涡扇发动机工作原理

涡扇发动机工作原理
涡扇发动机工作原理

动力原理:

涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机

升力原理:

飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。

在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快

(V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。

从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。

飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。

现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

下面给出几种类型的喷气发动机的工作原理图,转载自《兵器知识》网站。

涡轮喷气发动机这类发动机的原理基本与上面提到

的喷气原理相同,具有加速快、设计简便等优点。但

如果要让涡喷发动机提高推力,则必须增加燃气在涡

轮前的温度和增压比,这将会使排气速度增加而损失

更多动能,于是产生了提高推力和降低油耗的矛盾。

因此涡喷发动机油耗大,对于商业民航机来说是个致

命弱点。

更详细内容>>>

涡轮风扇发动机涡轮风扇发动机吸入的空气一部分从外部

管道(外涵道)后吹,一部分送入内涵道核心机(相当于一个

纯涡喷发动机)。最前端的“风扇”作用类似螺旋桨,通过降

低排气速度达到提高喷气发动机推进效率的目的。同时通过

精确设计,使更多的燃气能量经风扇传递到外涵道,同样解

决了排气速度过快的问题,从而降低了发动机的油耗。由于

该风扇设计要兼顾内外涵道的需要,因此难度远大于涡喷发

动机。

更详细内容>>>

冲压喷气发动机此类发动机没有风扇等器件,完全靠高速飞行时产生的冲压效应压缩吸入的空气,点火、燃烧、后喷等原理。因此其优点为结构简单、体积小、推力大、加速快。缺点是需要外部能源进行启动(通常为火箭助推),不适合循环使用。

发动机原理知识点

1.发动机的定义。 燃料在机器内部燃烧而将化学能转化为热能,再通过气体膨胀做功将其转化为机械能输出的机械设备。 2.发动机发展历经的三个阶段。 ①20世纪70年代之前(提高生产力) 目标:追求良好的动力性能。 措施:提高压缩比,提高转速。 指标:最高车速、加速性能、最大爬坡能力。三个指标均取决于发动机及其它动力装置。 ②20世纪70~80年代(石油危机) 目标:追求良好的经济性能。 措施:降低油耗、增大升功率、减轻比重量。 指标:百公里油耗。 ③20世纪80年代后期(环境污染) 目标:追求良好的环保性能。主要解决排放与噪声问题。 3.常规汽车能源和新型替代能源有哪些,各有何特点? ①汽油机:汽油和空气混合经压缩由火花塞点燃。 ②柴油机:柴油和空气混合经压缩自行着火燃烧。 ③天然气发动机LNG ④液化石油气发动机LPG ⑤酒精发动机 ⑥双燃料、多燃料发动机 4.热力系统基本概念; 在热力学中,将所要研究的对象从周围物体中隔离出来,构成一个热力系统。 系统以外的一切物质,称为外界,热力系统和外界的分界面,称为界面。5.热力学第一定律的实质; 当热能与其它形式的能量相互转换时,能的总量保持不变,只是能量的形式发生了变化—能量守衡。吸收的能量-散失的能量=储存能量的变化量 6.理想气体的四个基本热力过程; ①定容过程:热力过程进行中系统的容积(比容)保持不变的过程。 ②定压过程:热力过程进行中系统的压力保持不变。 ③定温过程:热力过程进行中系统的温度保持不变 ④绝热过程:热力过程进行中系统与外界没有热量的传递 7.四行程发动机的实际工作循环过程; 进气过程、压缩过程、燃烧过程、膨胀过程、排气过程 8.发动机实际循环向理论循环的简化条件; ①忽略进、排气过程(r-a,b-r), 排气放热简化为定容放热过程; ②压缩、膨胀过程(复杂的多变过程)简化为绝热过程; ③把燃料燃烧加热燃气的过程简化成工质从高温热源的吸热过程,分为定容 加热过程(c~z’)和定压加热过程(z’~z); ④假定工质为定比热的理想气体。

涡扇发动机简介

有关涡扇发动机的介绍 引子: 涡扇发动机是喷气发动机的一个分枝,从血原关系上来说涡扇发动机应该算得上是涡喷发动的小弟弟。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机这个“小弟弟”仗着自已身上的几页风扇也青出与蓝。 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能。而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离。比如装备了F-100-PW-100的F-15A当已方机机的跑道遭到部分破坏时,F-15可以开全加力以不到300米的起飞滑跑距离起飞。在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落。

