发光二极管光谱参数测试方法的研究

发光二极管光谱参数测试方法的研究
发光二极管光谱参数测试方法的研究

发光二极管光谱参数测试方法的研究X

金尚忠1,2,王东辉1,周 文2,张在宣1

(1.中国计量学院信息工程学院,浙江杭州310034; 2.浙江大学信息工程学院,浙江杭州310027)

摘要:影响发光二极管(L ED)颜色的光谱参数有:峰值波长、带宽、主波长和质心波长。峰值波长和带宽反映了L ED发光的物理特性,主波长反映了L ED发光的目视感觉,质心波长是L ED的几何对称波长。

用分光光度法和CCD器件测量L ED的光谱参数,精度达1nm。用质心波长来估算主波长,误差小于

3nm。

关键词:发光二极管(L ED);峰值波长;主波长;质心波长;色品坐标

中图分类号:T P216;T N312+.8 文献标识码:A 文章编号:1005-0086(2002)08-0825-03

Research on Measurement of Spectrum Parameters in LED

JIN Shang-zhong1,2,WANG Do ng-hui1,ZHOU Wen2,ZHAN G Zai-x uan2

(1.Institute of I nfo rm atio n Eng ineer ing,China Instit ute of M etr olog y,Hangzhou310034,China; 2.In-

stitute o f Infor matio n Eng ineer ing,Zhejia ng U niv ersity,Hang zho u310027,China)

Abstract:Peak w av eleng th,bandw ith,domain wav eleng th,and centro id w avelength ar e facto rs affect ing

on lig ht color of LED.P eak wav eleng th and bandwith stand for the physical pro per ty of lig ht o f L ED,

domain w av elengt h co rr espo nds to feel of eyes,centr oid w av elengt h is g eometr ic sym metry w avelength

of L ED.T hey wer e measured using concave disper sio n sy st em and CCD.T heir accur acies are1nm.Do-

main w avelength w as estimated by centr oid w aveleng th,its err or is less t ha n3nm.

Key words:L ED;P eak wav eleng th;Do main w avelength;Cent ro id wav eleng th;Colo r coo rdinate

1 引 言

发光二极管(LED)由于其光强高、功耗低、寿命长、可靠性高、易驱动和易与IC相衔接等特点,已被广泛用于交通、广告和仪器仪表的显示中。LED的颜色是影响显示效果的关键因素,决定LED颜色的则是它的波长特性。由于LED的相对光谱功率分布是一种窄带的准单色光光谱,因此测量它的波长就尤为重要。

2 测量原理

LED在可见光区域内发光的相对光谱功率分布为P(K)。图1所示为绿色LED的P(K)曲线,量大值所对应的波长K P称为它的峰值波长。它的颜色可用色坐标(x,y)来表示。按CIE规定[1],LED的三刺激值X、Y和Z为

X=k∫780380P(K)x-(K)d K

Y=k∫780380P(K)y-(K)d K

Z=k∫780380P(K)z-(K)d K

(1)

式中,x-(K)、y-(K)和z-(K)为1931CIE-X YZ标准色度观察者光谱三刺激值;k称为调整系数

k=100/∫780380P(K)y-(K)d K(

2)

图1 LED的相对光谱功率分布

Fig.1 Relative spectrum energy distribution of LED

光电子?激光 第13卷 第8期 2002年8月

Jo urnal of O pt oelect ro nics?L aser Vo l.13 N o.8 A ug.2002 X收稿日期:2002-01-21 修订日期:2002-02-06

把LED 的Y 值调整为100。

得到X 、Y 和Z 三刺激值后,可求得它的色品坐标为 x =X /(X +Y +Z )y =Y /(X +Y +Z )

(3)

各种颜色的色品坐标构成了1931CIE-X YZ 色品图(图2)。图中,从780nm 沿边缘线到380nm 为单色光颜色的色品坐标,W E (0.3333,0.3333)为等能白[P (K )=1]的色品坐标。若LED 的色品坐标为

S 1(x 1,y 1),连接W E S 1交边缘线于K

d 。K d 即为该LED 的主波长,它反映了人眼观察LED 显示的目视感觉[2]

图2 1931CIE -XYZ 色品图

Fig .2 1931CIE -XYZ color diagram

LED 的质心波长K m 为 K

m =∫780380

P (K )K d K /∫780

380

P (K )d K

(4)

即只要测得P (K ),就可获得K P 、K

d 和K m 。3 测量装置

3.1 K P 的测量

LED 的P (K )测试装置如图3(a)所示,LED 放

在直径180mm 的积分球内。图3(b )为驱动LED 的恒流源,电流在1~100mA 可调(也可设置为方波恒流源,电流在1~1000m A 可调),频率1kHz,占空比1/8。LED 发的光通过光缆传到多色仪的入射狭缝上,经凹面光栅衍射成像在线阵CCD 的感光面上,线阵CCD 上的各个像元对应LED 各个波长的能量特征,经CCD 采样、放大和A /D 转换后送入计算机[3,4],处理后即可获得P (K )。3.

