滤池设计计算书

滤池设计计算书
滤池设计计算书

第四节、滤池

滤池选用V 型滤池

特点:下向流均粒砂滤料,带表面扫洗的气水反冲滤池。 优点:1、运行稳妥可靠; 2、采用砂滤料,材料易得;

3、滤床含污量大、周期长、滤速高、水质好;

4、具有气水反洗和水表面扫洗,冲洗效果好。 缺点:1、配套设备多,如鼓风机等;

2、土建较复杂,池深比普通快滤池深。 使用条件:1、适用于大、中型水厂

2、单池面积可达150m 2以上。

设计计算

1、平面尺寸计算

Q F n v =

?

式中 F---每组滤池所需面积 (m 3) Q---滤池设计流量 (m 3/h) n---滤池分组数 (组)

v---设计滤速 (m/h), 一般采用8~15 m/h 设计中取 v=10m/h , n=6

21200002483.3610÷==?F m

单格滤池面积:

F f N =

式中 f---单格滤池面积 (m 3) N---每组滤池分格数 (格)

设计中取 N=4283.33

20.834

==f m 则单格滤池的尺寸为6.0m ×4.0m 。 单格滤池的实际面积:/

f B L =?

式中 f /----单格滤池的实际面积 (m 2) B-----单格池宽 (m) L----单格池长 (m) 设计中取 L=6.0m , B=4.0m

26.0 4.024f m '=?= 正常过滤时实际滤速

1Q v N f '=

'?1Q

Q n =

式中 v /----正常过滤时实际滤速 (m/h)

Q 1----一组滤池的设计流量 (m 3/h)

215000/6833.33==Q m

833.33

8.68/424.0

'=

=?v m h

一格冲洗时其他滤格的滤速为

()11n Q v N f

=

-

式中 v /----一格冲洗时其他滤格的滤速(m/h),一般采用10~14m/h 。

()833.33

11.57/4124.0

=

=-?n v m h

2、进水系统 (1)、进水总渠

1

111Q H B v =

式中 H 1 ---- 进水总渠内水深 (m ); B 1 ---- 进水总渠净宽 (m );

v 1 ---- 进水总渠内流速 (m/s ),一般采用0.6~1.0m/s 。 设计中取H 1=1.0m ,v 1=0.8m/s,

10.230.291.00.8==?B m

(2)、气动隔膜阀的阀口面积

2

2Q A v =

式中 A ---- 气动隔膜阀口面积 (m 2

); Q 2 ---- 每格滤池的进水量 (m 3/s),

1

2Q Q N =

;

v 2 ---- 通过阀门的流速(m 3/s);一般采用0.6~1.0m/s 。 设计中取v 2=0.8m/s

320.290.058/4==Q m s A=0.058/0.8=0.072m 2

(3)、进水堰堰上水头

2

3

2

h

??

=

式中 h

2

---- 堰上水头(m);

m ---- 薄壁堰流量系数,一般采用0.42~0.50;

b ---- 堰宽(m)。

设计中取m=0.42,

b=1m

2/3

20.099

==

h m

(4)、V型进水槽

3

h=

式中 h

3

---- V型进水槽内水深(m);

Q

3

---- 进入V型进水槽的流量(m3/s);

v

3

---- V型进水槽内的流速(m/s);一般采用0.6~1.0m/s;

α---- V型槽夹角,α=500~550。

设计中每格滤池设两个V型进水槽,则Q

3

=Q

2

/2=0.029m3/s,取v

3

=0.6m/s,α=50

0 30.28

==

h

V型槽垂直高度为340mm,壁厚为80mm,V型槽采用钢筋混凝土结构。

(5)、V型槽扫洗小孔

2

41000

q f

Q

?

=

1A

=

1000

d=

式中 Q

4

---- 表面扫洗流量(m3/s);

q

2

---- 表面扫洗强度[L/(s?m2)],一般采用1.4~2.3L/(s?m2);

A

1

---- 小孔总面积(m2);

μ---- 孔口流量系数;

d ---- 小孔直径(mm);

n

2

---- 小孔数目(个)。

设计中取q

2

=2.0L/(s?m2),μ=0.62,取每个V型槽上扫洗小孔数目10个,则n

2

=20个

3

4

2.024

0.048/

1000

Q m s

?