更高的推重比是每一个战斗机飞行员所梦寐以求的。但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价。比如前苏联设计的苏-11战斗机使用了推重比为 4.085的АЛ-7Ф-1-100涡喷发动机。为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%。相应的代价是飞机的作战半径只有300公里左右。 而在民用客机、运输机和军用的轰炸机、运输机方面。随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高。在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题。比如B-52G轰炸机的翼下就挂了八台J-57-P-43W涡喷发动机。该发动机的单台最大起飞推力仅为6237公斤(喷水)。如果B-52晚几年出生的话它完全可以不挂那么多的发动机。在现在如果不考虑动力系统的可*性,像B-52之类的飞机只装一台发动机也未尝不可。 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。 一,历史 在五十年代未、六十年代初,作为航空动力的涡喷发动机以经相当

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

汽车发动机原理第4章 练习题

第4章练习题 一、解释术语 1、不规则燃烧 2、点火提前角 3、空燃比 二、选择题 1.提高汽油机的压缩比,要相应提高所使用汽油的() A、热值 B、点火能量 C、辛烷值 D、馏程 2.汽油机的燃烧过程是() A、温度传播过程 B、压力传播过程 C、热量传播过程 D、火焰传播过程 3、汽油机混合气形成过程中,燃料()、燃料蒸汽与空气之间的扩散同步进行。 A、喷射 B、雾化 C、蒸发 D、混合 4、下面列出的()属于汽油机的燃烧特点。 A、空气过量 B、有时缺氧 C、扩散燃烧 D、混合气不均匀 5、汽油机爆震燃烧的根本原因是远端混合气() A、自燃 B、被火花塞点燃 C、火焰传播不到 D、被压缩 6、汽油机的火焰速度是() A、燃烧速度 B、火焰锋面移动速度 C、扩散速度 D、气流运动速度 7、提高压缩比使汽油机的爆震倾向加大,为此,可采取()的措施。 A、减小喷油提前角 B、减小点火提前角 C、加大喷油提前角 D、加大点火提前角 三、填空题 1、根据汽油机燃烧过程中气缸压力变化的特点,可以将汽油机燃烧过程分为、和三个阶段。 2、汽油机混合气的形成方式可以分为和两种。 3、压缩比是发动机热效率的重要因素。但高压缩比会给汽油机增加的趋 势。

4、对液态燃料,其混合气形成过程包括两个基本阶段: 和。 5、燃油的雾化是指燃油喷入_________________后被粉碎分散为细小液滴的过程。 6、发动机转速增加时,应该相应地____________点火提前角。 7、在汽油机上调节负荷是通过改变节气门开度来调节进入气缸_______________的多 少。 四、简答题 1、P—φ图上画出汽油机正常燃烧,爆震燃烧和早燃的示功图,并简要说明它们的区别? 2. 用示功图说明汽油机点火提前角过大、过小,对燃烧过程和发动机性能的影响。 3. 汽油机燃烧室组织适当的紊流运动的作用有哪些?

