大学线性代数论文

大学线性代数论文
大学线性代数论文

线性代数论文

线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。

主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。

行列式的计算方法.

定义法

在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.

(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.

(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面

的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序

数.

(3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.

在做好这些工作之后,来引入行列式的定义:

定义:n阶行列式

等于所有取自不同行不同列的n个元素的乘积.

a1j1a2j2a3j3………anj n <Ⅱ>

的代数和,这里j1,j2,j3,……j n为1,2,3,……,n的一个排列,每一项<Ⅱ>

j1,j2,j3,……j n是偶排列时, <Ⅱ>带有正号,当都按下列规则带有符号,当

j1,j2,j3,……j n是奇排列时,<Ⅱ>带有负号.

即:

例1:计算行列式:

解:由行列式的定义知:

=(-1)t(123)5×1×4+(-1)t(132)5×2×6+(-1)t(213)2×4×4+(-1)t(231)2×2×3+(-1)t(312)3×4×6+(-1)t(321)3×1×3=20-60-32+12+72-9=3

例2计算

解:由行列式的定义知:

=(-1) t(j1j2…jn)1×2×3……×n=(-1)0n!=n!.

由以上两个例子可以看出,若计算阶数较低(不超过三阶)的行列式及上三角(下三角)行列式运用定义法较为简单,但若是高阶非上(下)三角型的行列式按定义法计算比较繁琐.因此,我们必须寻求其它的,让计算变得简洁的计算方法.

按照行列式的性质将行列式化成上三角(下三角或反三角)法.

运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式. (行列式的性质见参考文献).

行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可.

其计算步骤可归纳如下:

(ⅰ)看行列式的行和(列和),如果行列和相等,则均加到某一列(行)【直观上加到第一列(行)】.

(ⅱ)有公因子的提出公因子.

(ⅲ)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式.

(ⅳ)由行列式的定义进行计算.

由以上四步,计算一般行列式都简洁多了.

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

最新大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

考研数学线性代数讲义

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按 行(列)展开定理以及AA*=A*A=|A|E. 2.若涉及到A.B是否可交换,即AB=BA,则立即联想到用逆矩阵的定 义去分析。 3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出 因子aA+bE再说。 4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。 5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。 8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 2010考研基础班线性代数 主讲:尤承业 第一讲基本概念 线性代数的主要的基本内容:线性方程组矩阵向量行列式等一.线性方程组的基本概念 线性方程组的一般形式为: 其中未知数的个数n和方程式的个数m不必相等. 线性方程组的解是一个n个数 C,2C, …, n C构成,它满足:当每个方程中 1 的未知数1x都用1C替代时都成为等式. 对线性方程组讨论的主要问题两个:

(1)判断解的情况. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷多个解;如果两条直线平行且不重合则无解。 (2)求解,特别是在有无穷多解时求通解. 齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总是齐次线性方程组的解,称为零解. 因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 二.矩阵和向量 1.基本概念 矩阵和向量都是描写事物形态的数量形式的发展. 矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为(i,j)位元素. 5401 23-是一个2?3矩阵. 对于上面的线性方程组,称矩阵 mn m m n n a a a a a a a a a A 212222111211=和m mn m m n n b b b a a a a a a a a a A 21212222111211)(=β

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数讲义

线性代数讲义 线性代数攻略 线性代数由两部分组成: 第一部分:用矩阵解方程组(判断解的存在性,用有限个解表示所有的解)第二部分:用方程组解矩阵(求特征值,特征向量,对角化,化简实二次型)主观题对策 1. 计算题精解 计算题较之选择题与填空题难度几乎没有增加,但计算量大大增加,故出错的机会大幅增长,因此应力求用简便方法解决问题. 一.行列式的计算: 单纯计算行列式的题目大概永远不会出现.所以需要结合其它的知识点. l 核心内容 范德蒙行列式/余子式/代数余子式/Cramer法则: l 典型方法 降阶法(利用Gauss消元法化为三角矩阵:常常是将所有的行或列加到一起)/特征值法(矩阵的行列式等于其特征值之积)/行列式的其它性质(转置矩阵/逆矩阵/伴随矩阵/矩阵之积) 例1 计算下述三个n阶矩阵的行列式: . 解先算|B|=xn;再算|A|: 故|C|= |A|(-1)(1+?+n)+[(n+1)+…+(2n)] |B-1| =(-1)(1+2n)n(n+x)/x. 例2(2004-4) 设矩阵 ,矩阵B满足ABA*=2BA*+E,则|B|=[ ]. 分析化简可得(A-2E)BA*=E;于是|A-2E||B||A*|=1. 又|A*|=9,|A-2E|=1,所以|B|=1/9. (切忌算B=(A-2E)-1(A*)-1.) 例3 设4×4矩阵A=(x,a,b,g), B=(h,b,g,a). 若|A|=1, |B|=2,则行列式|A+B|=[ ].