=

=10.033

==

A

100045.68=

=d m 取d=50mm 。

验算小孔流速v 4

4410.048 1.5/ 1.0/0.032

Q v m s m s A =

==>符合要求。 3、反冲洗系统

(1)、气、水分配渠(按反冲洗水量计算)

151000

f q Q '?=522

5Q H B v ?= 式中 Q 5 ---- 反冲洗水流量(m 3/s);

q 1 ---- 反冲洗强度4~6L/(s ?m 2),取q 1=4 L/(s ?m 2)

v 5 ---- 气、水分配渠中水的流速,一般取1.0~1.5m/s 。取v 5=1.0m/s ; H 2 ---- 气、水分配渠内水深; B 2 ---- 气、水分配渠宽度,B 2=1.0m 。

352440.096/1000Q m s ?=

=52250.096

0.0961.0 1.0

Q H m B v ===?? 反冲洗水管的管

径350d mm =

= (2)、配水方孔面积和间距

515Q F v =

131F

n f =

式中 F 1 ---- 配水方孔总面积; ---- 配水方孔流速,取=0.5m/s ; f 1 ---- 单个方孔的面积; n 3 ---- 方孔个数。 210.050.050.0025f m =?=

210.0960.20.5

F m =≈30.2

770.0025==n 个,这里取80 在气水分配渠两侧分别布置40个配水方孔,分为上下两行交错布置,同行间距为0.28m 。

(3)布气圆孔的间距和面积

布气圆孔的数目及间距和配水方孔相同,采用直径为50mm 的圆孔,其单孔面积

5v 5v

为22

3.14

0.050.00204m ?=,所有圆孔的面积之和为2400.00200.08m ?=。

(4)、空气反冲洗时所需空气的量

1000q f Q '?=

气气

式中 Q 气 ---- 空气反冲洗时所需空气的量;

q 气 ---- 空气冲洗强度,13~17L/(s ?m 2),取q 气=15L/(s ?m 2);

31524

0.36m /1000

Q s ?==气 空气通过圆孔的流速为 0.36/0.08=4.5m/s ,配气干管用DN200钢管 (5)、底部配水系统

底部配水系统采用QS 型长柄滤头,材料为ABS 工程塑料,数量为55只/m2。滤头安装在混凝土滤板上,滤板搁置在梁上。滤头长70cm ,滤帽上有缝隙25条,滤柄上部有¢2mm 气孔,下部有长65mm ,宽1mm 条缝。

滤板滤梁均为钢筋混凝土预制件,高度、长度根据实际情况决定,为了确保反冲洗时滤板下面任何一点的压力均等,并使滤板下压力的空气可以尽快形成一个气垫层,滤板与池底之间应有一个高度适当的空间,一般来讲,滤板下面清水区的高度为0.85~0.95m ,该高度在足以使空气通过滤头的孔和缝得到充分的混合并均匀分布在整个滤池面积上,从而保证了滤池的正常过滤和反冲洗效果,设计中取滤板下清水区的高度 H 5=0.85m 。 4、过滤系统

滤料选用石英砂,粒径为0.95~1.35mm ,不均匀系数K 80=1.0~1.3.滤层厚度一般采用1.2~1.5m ,设计中取滤层厚度H 6=1.2m 。

滤层上水深一般采用1.2~1.3m ,设计中取滤层上水深H 7=1.2m 。 5、排水系统

(1)、排水渠终点水深

45

327Q Q H B v +=

式中 H 3 ---- 排水渠终点水深; v 7 ---- 排水渠流速,v 7=0.7m/s 。 设计中取排水渠和气水分配渠等宽B 2=1.0m ,取v 7=0.7m/s ,