航空涡扇发动机的工作原理

航空涡扇发动机的工作原理 ?发表于:2014-01-21 21:57:40 ?作者:江山红红发短信加好友更多作品 级别:上将积分:118791 航空喷气发动机主要有两种,一种是涡喷发动机,一种是锅扇发动机。在这里主要介绍大家关心的涡扇发动机的工作原理。 涡扇发动机是喷气发动机的一个分支,从血缘关系上来说,涡扇发动机应是涡喷发动机的变种。从结构上看,涡扇发动机是在涡喷发动机之前加装了风扇。这几叶风扇却把涡喷发动机与涡扇发动机严格的区分开来。正是这几叶风扇,让涡扇发动机青出于蓝而胜于蓝。 研制涡扇发动机,首先是要确定它的总体结构。简单的讲,主要是发动机的转子数目多少。目前涡扇发动机所采用的总体结构无非是三种,一是单转子、二是双转子、三是三转子。其中单转子的结构最为简单,整个发动机只有一根轴,风扇、压气机、涡轮全都在这一根轴上。结构简单尽管研制难度低,省钱!但要付出性能差的代价。 从理论上讲:单转子结构的涡扇发动机的压气机,可以作成任意多的级数,以期达到一定的增压比。可是由于单转子的结构限制,使其风扇、低压压气机、高压压气机、低压涡轮、高压涡轮必须都安装在同一根主轴之上,在工作时,它们就必须要保持相同的转速,问题也跟着出来了。当单转子的发动机在工作时,如果其转速突然下降时,压气机的高压部分,就会因为得不到足够的转速,而效率严重下降;在高压部分的效率下降的同时,压气机低压部分的载荷就会急剧上升,当低压压气机部分超载运行时,就会引起发动机的振喘。在正常的飞行中,发动机发生振喘是决对不允许的。因为发动机发生振喘,会严重危及飞机的安全。为了解决低压部分在工作中的过载,只好在压气机前加装导流叶片和在压气机的中间级上进行放气,即放掉一部分以经被增压的空气来减少压气机低压部分的载荷。但这样一来发动机的效率就会大打折扣,而且这种放掉增压气的作法在高增压比的压气机上的作用也不是十分的明显。更要命的问题发生在风扇上,由于风扇必须和压气机同步,受压气机的高转数所限,单转子涡扇发动机只能选用比较小的函道比。 为了提高压气机的工作效率和减少发动机在工作中的振喘,人们想到了用双转子来解决问题,即让发动机的低压压气机和高压压气机工作在不同的转速之下。这样低压压气机与低压涡轮联动形成了低压转子,高压压气机与高压涡轮联动形成了高压转子。低压转子的转速可以相对低一些。因为压缩作用,在压气机内的空气温度升高,其作用力随着空气温度的升高而增大。高压转子的转速可以设计的相对高一些,转速提高了,其高压转子的直径就可以做得小一些,这样在双转子的喷气发动机上就形成了一个“蜂腰”,而发动机的一些附属设备比如燃油调节器、起动装置等等就可以装在这个“蜂腰”的位置上,以减少发动机的迎风面积降低飞行阻力。一般来说双转子发动机的的高压转子的重量比较轻,起动惯性小,所以人们在设计双转子发动机的时候都只把高压转子设计成用启动机来驱动,这样和单转子发动机相比双转子的启动也比较容易,启动的能量也要求较小,启动设备的重量也就相对降低。 然而双转子结构的涡扇发动机也并不是完美的。在双转子结构的涡扇发动机上,由于风扇要和低压压气机联动,风扇和低压压气机就必须要互相将就一下对方。风扇为将就压气机而必需提高转数,这样直径相对比较大的风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,在风扇的重量不能太大的情况下风扇的叶片长度也就不能太长,风扇的直径小下来了,函道比自然也上不去,而实践证明函道比越高的发动机推力也就越大,而且也相对省油。而低压压气机为了将就风扇也不得不降低转数,降低了压气机的转数压气

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点 答:1.燃气涡轮喷气发动机 工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器 特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。 2.涡轮风扇发动机 组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。 特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。但涡扇发动机结构复杂,速度特性差。目前民航干线飞机大多装配涡扇发动机。 二.轴流式压气机的基元增压原理 答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。参数分析。 基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的 三.压气机转子的结构形式分析图3-40 答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化) 轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式 特点 鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。 盘式:强度好,但抗弯刚性差,并容易发生振动。目前这种简单的盘式转子只用于单盘或小流量的压气机上。 鼓盘式:这种转子兼有鼓式转子抗弯性好和盘式转子强度高的优点在发动机广泛应用。 四.燃烧室的分类工作过程优缺点 分类:管型燃烧室,环型燃烧室,管环型燃烧室。 工作过程:发动机工作时,被压气机压缩的空气,进入燃烧室,它一边向后流动,一边与喷嘴喷出的燃油混合,组成混合气。发动机起动时,混合气由点火装置产生的火花点燃:起动后,点火装置不再产生火花,新鲜混合气全靠已燃混合气的火焰引火而燃烧。 混合气在燃烧室内燃烧时,喷嘴喷出的燃油与燃烧室中流动的空气不断混合组成新的混合气,以供连续不断的燃烧之用,这样就形成了燃边油与空气混合边燃烧的连续不断的