正解:|A+B|=|x+h, a+b, b+g, g+a|=|x+h, 2(a+b+g), b+g, g+a|=2|x+h, a+b+g, b+g, g+a| =2|x+h, a, b+g, g+a|=2|x+h, a, b+g, g|=2|x+h, a, b, g|=2(|x, a, b, g|+|h, a, b, g|)=2(|A|+|B|)=6. 巧解:正解令人羡慕,但可能想不起来.于是令A=E,则.但|B|=2,所以取最简单的 .于是 ,故|A+B|=6. 例4 若四阶方阵A的特征值分别为-1,1,2,3,则行列式|A-1+2A*|=[ ]. 解此题考查对特征值的理解.特征值的性质中最重要(也是最简单的)的有两条,即所有特征值的和等于矩阵的迹(=对角线元素之和),而所有特征值的积等于矩阵的行列式.因此|A|= -6!剩余的就是简单的变形了: A-1+2A* = A-1 (E+2A A*) = A-1 (E+2|A|E)=-11A-1. 故|A-1+2A*|=|-11A-1|=(-11)4|A-1|=-114/6. 本题有巧解,你想到了吗?对!就让A是那个满足条件的最简单的矩阵! 例2(上海交大2002) 计算行列式 其中,. 本题只要对特征多项式有一定认识,则易如反掌.所求行列式对应的矩阵A=xE+B, 其中B=(aibj)的任意两行均成比例,故其秩为1(最重要的矩阵类型之一)或0,但由题中所给条件,B10,于是,B至少有n-1个特征值为0,另有一特征值等于trB= a1b1+ a2b2+…+ anbn10. 从而,A有n-1个特征值x,另有一个特征值x+trB.OK 例3(2001) 设A为三阶矩阵,X为三维向量,X,AX, A2X线性无关,A3X=4AX-3A2X.试计算行列式|2A2+3E|. 很多人觉得此题无从下手,实在冤枉了出题人.由A3X=2AX-3A2X可知, A(A2+3A-4E)X=0.由此知, |A|=0:否则,A可逆,X,AX, A2X将线性相关,矛盾!从而(A2+3A-4E)X=0:故X是齐次线性方程组(A2+3A-4E)Y=0的非零解.于是|A2+3A-4E|=0.故A的三个特征值为0,1,-4.于是2A2+3E的三个特征值为3,5,35.所以, |2A2+3E|=3′5′35=525. 例4(1995) 设n阶矩阵A满足AA¢=I,|A|<0,求|A+I|. 解首先, 1=|AA¢|=|A|2,所以|A|=-1. 其次, |A+I|=|A+AA¢|=|A||I+A¢|=|A||I+A|=-|I+A|, 故|A+I|=0. (涉及的知识点: |A|=|A¢|, (A+B)¢=A¢+B¢.) 例5(1999)设A是m′n矩阵,B是n′m矩阵,则

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数 英文讲义

Chapter 4 Linear Transformations In this chapter, we introduce the general concept of linear transformation from a vector space into a vector space. But, we mainly focus on linear transformations from n R to m R. §1 Definition and Examples New words and phrases Mapping 映射 Linear transformation 线性变换 Linear operator 线性算子 Dilation 扩张 Contraction 收缩 Projection 投影 Reflection 反射 Counterclockwise direction 反时针方向 Clockwise direction 顺时针方向 Image 像 Kernel 核 1.1 Definition ★Definition A mapping(映射) L: V W is a rule that produces a correspondence between two sets of elements such that to each element in the first set there corresponds one and only one element in the second set. ★Definition A mapping L from a vector space V into a vector space W is said to be a linear transformation(线性变换)if

大学线性代数期末考试试题

大学线性代数期末考试试 题 The Standardization Office was revised on the afternoon of December 13, 2020

a 0 0 一、选择题 线性代数测试 a 1 b 1 c 1 c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( ) A. - D a 3 b 3 c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 . (A )13524876; (B )51324867; (C )38124657; (D )76154283. 3. 设 A m ?s , B t ?n , C s ?t ,则下列矩阵运算有意义的是( ) A. ACB ; B. ABC ; C. BAC ; D. CBA . 4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有() A. A = B ; B. A ≠ B ; C. R ( A ) = R (B ) ; D. R ( A ) ≠ R (B ) . 5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( ) A. 4 B.5 C.2 D.3 6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ). A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示; B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示; C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示; D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示. ? a b + 3 0 ? ? 7. 矩阵 A = a - 1 a 0 ? 为正定矩阵,则 a 满足 . ? ? ? 1 1 (1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2 8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 . (A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量; (C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似. 二、判断题 1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。 2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。 3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。 4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例. 5、若 A 是实对称矩阵,则 A 一定可以相似对角化. 三、填空题