453270.0480.096

0.2061.00.7

Q Q H m B v ++=

==? (2)、排水渠起点水深

423

i l H ?=

k h =

式中 H 4 ---- 排水渠起端水深; h k ---- 排水渠临界水深; i ---- 排水渠底坡;

l ---- 排水渠长度。

设计中取排水渠长度等于滤池长度,l=5.6m ,排水渠底坡i=0.02,

0.128k

h m =

=

420.02 5.60.2453

H m ??==

按照要求,排水槽堰顶应高出石英砂滤料0.5m ,则中间渠总高为滤板下清水区的高度+滤板厚+滤料层厚+0.5,即

0.90+0.10+1.20+0.50=2.7m

V 型滤池构造简图

1-进水气动隔膜阀;2-方孔;3-堰口;4-侧孔;5-V 型槽;6-小孔;7-排水渠; 8-气、水分配渠;9-配水方孔;10-配气小孔;11-底部空间;12-水封井; 13-出水堰;14-清水渠;15-排水阀;16-清水阀;17-进气阀;18-冲洗水阀 6、滤池总高度

56789H H H H H H =++++

式中 H 5 ---- 滤板上清水区的高度,H 5=0.90m ; H 6 ---- 滤层厚度,H 6=1.20m ; H 7 ---- 滤层上水深,H 7=1.20m ; H 8 ---- 滤板厚度,H 8=0.10m ; H 9 ---- 超高,H 9=0.30m 。

H=0.9+1.2+1.2+0.1+0.3=3.7m

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

普通快滤池设计计算书

普通快滤池设计计算书 1. 设计数据 1.1设计规模近期360000/m d 1.2滤速8/v m h = 1.3冲洗强度215/s m q L =? 1.4冲洗时间6min 1.5水厂自用水量5% 2.设计计算 2.1滤池面积及尺寸 设计水量31.056000063000m /Q d =?= 滤池工作时间24h ,冲洗周期12h 滤池实际工作时间24240.123.812 T h =-? =(式中只考虑反冲洗停用时间,不考虑排放初滤水) 滤池面积263000330.88823.8Q F m vT ===? 采用滤池数8N =,布置成对称双行排列 每个滤池面积2330.8841.368F f m N = == 采用滤池尺寸1:2=B L 左右 采用尺寸9L m =, 4.6B m = 校核强制滤速889.14/181 Nv v m h N ?===--强 2.2滤池高度 支承层高度10.45H m = 滤料层高度20.7H m = 砂面上水深32H m = 超高(干弦)40.3H m = 滤池总高12340.450.720.3 3.45H H H H H m =+++=+++=

2.3配水系统(每只滤池) 2.3.1干管 干管流量· 41.3615620.4/g q f g L s ==?= 采用管径800g d mm =(干管埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.23/g v m s = 2.3.2支管 支管中心间距0.25z a m = 每池支管数922720.25z z L n a =? =?=根(每侧36根) 每根支管长 4.60.80.3 1.752 z l m --== 每根支管进口流量620.48.62/72 g z z q q L s n = == 采用管径80z d mm = 支管始端流速 1.72/z v m s = 2.3.3孔口布置 支管孔口总面积与滤池面积比(开孔比)0.25%α= 孔口总面积20.25%41.360.1034k F f m α=?=?= 孔口流速0.62046/0.1034 k v m s == 孔口直径9k d mm = 每个孔口面积225263.6 6.36104k k f d mm m π-= ?==? 孔口总数250.103416266.3610 k k k F N m f -==≈?个 每根支管孔口数16262372k k z N n n = =≈个 支管孔口布置设两排,与垂线成045夹角向下交错排列 每根支管长 4.60.80.3 1.752 z l m --== 每排孔口中心距 1.750.150.50.523z k k l a m n = ==??

