数字化直流电机双闭环调速系统

数字化直流电机双闭环调速系统
数字化直流电机双闭环调速系统

数字化直流电机双闭调速系统

摘要本文叙述了直流电动机的基本原理和调速原理,介绍了直流电动机开环和双闭环调速系统的组成及静、动态特性,并且根据直流电动机的基本方程建立了调速系统的数学模型,给出了动态结构框图,用工程设计方法设计了直流电动机双闭环调速系统。最后用MATLAB 软件搭建了仿真模型,对调速系统进行了仿真研究。通过对直流电动机双闭环调速系统动态特性的研究与仿真,可以清楚地看到,直流电动机双闭环调速系统具有较好的动态特性,可以在给定调速范围内,实现无静差平滑调速,这为直流电动机调速系统的硬件实验提供了理论依据。

关键词:直流调速;双闭环调速;转速环;电流环;MATLAB 仿真

目录

第1 章绪论 (1)

第2 章课程设计的方案 (2)

2.1 概述 (2)

2.2 方案选择 (2)

2.3 系统组成总体结构 (4)

第3 章硬件设计 (5)

3.1 单片机控制器 (5)

3.2 接口电路 (5)

3.3 D/A 转换电路 (6)

3.4 触发电路 (6)

3.5 三相整流电路 (7)

3.6 电流检测电路 (7)

3.7 A/D 转换电路 (8)

3.8 转速检测电路 (8)

3.9 键盘显示电路 (9)

第4 章软件设计 (11)

4.1 设计要求 (11)

4.2 电流环的设计 (11)

4.3 转速环的设计 (12)

4.4 闭环动态结构框图设计 (12)

4.5 程序设计 (13)

第5 章系统测试与分析/实验数据及分析 (15)

第6 章课程设计总结 (17)

参考文献 (18)

第1章绪论

三十多年来,直流电机调速控制经历了重大的变革。传统的控制系统采用模拟元件,虽在一定程度上满足生产要求,但是因为元件容易老化,在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受器件性能、温度等因素的影响,故系统的运行可靠性及标准性得不到保证,甚至出现事故。而如今首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。大功率直流调速系统通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、高层电梯等需要高性能可控电力拖动领域应用历史悠久。近年来,

交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。双闭环不可逆调速系统在上世纪七十年代在国外一些发达国家兴起,经过数十年的发展已经成熟,在二十一世纪已经实现了数字化与智能化。我国在直流调速产品的研发上取得了一定的成就,但和国外相比仍有很大差距。我国自主的全数字化直流调速装置还没有全面商用,产品的功能上没有国外产品的功能强大。而国外进口设备价格昂贵,也给国产的全数字控制直流调速装置提供了发展空间。目前,发达国家应用的先进电气调速系统几乎完全实现了数字化,双闭环控制系统已经普遍的应用到了各类仪器仪表,机械重工业以及轻工业的生产过程中。随着全球科技日新月异的发展,双闭环控制系统总的发展趋势也向着控制的数字化,智能化和网络化发展。而在我们国内,双闭环控制也已经经过了几十年的发展时期,已经基本发展成熟,目前的趋势仍是追赶着发达国家的脚步,向着数字化发展。随着单片机技术的发展和应用,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,使系统的性能更优。

第2章课程设计的方案

2.1 概述

本次设计主要是综合应用所学知识,设计双闭环直流调速系统,并在实践的基本技能方面进行一次系统的训练,能够较全面地巩固和应用“微型计算机控制系统”课程中所学的基本理论和基本方法,并初步掌握小型微机系统设计的基本方法。应用场合: 应用于经常频繁调速运行的高性能调速系统,例如可逆轧钢机和龙门刨床等高精度工业自动化领域。系统功能介绍:双闭环直流调速系统是串级调速控制系统,即分别通过转速环和电流环协同作用来调节直流电动机的转速,由相应的控制器连接外围电路,实现转速设定、显示和保护等功能。

2.2 方案选择

方案一:单闭环直流调速系统单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在直流电动机上安装一台测速装置,引出与转速成正比的电压U n 与给定转速定电压U * n 比较后,得偏差电压U ,经ASR 控制器进行PID 调节,产生整流触发装置的控制电压U k ,控制直流电动机转速,如图2.1 所示。

