (1)安全性能 安全性能指标不合格的蓄电池是不可接受的,其中影响最大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。 (2)额定容量 为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的最低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。规定的蓄电池放电条件为: ①蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、0.5小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。 ②放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的最低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为1.8V/单格,以2小时率方电的终止电压一般为1.75V/单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。 ③放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。 ④蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使用过程中,蓄电池的实际容量会逐步衰减。国家标准规定新出厂的蓄电池的实际容量大于额定容量者为合格蓄电池。如现在市场上电动自行车的蓄电池,以恒定电流5A放电要超过2h,相当于电动自行车在平坦的路上连续行驶2h以上。 影响蓄电池容量的因素有极板的构造、充放电电流的大小、电解液的温度及密度等,其中以充放电电流和温度的影响最大。如充放电流过大,将使极板上的活性物质变化处于表面,容量则降低很多。蓄电池的放电电流不同,所能够放出的容量也不相同,放电电流越大,能够放出的电量越小。例如电动自行车常用的电流为5A,使用标称10Ah的蓄电池就是2小时率放电,如果采用10小时率放电,可以达到12Ah。这样,该蓄电池如果按照2小时率标称应该是10Ah,如果按照10小时率标称就是12Ah.所以评价蓄电池的容量不仅仅要看蓄电池的标称容量,还要看蓄电池的放电率。电动自行车蓄电池往往标称为10Ah,同一个蓄电池也可以标12Ah和14Ah。再比如,14Ah的许电车也可以标为17Ah。还有一些蓄电池标为20Ah,蓄电池容量标称值大了,但是其容量没有明显的变化。 (3)内阻 蓄电池的内阻是指电流流过蓄电池内部时所受的阻力,铅酸蓄电池的内阻很小,需要用专门的仪器才可以测得到比较准确的结果。一般所指的蓄电池内阻是充电态内阻,即蓄电池充满电时的内阻。与之对应的是放电态内阻,并且不太稳定。蓄电池的内阻越大,蓄电池自身消耗掉的能量越多,其使用效率越低。内阻很大的蓄电池在充电时发热很厉害,使蓄电池的温度急剧上升,对蓄电池和充电器的影响都很大。随着蓄电池使用次数的增多,由于电解液的消耗及蓄电池内部化学物质活性的降低,蓄电池的内阻会有不同程度的增大,质量越差的蓄电池增大的越快。 蓄电池内部阻抗会因放电量增加而增大,尤其是在放电终止时阻抗最大,主要因为放电的进行使得极板内产生不良导体硫酸铅以及电解液比重下降,故放电后务必马上充电。若任其持续放电,则硫酸铅形成安定的白色结晶(即硫化现象)后,即使充电,极板的活性物质亦无法恢复原状,从而将缩短蓄电池的使用寿命。 温度的下降将导致电解液流动性变差,极板收缩,化学变化迟缓,蓄电池内阻增加。从30℃开始,若温度下降1℃,容量将下降1%左右,其内阻也有所增大。所以在严寒地区,气温在-20℃以下时容量已下降至60%,内阻增大,常感到蓄电池电力不足。在严寒地区易出现过量放电,而在温带地区则经常出现过量充电的问题。所以要使用好蓄电池,必须根据当地的气候条件,针对实际情况,掌握其使用规律。蓄电池的充电必须根据不同情况选择适当的方法并正确的使用充电设备,这样才能提高蓄电池的容量,延长蓄电池的使用寿命。 铅酸蓄电池的内阻与镍氢蓄电池及锂离子蓄电池相比较小,即蓄电池容量下降2/3后,仍能提供较大的电流,而电源电压基本稳定,波动较小。而镍氢蓄电池及锂离子蓄电池就不同了。以36V/9Ah锂离子蓄电池为例,当容量下降到原来的1/3后,电流输出为12A时,电压就会有4~5V的波动,即有电流输出时为31V,无电流输出时接近35V。这样在电动自行车应用中,骑行时会出现运行不平稳,时而有输出时而无输出的现象。 (4)循环寿命 循环寿命是指蓄电池可经历的重复充放电次数。蓄电池的寿命和容量成反比关系,循环寿命还与充放电条件密切相关,一般充电电流越大(充电速度越快),循环寿命越短。 寿命是表示蓄电池容量衰减速度的一项指标,随着使用的深入,蓄电池容量的衰减是不可避免的,当容量衰减到某规定值时,

相关文档
最新文档