V型滤池计算说明书

V型滤池计算说明 书

9.7 过滤设备 (V型滤池) 9.7.1 设计要点: ①滤速可达7—20m/h,一般为12.5~15.0m/h。 ②采用单层加厚均粒滤料,粒径一般为0.95~1.35mm,允许夸大到 0.70~2.00mm,不均匀系数1.2~1.6或1.8之间。 ③对于滤速在7—20m/h之间的滤池,其滤层厚度在0.95—1.5之间选用,对于更高的滤速还可相应增加。 ④底部采用带长柄滤头底板的排水系统,不设砾石承托层。 ⑤反冲洗一般采用气冲,气水同时反冲和水冲三个过程,大大节省反冲洗水量和电耗,气冲强度为13—16 L/s·2m,清7水冲洗强度为 3.6— 4.1 L/s·2m,表面扫洗用原水,一般为1.4—2.2 L/s·2m。 ⑥整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高。 ⑦滤层以上的水深一般大于1.2m,反冲洗时水位下降到排水槽顶,水深只有0.5m 。 ⑧V型进水槽和排水槽分设于滤池的两侧,池子可沿着长的方向发展,布水均匀V 型滤池是恒水位过滤,池内的超声波水位自动控制可调节出水清水阀,阀门可根据池内水位的高、低,自动调节开启程度,以保证池内的水位恒定。V 型滤池所选用的滤料的铺装厚度较大(约 1.40m),粒径也较粗(0.95—1.35mm)的石英砂均质滤料。当反冲洗滤层时,滤料呈微膨胀状态,不易跑砂。V

型滤池的另一特点是单池面积较大,过滤周期长,水质好,节省反冲洗水量。单池面积普遍设计为70—902m,甚至可达1002m以上。由于滤料层较厚,载污量大,滤后水的出水浊度普遍小于0.5NTU。 V 型滤池的冲洗一般采用的工艺为气洗→气水同时冲洗→水冲洗+表面扫洗。 9.7.2 设计参数确定 设计水量 Q=8×1043m/d;滤速V=10m/h。 滤池冲洗确定(见下表) 总冲洗时间12min=0.2h 冲洗周期T=48h 反冲横扫强度1.8L/(s·2m)【一般为 1.4~2.0 L/(s·2m)】 9.7.3 设计计算 (1)池体设计 ①滤池工作时间t’(读者注:平均每天的过滤时间) t’=24-t×24/T=24-0.2×24/48=24-0.1=23.9(h)(式中未考虑排放滤水) ②滤池面积F 滤池总面积F=Q/V·t’=80000/10×23.9=3352m ③滤池的分格

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

底盘的设计计算书

底盘设计计算书 目录 1.计算目的 2.轴载质量分配及质心位置计算 3.动力性计算 4.稳定性计算 5.经济性计算 6.通过性计算 7.结束语 1.计算目的 本设计计算书是对陕汽牌大客车专用底盘的静态参数,动力性,经济性,稳定性及通过性的定量分析。旨在从理论上得到整车的性能参数,以便评价该大客车专用底盘的先进性,并为整车设计方案的确定提供参考依据。 2.轴载质量分配及质心位置计算 在此处仅对大客车专用底盘进行详细准确的分析计算,而对整车改装部分(车身)只做粗略估算。(车身质量按340KG/M计算或参考同等级车估算)。计算整车的最大总质量,前轴轴载质量,后桥轴载质量及质心位置可按以下公式计算。 M=ΣMi M1=ΣM1iM1=Σ(1-Xi/L) M2=ΣM2iM2=Σ(Xi/L) hg=Σ(Mi·hi/M) A=M2·L/M

式中: M——整车最大总质量 M1——前轴轴载质量 M2——后桥轴载质量 Mi——各总成质量 Xi——各总成质心距前轴距离 Hi——各总成质心距地面距离 M1i——各总成分配到前轴的质量 M2i——各总成分配到后桥的质量 hg——整车质心距地面距离 L——汽车轴距 A——整车质心距前轴距离 2.1各总成质量及满载时的质心位置 序号名称质量质心距前轴M1I质心距地面HI。MI距离XI距离HI KGMMKG。MMKG。MM1前轴前轮前悬挂 2后桥后轮后悬挂 3发动机离合器 4变速箱 5传动轴 6散热器附件 7膨胀箱支架

8空滤器气管支架 9消音器气管支架 10油箱支架 11电瓶支架 12方向盘xx 13转向机支架 14转向拉杆 15换档杆操纵盒 16贮气筒支架 17操纵踏板支架 18前后拖钩 19全车管路附件 20车架 底盘 21车身 空车 22乘客 23行李 24司机 满载 2.2水平静止时轴载质量分配

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

给水厂混凝沉淀过滤消毒设计计算书

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

普通快滤池设计计算(稻谷文书)