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

汽车发动机原理第4章 课后习题答案

第四章复习思考题 1.说明汽油机燃烧过程各阶段的主要特点。 答:燃烧过程:(1)着火落后期:它对每一循环都可能有变动,有时最大值是最小值的数倍。要求:为了提高效率,希望尽量缩短着火落后期,为了发动机稳定运行,希望着火落后期保持稳定(2)明显燃烧期:压力升高很快,压力升高率在0.2-0.4MPa/(°)。希望压力升高率合适(3)后燃期:湍流火焰前锋后面没有完全燃烧掉的燃料,以及附在气缸壁面上的混合气层继续燃烧。希望后燃期尽可能的短。 2.爆燃燃烧产生的原因是什么?它会带来什么不良后果? 答:燃烧室边缘区域混合气也就是末端混合气燃烧前化学反应过于迅速,以至在火焰锋面到达之前即以低温多阶段方式开始自然,引发爆燃爆燃会给柴油机带来很多危害,发生爆燃时,最高燃烧压力和压力升高率都急剧增大,因而相关零部件所受应力大幅增加,机械负荷增大;爆燃时压力冲击波冲击缸壁破坏了油膜层,导致活塞、气缸、活塞环磨损加剧,爆燃时剧烈无序的放热还使气缸内温度明显升高,热负荷及散热损失增加,这种不正常燃烧还使动力性和经济性恶化。 3.爆燃和早燃有什么区别? 答:早燃是指在火花塞点火之前,炽热表面点燃混合气的现象。爆燃是指末端混合气在火焰锋面到达之前即以低温多阶段方式开始自然的现象。早燃会诱发爆燃,爆燃又会让更多的炽热表面温度升高,促使更加剧烈的表面点火。两者相互促进,危害更大。另外,与爆燃不同的时,表面点火即早燃一般是在正常火焰烧到之前由炽热物点燃混合气所致,没有压力冲击波,敲缸声比较沉闷,主要是由活塞、连杆、曲轴等运动件受到冲击负荷产生震动而造成。 4.爆燃的机理是什么?如何避免发动机出现爆燃? 答:爆燃着火方式类似于柴油机,同时在较大面积上多点着火,所以放热速率极快,局部区域的温度压力急剧增加,这种类似阶越的压力变化,形成燃烧室内往复传播的激波,猛烈撞击燃烧室壁面,使壁面产生振动,发出高频振音(即敲缸声)。避免方法:适当提高燃料的辛烷值;适当降低压缩比,控制末端混合气的压力和温度;调整燃烧室形状,缩短火焰前锋传播到末端混合气的时间,如提高火焰传播速度、缩短火焰传播距离。 5.何谓汽油机表面点火?防止表面点火的主要措施有哪些? 答:在汽油机中,凡是不靠电火花点火而由燃烧室内炽热表面点燃混合气的现象,统称为表面点火。防止措施:1)适当降低压缩比。2)选用沸点低的汽油和成焦性小的润滑油。3)要避免长时间的低负荷运行和汽车频繁加减速行驶。 4)应用磷化合物为燃油添加剂使沉积物中的铅化物成为磷酸铅从而使碳的着火

发动机基本知识总结全集

发动机构造基本原理图解 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 1、发动机总体构造 发动机是一台由多种机构和系统组成的复杂机器。现代汽车发动机的结构形式很多,发动机的具体构造也多种多样,但由于其基本工作原理一致,从总体功能来看,其基本结构大同小异,都是由二大机构和五大系统组成,即:曲柄连杆机构、配气机构、供给系统、冷却系统、润滑系统、起动系统、点火系统(柴油机没有)。我们以桑塔纳2000GSi型轿车装备的AJR型发动机的结构实例来分析发动机的总体构造。

(1) 曲柄连杆机构?曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在做功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

(2) 配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) %% % D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形 B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形 10.气流流过亚音速进气道时,(D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加 11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器 12.轴流式压气机的一级由(C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的(C )。 A相对速度增加, 压力下降 B绝对速度增加, 压力下降 C相对速度下降, 压力增加 D绝对速度下降, 压力增加 14.空气流过压气机整流环时, 气流的( C )。 A速度增加, 压力下降 B速度增加, 压力增加 C速度下降, 压力增加 D速度下降, 压力下降 15.压气机出口处的总压与压气机进口处的总压之比称为(A )。 A发动机的增压比 B发动机的压力比 C发动机的压缩比 D发动机的容积比