中山大学《线性代数》期中考试卷答案

珠海校区2009年度第一学期《线性代数》期中考试卷 姓名:专业:学号:成绩: 一,填空题(每题3分,共24分) 1.在5 阶行列式中,含有a13a34a51且带有负号的项是________________ 2.设A是3阶方阵,| A |= 1/3 ,则|(3A)-1 + 2A*| = 1 1 0 0 1 1 1 1 3. 5 2 0 0 = : 4 . x c b a = ; 0 0 3 6 x2c2b2a2 0 0 1 4 x3c3b3a3 5 . 已知矩阵 A = 1 1 , B = 1 0 , 则AB – BA T = ; 0 -1 1 1 1 0 2 6. 已知矩阵 A = 1 k 0 的秩为 2 ,则k = ; 1 1 1 2 1 1 1 7. 1 2 1 1 = ; 8. 若A = diag( 1 ,2 ,3 ,4 ) , 则A-1= ; 1 1 2 1 1 1 1 2 二. 判断题(每题2分,共10分) 1. 任一n 阶对角阵必可与同阶的方阵交换。() 2. n 阶行列式中副对角线上元素的乘积a n1a n-1,2…a1n总是带负号的() 3. 若A为n 阶方阵,则(A*)T = ( A T )* () 4. 设A , B 为n 阶方阵,则有(AB)3= A3B3() 5. 设A与B 为同型矩阵,则 A ~ B的充要条件是R(A)=R ( B ) ( ) 三,计算下列行列式( 每题8 分,共16 分) -2 -1 1 -1 0 1 0 …0 0 D4 = -2 2 4 8 1 0 1 …0 0 -2 1 1 1 D n = 0 1 0 …0 0 -2 -2 4 8 . . . . . 0 0 0 …0 1 0 0 0 … 1 0 -1 -1 0 四. 已知 A = -1 0 1 且AB = A – 2B , 求 B . 2 2 1

中南大学线性代数试卷

考试试卷1 闭卷考试时间:100分钟 一、填空题(本题15分,每小题3分) 1、设()4321,,,A A A A A =为四阶方阵,其中)4,3,2,1(=i A i 为A 的第i 个列向量, 令()14433221,,,A A A A A A A A B ----=,则=B 。 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且3||=A ,则=-*|)(|1A 。 3、设??? ? ? ??-----=2531312311 112t t A ,且2)(=A R ,则=t 。 4、若n 阶方阵A 有特征值λ,则E a A a A a A A f k k k 011 1)(++++=-- 必有 特征值 。 5、若二次型yz xz axy z y x f 2223222+++++=经正交变换化为2 2214y y f +=, 则=a 。 二、选择题(本题15分,每题3分) 1、设A 是n 阶方阵,则0||=A 的必要条件是( )。 (A )A 中两行(列)元素对应成比例; (B )A 中有一行元素全为零; (C )任一行元素为 其余行的线性组合; (D )必有一行元素为其余行的线性组合。 2、设A 是n 阶对称阵,B 是n 阶反对称阵,则下列矩阵中反对称矩阵是( ) (A )BAB ; (B )ABA ; (C )ABAB ; (D )BABA 。 3、设向量组()()(),,,,,,,,,T T T t 31321111321===ααα当=t ( )时,向量组321ααα,,线性相关。 (A )5 (B )4 (C )3 (D )2 4、设A 为34?矩阵,321,,ηηη是非齐次线性方程组b Ax =的3个线性无关的解向量, 21,k k 为任意常数,则非齐次线性方程组b Ax =的通解为( )。 (A ) )(21213 2ηηηη-++k ; (B ) )(21213 2ηηηη-+-k ; (C ))()(213212132ηηηηηη-+-++k k ; (D ))()(2 1321213 2ηηηηηη-+-+-k k 。 5、设方阵??? ? ? ??=20001011k k A 是正定矩阵,则必有( )。

自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记 第一章行列式 线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减次对角线的乘积)例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆 方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角

线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如 例1a为何值时,

[答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解: 解得0

大一线性代数期末习题及答案

,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 1. 考前请将密封线内填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷; 4. . 】 A 设n 设A A. 2- B. ()n 2- C. n 2- D. 1 设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 】 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 .设向量组321,,a a a 线性无关,则下列向量组中线性无关的是

【 】 A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a - 6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余m-1个向量线性表出 B.(I)中存在一个向量,它不能由其余m-1个向量线性表出 C.(I)中任意两个向量线性无关 D. 7.设a 】 A 8.设i a 】 A. 21b a 9.10. 设【 A. 可由η1,η2,η3线性表示的向量组 B. 与η1,η2,η3等秩的向量组 C.η1-η2,η2-η3,η3-η1 D. η1,η1-η3,η1-η2-η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解,也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解