图2.1 单闭环直流调速系统原理图

方案二:双闭环直流调速系统

2

转速、电流双闭环直流调速系统原理图如图2.2 所示。电动机的转速和电流分别由两个独立的调节器控制,系统中设置了电流调节器ACR 和转速调节器ASR。可见,电流调节器ACR 和电流检测反馈回路构成了电流环(内环),ACR 接收由ASR 输出U * 和反馈电流电压U i 的偏差电压进行调节,输出信号控制触发i 整流装置;转速调节器ASR 和转速检测反馈环节构成了转速环(外环),ASR 接收给定转速电压U * 和转速电压U n 的偏差电压进行调节,输出电流环的给定电n 压U * 。ASR 和ACR 均为PI 调节器,输入输出均设有限幅电路,转速调节器i ASR 的输出限幅电压U* 决定了电流给定电压的最大值,电流调节器ACR 的输出im 限幅电压U cm 限制了电力电子变换器的最大输出电压U dm 。

图2.2 双闭环直流调速系统原理图

方案一采用单闭环直流调速系统结构简单,可以在保证系统稳定的前提下实现转速无静差,实现平滑调速。但是反馈调节时整流电路的脉波数m = 2 ,3,6,12,其数目总是有限的,比直流电机每对极下换向片的数目要少得多。因此,除非主电路电感L = ∞,否则晶闸管电动机系统的电流脉动总会带来各种影响,主要有:(1) 脉动电流产生脉动转矩,对生产机械不利;(2)脉动电流流入电源,对电网不利,同时也增加电机的发热。晶闸管整流电路的输出电压中除了直流分量外,还含有交流分量,交流分量会造成电网波动。方案二采用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。而单闭环直流调速系统对

于快速起制动、突加负载动态速降小等环境就不能满足要求,因为单闭环系统不能随心所欲的控制电流和转矩的动态过程。综合考虑,本设计选择了方案二,即双闭环直流调速系统。

2.3 系统组成总体结构

本系统主要由单片机控制器、接口电路、D/A 转换电路、触发电路、三相整流电路、电流检测电路、A/D 转换电路、转速检测电路、键盘显示电路和直流电动机构成。系统由键盘输入给定转速,给定值与接口电路接收的转速反馈信号及电流反馈信号形成偏差,由单片机控制器分别进行转速和电流的PID 调节,输出控制信号经数模转换作为触发整流电路的控制电压,调节整流输出电压以调节直流电动机的转速,使转速尽快达到给定值并实现无静差,并实时显示电机转速。系统结构图如下图2.3 所示。

图2.3 系统结构框图

第3章硬件设计

3.1 单片机控制器

双闭环直流调速系统的控制功能简单,选择单片机AT89C52 作为主控制器,AT89C52 是一个低电压、高性能的CMOS 8 位单片机,片内8KB Flash ROM 程序存储器;可寻址64KB 的片外程序存储器片外数据存储器控制电路;2 个16 位定/计数器;2 个外部

中断;一个全双工的异步串行口。单片机最小系统如下上图3.1 所示。

图3.1 单片机最小系统电路

3.2 接口电路

由于外围所接电路的信号及数据线较多,故选择8255A 接口电路进行拓展,其中8255A 接口有PA、PB、PC 三个可编程接口,可以工作在三种方式。接口电路与A/D 和D/A 转换电路相连,接收经A/D 转换的反馈电流信号并送往单片机P0 口,接收单片机控制信号送往D/A 转换器转换后控制触发整流电路。接口电路图如下图3.2 所示。

图3.2 接口电路图

3.3 D/A 转换电路

本设计的D/A 转转器采用DAC0832,DAC0832 是采用CMOS 工艺制成的单片直流输出型8 位数/模转换器,可以工作在直通、单缓冲和双缓冲三种方式,本设计采用直通方式。D/A 转换图如下图3.3 所示。

图3.3 D/A 转换电路图

3.4 触发电路

为使线路简单,工作可靠,装置体积小,本设计采用KJ004 组成的六脉冲集成触发电路。触发电路根据给定的控制电压,输出相应的触发脉冲信号,分别控制三相晶闸管整流电路的晶闸管触发端,改变导通角以实现调节直流电动机的供电电压。a 相触发电路图如下图3.4 所示。

图3.4 触发原理引脚图

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

双闭环直流调速系统

1引言 在工业生产中,许多生产机械为了满足生产工艺要求,需要改变工作速度:例如,金属切削机床,由于工件的材料、被加工的尺寸和精度的要求不同,速度就不同。另外轧钢机,因为轧制品种和材料厚度的不同,也要求采用不同的速度。 生产机械的调速方法可以采用机械的方法取得,但是机械设备的变速机构较复杂,所以在现代电力拖动中,大多数采用电气调速方法。电气调速就是对机械的电动机进行转速调节,在某一负载下人为地改变电动机的转速。 直流电动机具有良好的起动、制动性能,适宜在较大范围内调速.在许多需要高性能可控电力拖动领域中得到广泛的应用。近年来交流调速系统发展很快,然而直流拖动系统在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它是交流拖动控制系统的基础,所以应该很好地掌握直流调速系统。 目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要。所以需要引入转速﹑电流双闭环控制直流调速系统,本文着重研究其控制规律﹑性能特点和设计方法。首先介绍转速﹑电流双闭环调速系统的组成,接着说明该系统的静特性和动态特性,最后用工程方法设计转速与电流两个调节器。 在实际应用中,电动机作为把电能转换为机械能的主要设备,首先要具有较高的机电能量转换效率;其次应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。