涡轮发动机飞机结构与系统

飞机系统 液压系统 1.变量泵为什么要装释压阀?P92 变量泵具有自动卸荷功能,因此设计系统时不用再考虑其卸荷问题。但为了系统的安全,回路上同样需加装安全阀,以防泵内压力补偿活门损坏或斜盘作动筒卡滞时造成系统压力过高。 2.液压系统渗漏检查方法?P129 (一)内漏检查法:流量表法和电流表法。 (1)流量表法操作: 关闭所有关断活门,保持规定压力(用电动泵),读出流量表读书Q0; 按手册要求,依次打开分系统隔离活门,读出相应流量Q1,Q2,Q3 …… Qn; 计算各分支系统内漏量: 用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (2)电流表法操作: 在电动马达驱动泵的供压线路上加装电流表; 启动、保持系统达到额定压力; 记录初始电流I0; 按手册要求,依次打开分系统隔离活门,分别记录相应电量值I1,I2,I3……In; 对照EMDP电流---流量曲线,分别查出对应的Q0,Q1,Q2,Q3 …… Qn; 分别计算每个分支系统的内漏量; 用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (二)外漏检查: 接近发生外漏的部件; 清洁部件上外漏的油污; 为系统加压; 测量外漏泄漏速率,根据该机型的放行标准确定是否放行。 3.液压泵功率公式的推导?P92 4.液压油显示"过热"的原因及排除方法?P122

5.液压油滤滤芯分几类?各有什么作用?P115 常见的滤芯有三种:表面型滤芯、深度型滤芯、和磁性滤芯。 表面型滤芯:一般是金属丝编织的滤网,过滤能力低,一般作为粗滤安装在油箱加油管路上 磁性油滤依靠自身的磁性吸附油液中的铁磁性杂质颗粒,应用在发动机滑油系统管路中。 深度滤芯:液流通过的过滤介质有相当的厚度,在整个厚度内到处能吸收污染物。其过滤介质有—缠绕的金属丝网、烧结金属、纤维纺织物、压制纸等。 6.液压油温度与粘度的关系,对总效率的影响?P92 温度过高,会导致油液黏度下降。油液粘度过低时,会增加泵的内漏并降低油液的润滑性,继而导致容积效率和机械效率下降。 温度过低,会导致油也黏度上升。油液粘度过高时,油泵吸油阻力增大,油泵吸油困难,不能完全充满油腔,降低填充效率。黏度过高同样会造成油泵转动阻力增大,并增加流体的流动阻力,降低机械效率。 7.液压保险的作用?P106 液压系统某些传动部分的导管或附件损坏时,系统油液可能漏光,使得整个系统不能工作。为了防止这种现象,可在供油管上设置安全装置,这就是液压保险。在管路漏油时,当油液的流量或消耗量超过规定值时,自动堵死管路,防止系统内油液大量流失。 8.对恒压变量泵,当发动机驱动泵的开关在“开”和“关”位时,泵是怎样工作的?工作原理,开关原理?(124页) 在电门在“开”位时,发动机驱动泵EDP在泵内补偿活门控制下进行供压或进行自动卸荷;当泵发生故障时,将电门扳到“关”位,电磁活门线圈通电,使泵的出口压力在很低的情况下就能推动补偿活门作动,使油泵卸荷,即为“人工关断”。 9.油滤的压差活门控制的是什么参数?怎么控制的? 压力参数。活门前压力和活门后压力参数差值。 当一定压力时候通过传感器,以电信号方式传递到驾驶舱。注意:可能有人认为可能是地面给人看的那个燃油油滤,其实不然,这个是指驾驶舱的那个。 10.液压系统包括几个部分,各操纵那些部件? 有两种阐述方法:一种是按组成系统的液压元件的功能类型划分;另一种是按组成整个系统的分系统功能划分。 按液压元件的功能划分: a)动力元件:指液压泵,其作用是将电动机或者发动机产生的机械能转换成液体的 压力能 b)执行元件:其功能是将液体的压力能转换成为机械能,执行元件包括液压作动筒 和液压马达