普通快滤池设计计算 1.已知条件 设计水量Qn=20000m 3/d ≈833m 3/h.滤料采用石英砂,滤速v=6m/h,10d =0.6,80K =1.3,过滤周期Tn=24h ,冲洗总历时t=30min=0.5h;有效冲洗历时0t =6min=0.1h 。 2.设计计算 (1)冲洗强度q q[L/(s*m 3)]可按下列经验公式计算。 632 .0632.145.1)1()35.0(2.43v e e dm q ++= 式中 dm ——滤料平均粒径,mm ; e ——滤层最大膨胀率,采用e=40%; v ——水的运动黏度,v=1.142 mm /s (平均水温为15℃)。 与10d 对应的滤料不均匀系数80K =1.3,所以 dm=0.980K 10d =0.9x1.3x0.6=0.702(mm) 632 .0632.145.114 .1)4.01()35.04.0(702.02.43?++??=q =11[L/(s*m 3)] (2)计算水量Q 水厂自用水量主要为滤池冲洗用水,自用水系数α为 v qt t Tn Tn 0 6.3)(- -= α= 6 1 .0116.3)5.024(24 ??- -=1.05 Q=αQn=1.05X883=875(m 3/d) (3)滤池面积F 滤池总面积F=Q/v=875/8=109㎡ 滤池个数N=3个,成单排布置。 单池面积f=F/N=109/3=36.33(㎡),设计采用40㎡,每池平面尺寸采用B×L=5.2m×7.8m (约40㎡),池的长宽比为7.8/5.2=1.5/1. (4)单池冲洗流量冲q 冲q =fq=40×11=440(L/s)=0.44(m 3/s) (5)冲洗排水槽 ①断面尺寸。两槽中心距a 采用2.0m,排水槽个数 1n =L/a=7.8/2.0=3.9≈4个

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

普通快滤池的设计计算书

3.12普通快滤池的普通快滤池的设计设计设计 3.12.1设计参数设计参数 设计水量Qmax=22950m3/d=0.266m3/ 采用数据:滤速)m (s /14q s /m 10v 2?==L ,冲洗强度 冲洗时间为6分钟 3.12.2普通快滤池的普通快滤池的设计计算设计计算设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h ,实际工作时间T= h 8.2312241.024=×?,滤池面积为 2m 968.231022950v =×==T Q F 采用4个池子,单行行排列 2m 244 96N F f === 采用池长宽比 L/B=1.5左右,则采用尺寸L=6m 。B=4m 校核强制滤速m 3.131-41041-N Nv v =×== ‘ (2) 滤池高度: 支撑层高度:H1=0.45m 滤料层高度:H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.干管流量:s /3361424fq q g L =×== 采用管径s /m 19.1v mm 600d g g ==,始端流速 2.支管: 支管中心距离:采用,m 25.0a j = 每池支管数:根480.2562a 2n j =×=× =L m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k mm 6000024%25.0Kf F =×== 采用孔眼直径mm 9d k = 每格孔眼面积:22 k mm 6.634d f ==π 孔眼总数9446 .6360000f F N k k k === 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =?=?=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =×=×= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==(μ 5.复算配水系统: 管长度与直径之比不大于60,则6023075 .07.1d l j j <== 孔眼总面积与支管总横面积之比小于0.5,则 33.1075.0464d 4f n g 2j j k =×=)()(π π F 孔眼中心间距应小于0.2,则2.017.0a k <=

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

滤池设计计算书

第四节、滤池 滤池选用V 型滤池 特点:下向流均粒砂滤料,带表面扫洗的气水反冲滤池。 优点:1、运行稳妥可靠; 2、采用砂滤料,材料易得; 3、滤床含污量大、周期长、滤速高、水质好; 4、具有气水反洗和水表面扫洗,冲洗效果好。 缺点:1、配套设备多,如鼓风机等; 2、土建较复杂,池深比普通快滤池深。 使用条件:1、适用于大、中型水厂 2、单池面积可达150m 2以上。 设计计算 1、平面尺寸计算 Q F n v = ? 式中 F---每组滤池所需面积 (m 3) Q---滤池设计流量 (m 3/h) n---滤池分组数 (组) v---设计滤速 (m/h), 一般采用8~15 m/h 设计中取 v=10m/h , n=6 21200002483.3610÷==?F m 单格滤池面积: F f N = 式中 f---单格滤池面积 (m 3) N---每组滤池分格数 (格) 设计中取 N=4283.33 20.834 ==f m 则单格滤池的尺寸为6.0m ×4.0m 。 单格滤池的实际面积:/ f B L =? 式中 f /----单格滤池的实际面积 (m 2) B-----单格池宽 (m) L----单格池长 (m) 设计中取 L=6.0m , B=4.0m 26.0 4.024f m '=?= 正常过滤时实际滤速