2双闭环直流调速系统介绍 2.1闭环调速系统的组成 根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。 调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统可以大大减少转速降落。 图2.1 带转速负反馈的闭环直流调速系统原理框图 上图为带转速负反馈的闭环直流调速系统原理框图。在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机TG ,从而得出与被调量转速成正比的负反馈电压n U ,与 给定电压* n U 相比较后,得到转速偏差电压n U ,经过放大器A ,产生控制电压c U 输入到电 力电子变换器UPE 中,用来控制电动机转速n 。图中,UPE 是由电力电子器件组成的变换器,它的输入端接三相交流电源,输出为可控的直流电压d U 。 2.2转速﹑电流双闭环直流调速系统的组成]2[ 采用PI 调节器组成速度调节器ASR 的单闭环调速系统,既能得到转速的无静差调节,又能获得较快的动态响应。从扩大调速范围的角度来看,他已基本满足一般生产机械对调速的要求。但是对于系统的快速启动、突加负载动态速降等,单闭环系统还不能满足要求。有些生产机械经常处于正反转工作状态,为了提高生产率,要求尽量缩短启动、制动和反转过度过程的时间,当然可用加大和过渡过程中的电流,即加大动态转矩来实现,但电流不能超过晶闸管和电动机的允许值。为了解决这个矛盾,可以采用电流截止负反馈环节。它与转速负反馈调速系统结合在一起,可以专门用来控制电流。但它只能是在超过临界电流I 值以后,

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

双闭环直流调速系统设计说明

第一章设计概述 一、课程设计的性质和任务: 本课程是电气自动化本科专业学生学习完《直流调速系统》或《电力拖动控制系统》课程后进行的一个重要的独立性实践教学环节。其任务是通过设计双闭环直流调速系统的全过程,培养学生综合应用所学的直流调速知识去分析和解决工程实际问题的能力,帮助学生巩固、深化和拓展知识面,使之得到一次较全面的设计训练,为毕业设计和实际工程设计奠定基础。 转速、电流双闭环不可逆直流调速系统是一种典型的自动控制系统。这种调速系统只有两个调节器,即速度调节器(ASR)和电流调节器(ACR),两个调节器作串级连接,其中速度调节器的输出信号作为电流调节器的输入信号,从而形成一环套一环的转速、电流双闭环结构。这种转速、电流双闭环调速系统,在突加转速给定信号的过程中表现为一个恒电流加速系统,而在稳态和接近稳态的运行中又表现为一个无静差调速系统,因此各项性能指标较系统开环时提高许多。 本此课程设计的目的就是同学们在调试、设计一个典型的调速系统后,能够掌握自控系统调试、设计的方法,步骤及其调试原则,加强同学们的动手能力和对理论知识的理解。 自控系统调试所遵循的原则: 先部分,后系统:即首先对系统的各个单元进行调试,然后再对整个系统进行调试。 先开环,后闭环:即首先进行开环调试,然后再对系统闭环进行调试。 先环,后外环:即首先对环进行调试(如在本此调试中就应先对电流环进行调试),然后再对外环进行调试(如本此调试中的速度环调试)。 本次系统调试是在DJDK-1型电力电子技术及电机控制实验装置上进行。整个调试完成后要求系统达到以下指标:

二、DJDK-1 型电力电子技术及电机控制实验装置简介 1 装置特点 (1)设计装置采用挂件结构,可根据不同设计容进行自由组合。 (2)装置连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电回路,造成设备损坏。 (3)控制屏供电采用三相隔离变压器隔离,分别设有电压型和电流型漏电保护装置,保护操作者的安全。 (4)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,不能互插。 图2-1 DJDK-1电力电子技术及电机控制实验装置 2 装置技术参数 (1)输入:电压三相四线制,380V±10%,50Hz。 (2)工作环境:环境温度围为-5~40℃,相对湿度 < 75%,海拔高度 < 1000m。 (3)装置容量:<1.5kVA (4)电机输出功率:<200W 3 DJK01电源控制屏

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

双闭环直流调速系统精修订版

双闭环直流调速系统精 修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电 枢电路总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数 5.1=λ,折算到电动机轴的飞轮惯量224.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求:

稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量0010≤n σ。 目 录 1设计任务与分析 ............................................................ 2调速系统总体设计 .......................................................... 3直流双闭环调速系统电路设计 ............................................... 3.1晶闸管-电动机主电路的设计 ............................................... 3.1.1主电路设计 ............................................................ 3.1.2主电路参数计算 ........................................................ 3.2转速、电流调节器的设计 .................................................. 3.2.1电流调节器 ............................................................ 3.2.1.1电流调节器设计 ...................................................... 3.2.1.2电流调节器参数选择 ..................................................