完整版发动机原理知识点名词解释填空题

名词解释: 1.1、指示热效率:是发动机实际循环指示功与消耗燃料的热量的比值.。 1.2、压缩比:气缸容积与燃烧室容积之比。 1.3、燃油消耗率:发动机每发出1KW有效功率,在1h内所消耗的燃油质量。 1.4、平均有效压力:单位气缸工作容积所做的有效功。 1.5、有效燃料消耗率:是发动机发出单位有效功率时的耗油量。 1.6、升功率:在标定工况下,发动机每升气缸工作容积所发出的有效功率。 1.7、有效扭矩:曲轴的输出转矩。 1.8、平均指示压力:单位气缸容积所做的指示功。 1.9、示功图:发动机实际循环常用气缸内工质压力P随气缸容积V (或曲轴转角)而变化的曲。 2.1、配气相位:发动机进、排气门开闭角度相对于上、下止点的分布。 2.2、气门重叠:在四冲程发动机中,由于进气门提前开启和排气门迟后关闭,在上止点附近,存在进排气门同时开启的现象。 2.3、充气效率:指每一个进气行程所吸入的空气质量与标准状态下占有气缸活塞行程容积的干燥空气质量的比值。 2.4、可变技术:使发动机的某种结构参数可以随工况改变的技术。 2.5、残余废气系数:气缸中残余废气质量与实际新鲜充量的质量之比。 3.1、着火延迟:火花引燃或加热到燃料自然温度以上时,可燃混合气并不立即燃烧,需要经过一定延迟时间才能出现明显的火焰,放出热量。 3.2、过量空气系数:是指燃烧1KG燃料时实际供给的空气量1与理论空气量10之比。 3.3、空燃比:是指燃料实际燃烧时所供给的空气质量与燃油质量的比值。 3.4、着火方式:引发燃烧过程的手段。 4.1、燃烧速度:单位时间内燃烧混合气的质量。 4.2、火焰速度:火焰锋面移动速度。 4.3、滞燃期* :从喷油开始到压力线脱离压缩线所占用的曲轴转角。 第五章: R喷汕泵連度特性:喷油蘇油量调节机构的位薑芥变,供油蚩随喷油泵转速变化的关系 2*供油提前角,从出曲隗升起幵届供油到话堪到达上止点師对应的曲轴转甬. 2、毗汹提Oil/fj上从烘;由喷入气到法实到这上止点所时应的曲抽转4]. 4 柴汕机滞燃期;从喷沟开始到压力践脱离压编找所占用的曲轴转两 5. 顒油規迟:从鬲氐由亲供油开蜡到喷油蛊针阀抬起幵始喷油斫对应的时期. 2 缓燃期:从适离燃堤压力到出观験裔燃烧溫度听时毎的吋期. 7.啡油规律;单位时闫喷油器噴油谨与噴油浆凸轮转甬I时间}的吳系一 9隣火力成’使燃料着火形减火焰的方式,眉点煥方式和自燃方式琴形式n 6.1、速度特性:油量调节机构不变时,发动机的各项性能参数随转速而变化的关系曲线。 6.2、负荷特性:发动机转速不变时,性能参数随负荷变化的关系。 6.3、发动机特性:性能指标(或性能参数)的变化规律。 6.4、调整特性:随调整情况而变化的关系。 6.5、机械损失:发动机曲轴输出的功或者功率与其气缸内气体膨胀所做的功或功率之差。 6.6、热值:在标况下1kg燃料完全燃烧所放出的热量。

汽车发动机原理课后习题答案

第一章发动机的性能 1.简述发动机的实际工作循环过程。 1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。此时进气门开启,排气门关闭,活塞由上止点向下止点移动。 2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。压力不断上升,工质受压缩的程度用压缩比表示。 3)燃烧过程:期间进排气门关闭,活塞在上止点前后。作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。 4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。 5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。 3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施?提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。提高工质的绝热指数κ。 可采取的基本措施是: ⑴减小燃烧室面积,缩短后燃期能减小传热损失。 ⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。 ⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。 ⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。 ⑸优化燃烧室结构减少缸内流动损失。 ⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。 4.什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5.什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。 主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度; 2)发动机经济性指标,包括有效热效率.有效燃油消耗率; 3)发动机强化指标,包括升功率PL.比质量me。强化系数PmeCm. 6.总结提高发动机动力性能和经济性能的基本途径。 ①增大气缸直径,增加气缸数 ②增压技术 ③合理组织燃烧过程 ④提高充量系数 ⑤提高转速 ⑥提高机械效率 ⑦用二冲程提高升功率。