1Q v N f '= '?1Q Q n = 式中 v /----正常过滤时实际滤速 (m/h) Q 1----一组滤池的设计流量 (m 3/h) 215000/6833.33==Q m 833.33 8.68/424.0 '= =?v m h 一格冲洗时其他滤格的滤速为 ()11n Q v N f = - 式中 v /----一格冲洗时其他滤格的滤速(m/h),一般采用10~14m/h 。 ()833.33 11.57/4124.0 = =-?n v m h 2、进水系统 (1)、进水总渠 1 111Q H B v = 式中 H 1 ---- 进水总渠内水深 (m ); B 1 ---- 进水总渠净宽 (m ); v 1 ---- 进水总渠内流速 (m/s ),一般采用0.6~1.0m/s 。 设计中取H 1=1.0m ,v 1=0.8m/s, 10.230.291.00.8==?B m (2)、气动隔膜阀的阀口面积 2 2Q A v = 式中 A ---- 气动隔膜阀口面积 (m 2 ); Q 2 ---- 每格滤池的进水量 (m 3/s), 1 2Q Q N = ; v 2 ---- 通过阀门的流速(m 3/s);一般采用0.6~1.0m/s 。 设计中取v 2=0.8m/s 320.290.058/4==Q m s A=0.058/0.8=0.072m 2 (3)、进水堰堰上水头

V型滤池计算说明书

9.7过滤设备 (V型滤池) 9.7.1 设计要点: ①滤速可达7—20m/h,一般为12.5~15.0m/h。 ②采用单层加厚均粒滤料,粒径一般为0.95~1.35mm,允许夸大到0.70~ 2.00mm,不均匀系数1.2~1.6或1.8之间。 ③对于滤速在7—20m/h之间的滤池,其滤层厚度在0.95—1.5之间选用,对于更高的滤速还可相应增加。 ④底部采用带长柄滤头底板的排水系统,不设砾石承托层。 ⑤反冲洗一般采用气冲,气水同时反冲和水冲三个过程,大大节省反冲洗水量和电耗,气冲强度为13—16 L/s·2 m,表面 m,清水冲洗强度为3.6—4.1 L/s·2 扫洗用原水,一般为1.4—2.2 L/s·2 m。 ⑥整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高。 ⑦滤层以上的水深一般大于 1.2m,反冲洗时水位下降到排水槽顶,水深只有 0.5m 。 ⑧ V型进水槽和排水槽分设于滤池的两侧,池子可沿着长的方向发展,布水均匀V 型滤池是恒水位过滤,池内的超声波水位自动控制可调节出水清水阀,阀门可根据池内水位的高、低,自动调节开启程度,以保证池内的水位恒定。V 型滤池所选用的滤料的铺装厚度较大(约1.40m),粒径也较粗(0.95—1.35mm)的石英砂均质滤料。当反冲洗滤层时,滤料呈微膨胀状态,不易跑砂。V 型滤池的另一特点是单池面积较大,过滤周期长,水质好,节省反冲洗水量。单池面积普遍设计为70—902 m以上。由于滤料层较厚,载污量大,滤后水m,甚至可达1002 的出水浊度普遍小于0.5NTU。 V 型滤池的冲洗一般采用的工艺为气洗→气水同时冲洗→水冲洗+表面扫洗。9.7.2 设计参数确定 设计水量 Q=8×1043 m/d;滤速V=10m/h。 冲洗周期T=48h 反冲横扫强度1.8L/(s·2 m)】 m)【一般为 1.4~2.0 L/(s·2

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

相关文档
最新文档