运动控制系统双闭环直流调速系统

运动控制课程设计任务书 题目:双闭环直流调速系统设计 使用班级:电气081、082 设计内容 已知电机参数为:PN=500kW,UN=750V,IN=760AΩ,允许过载倍数λ=,触发整流环节Ks=75,Tl=,Tm=,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。 主要设计内容包括:1、ACR、ASR调节器类型选择与参数计算。2、系统建模与仿真。3、调节器电路设计。4、主电路设计。5、反馈电路设计。6、触发电路设计。7、故障处理电路设计。 设计步骤 一、总体方案设计 二、参数初步计算。 三、控制系统的建模和MALAB仿真 四、根据仿真结果调整参数 五、主电路及控制电路设计 六、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。 课程设计说明书要求 1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。 2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。 3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。 4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识

摘要 双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。换向器是直流电机的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。 关键词: 双闭环,晶闸管,转速调节器,电流调节器,MALAB仿真

直流双闭环调速系统

一、 设计要求 1.1已知条件 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 直流电动机:220V,136A ,1460r/min,r V C e min/132.0?=,允许过载倍数 5.1=λ; 晶闸管装置放大系数:40=s K 电枢回路总电阻: Ω=5.0R 时间常数:s T s T m l 18.0,03.0== 电流反馈系数:A V /05 .0=β 转速反馈系数: V min/V 007.0?=α 1.2设计要求 (1)设计电流调节器,要求电流超调量%5i ≤σ (2)要求转速无静差,空载起动到额定转速超调量%10n ≤σ 二、 理论设计 2.1电流调节器的设计 2.1.1确定时间常数 三相桥式电路失控时间取s T s 0017.0= 电流滤波时间常数取s T oi 002.0= 电流环小时间常数之和取s T T T oi s i 0037.0=+=∑ 2.1.2选择ACR 的结构 因为要求%5i ≤σ且 1011.8<=∑i l T T 所以设计成典I 系统,选择PI 调节器 2.1.3参数的计算 ACR 超前时间常数s T l i 03.0==τ

要求%5i ≤σ,选取I i K T =0.5 所以电流开环增益11.1355 .0-∑≈= s T K i I 则ACR 比例系数为013.1≈=β τs i I i K R K K 2.1.4计算电阻、电容 选取040R K =Ω则 1.0134040.52i i i R K R K ==?=Ω uF R C i i i 75.0== τ uF R T C i oi 2.040 0== 电流环的超调量i %=4.3%<5%σ满足要求 电流调节器原理如图所示。 βI d U ct U i * 电流调节器原理图 2.2转速调节器的设计 2.2.1确定时间常数 电流环等效时间常数s s T K i I 0074.00037.0221 =?==∑ 转速滤波时间常数on T =0.01s

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

双闭环直流调速系统

第一章 调速系统的方案选择 直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多调速和快速正反向的电力拖动领域中得到了广泛的的应用。近年来,虽然高性能的交流调速技术发展很快,交流调速系统已逐步取代直流调速系统。然而直流拖动控制系统不仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖动控制系统又是交流拖动控制系统的基础。 直流电动机的稳态转速可以表示为 (1-1) 式中:n ——转速(r/min ); U ——电枢电压(V ); I ——电枢电流(A ); R ——电枢回路总电阻(Ω); ——励磁磁通(Wb ); ——由电机结构决定的电动势常数。 由上式可以看出,有三种调速电动机的方法: 1. 调节电枢供电电压U ; 2. 减弱励磁磁通; 3. 改变电枢回路电阻R 。 对于要求在一定范围内无级平滑调速系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够调速,但调速范围不大,往往只是配合调压方案,在额定转速以上作小范围的弱磁升速。因此,采用变压调速来控制直流电动机。 1.1 直流电动机的选择 直流电动机的额定参数为: 额定功率KW P N 67=,额定电压V U N 230=,额定电流A I N 291=,额定转速min 1450r n N =, 电动机的过载系数2=λ,电枢电阻Ω=2.0a R 1.2 电动机供电方案的选择 电动机采用三相桥式全控整流电路供电,三相桥式全控整流电路输出的电压脉动较小,带负载容量较大,其原理图如图1所示。三相桥式全控整流电路的特点: 一般变压器一次侧接成三角形,二次侧接成星型,晶闸管分为共阴极和共阳极。

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

相关文档
最新文档