发动机原理

1.涡轮喷气发动机与活塞式发动机的比较 相同之处((11))均以空气和燃气作为工作介质。((22))它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。 不同之处(1)进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。(2)活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。 (3)涡喷发动机的推力在相当大的飞行速度范围内是随飞行速度增加而增加的。活塞式发动机的功率决定于气缸的尺寸和数目,可以认为与飞行速度无关。 2涡轮发动机主要性能指标 (1) 推力F单位推力每公斤空气流量所能产生的推力。Fs=F/Wa (2) 单位燃油消耗率(sfc)燃油流量:单位时间内消耗的燃料质量(Wf);耗油率:1小时每产生1牛顿推力所消耗的燃油量。(sfc=3600Wf/F)-(kg/N.s、kg/daN (3)推质比F/M每公斤质量所能产生的推力。 (4)单位迎面推力(Fa=F/A)单位横截面积所能产生的推力,与阻力相关。

(5)使用性能:a. 起动可靠性b. 加速性(5~18s)c. 工作安全可靠性d. 寿命 e. 维护性、噪声、污染排放、成本等 3.涡轴发动机主要性能指标 (1)功率(N=Wa××L=流量××动力涡轮轴功)-(kw) (2)单位功率(Ns=N/Wa)-(kw.s/kg) (3)耗油率sfc(sfc=3600Wf/N) -(kg/kw.s、kg/kw.h.h)1小时每产生1kw功率所消耗的燃油量。(4) 功重比N/G -(kw/kg)

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

涡扇发动机原理及图片

涡扇发动机原理 涡扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的变种。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机仗着自已身上的几页风扇也青出于蓝。 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能。而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离。比如装备了 F-100-PW-100的F-15A当已方机机的跑道遭到部分破坏时,F-15可以开全加力以不到300米的起飞滑跑距离起飞。在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落。 更高的推重比是每一个战斗机飞行员所梦寐以求的。但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价。比如前苏联设计的苏-11战斗机使用了推重比为4.085的АЛ-7Ф-1-100涡喷发动机。为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%。相应的代价是飞机的作战半径只有300公里左右。 而在民用客机、运输机和军用的轰炸机、运输机方面。随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高。在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题。比如B-52G轰炸机的翼下就挂了八台J-57-P-43W涡喷发动机。该发动机的单台最大起飞推力仅为6237公斤(喷水)。如果B-52晚几年出生的话它完全可以不挂那么多的发动机。在现在如果不考虑动力系统的可靠性,像B-52之类的飞机只装一台发动机也未尝不可。 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。

发动机原理——第四章-汽油机混合气形成和燃烧..

第四章 汽油机混合气形成和燃烧 汽油机与柴油机相比主要有如下特点: 汽油机 柴油机 1 点燃式。 压燃式。 2 τi 影响小。 τi 影响大。 3 进入汽缸的是混合气,混合时间长。 进入汽缸的是新鲜空气,混合时间短。 4 T max 高,热负荷大。 p max 高,机械负荷大。 5 压缩比低,ε = 6~10。 压缩比高,ε = 12~22。 6 有爆燃问题。 有工作粗暴问题。 7 组织气流运动的目的是为了 组织气流运动的目的是为了 加速火焰传播,防止爆燃。 促进燃油与空气更好地混合。 §4-1 汽油机混合气形成 一、混合气形成过程 1 喉口流速↑ → P ↓ → 雾化效果↑ 2 节气门开度↑ → 喉口真空度?p n ↑, 进气管真空度?p i ↓ → 从 ??p p n i <到??p p n i > 3. 节气门开度一定, n ↑ →

?p n ↑, ?p i ↑ 4. 节气门开度↓,n ↑ → ?p n ↑ → 蒸发性↑ 进气温度↑ → 蒸发性↑ 二、理想化油器特性与供油系校正 (一) 理想化油器特性 各种工况下满足最佳性能要求的理想混合比 — 试验结果。 1 影响因素 (1) 转速n — 影响较小。 (2) 负荷 — 影响大。 2 空燃比A F /=空气质量 燃料质量 经济混合气 A / F = 17 功率混合气 A / F = 12~14 怠速混合气 A / F = 10~12.4 (1) 常用工况 — 中等负荷要求提供经济混合气。 (2) 负荷 > 90% 以及怠速, 低速下 — 加浓。 (二) 简单化油器特性 单纯依靠喉口真空度? p n 决定供油量的化油器。 节气门开度变化 → A/F 变化 ?p n ↑ → A/F ↓ — 混合气浓 与理想化油器有差异, 不能满足 汽油机要求。 (三) 主供油系校正

相关文档
最新文档