1.1 波长的标定

先将低压Hg 灯、He-Ne 激光器及已知波长的半

图3 P (K )的测试装置Fig .3 Testing setup of P (K

)导体激光器的光引入积分球内,计算机找到对应于Hg 灯、He -Ne 激光器及半导体激光器谱线407.7

nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 、632.8nm 和655.0nm 的CCD 像元位置,由插值可获得380~780nm 内各波长所对应的CCD 像元位置,这就完成了波长的标定。所采集到的各波长的信号I (K )与P (K )的关系为

I (K )=cP (K )S (K )S (K )(5)

式中,S (K )是整个光学系统的光谱透射率;S (K )是CCD 的光谱响应灵敏度;c 是比例系数。

3.1.2 能量的标定

将标准光源A 的光引入积分球内,其标准相对光谱功率P A (K )所对应的信号I A (K )为 I A (K )=cP A (K )S (K )S (K )(6) 式(5)除于式(6),有 P (K )=P A (K )I (K )/I A (K )(7)

即可获得被测LED 的P (K )。计算机找出最大P

(K )所对应即为K P 。3.2 K d 的测定

由图2可知,1931CIE -X YZ 色品图边缘线上每个波长的色品坐标与W E (0.3333,0.3333)间都存在斜率k i 。计算被测LED 的色品坐标与等能白W E 的斜率k d ,找出与其最接近的k i 所对应即为主波长K d 。3.3 K m 的测量

由测得P (K )和式(4)计算,即可获得K m 。 为便于测量,建立如图4所示的K m 测量装置。LED 发出的光经积分球多次漫反射匀光后,被两个

?

826?光电子?激光 2002年 第13卷 

Si -PIN 探测器、D 1、D 2检测。其中D 1加滤光片校正,

使它在可见区内的相对光谱灵敏度S (K )=1。经放大和A/D 转换后,信号即为 I 1=c 1

∫780

380

P (K )d K

(

8)

图4 K m 测量装置框图

Fig .4 Block diagram of measuring K m

D 2直接检测光信号。由于高性能Si -PIN 探测器的量子效率在可见区内近似为常数,其相对光谱灵敏度[5]

S (K )≈c 3K ,检测到的信号即为 I 2≈c 3c 2

∫780

380

P (K )K d K

(9)综合(4)、(8)和(9)式,得 K m ≈k 1I 2/I 1(10)

这里,c 1、c 2、c 3和k 1为比例系数,其中k 1可由已知波

长的激光器方便地测定。

4 实验结果及分析

我们对一些光谱灯和激光器的K P 进行了实测,结果如表1所示。由表可见,其误差小于1nm ,可见它能胜任LED 的波长测试。

表1 K p 的测试结果Tab .1 Testing results of K p

S tandard K s

/nm 407.8435.6532.0546.1579.0589.6632.8669.4

T est K p /nm 407.0435.0532.0546.0579.0590.0633.0670.0

表2为用图3装置测得的K P 、K d 及K m 和用图4装置测得的K m1。由表可见,K m1比K m 更接近K d 。由于LED 发光为准单色光,其P (K )近于高斯分布。计算表明[5]

,当K P <572nm 时,K d >K p 。由表2可见,K d 和K p 的关系与其相符。

对于实际显示,影响颜色的应为K d 。表2中,K m 和K d 存在一定的关系。表3列出了目前显示常用

LED 的K

m 和K d 关系。由表3可见了,K m1比K m 更接近K d ,这是由于Si -PIN 探测器的量子效率在蓝端和红

端有所下降,测出的K m1在蓝端移向长波,在红端移向

短波。因此,可简单地由K

m1来估算K d 。即对测出的K

m1,加对应的修正量,就可获得K d ,误差小于3nm 。表2 K p 、K d 和K m (K m1)的测试结果Tab .2 Testing results of K p 、K d and K m (K m1)

No.12

3456789101112

K p /n m 429466470480497506518

522530567588595K d /n m 462471472484498508522528538571586592K m /nm 439467471485501510522525533571587595K m1/nm 447469472485501510523526535572587594No .

13

14

15

16

17

18

19

20

21

22

23

24

K p /n m 596600601621626629635638654657659703K d /n m 593695596614619621625629641644645653K m /nm 596598

599621626629635637654657659705K m1/nm 595597

598618623625629

632649650651676

表3 K d 和K m (K m 1)的关系

Tab .3 The relation between K d and K m (K m1)

K d /n m

450~475475~520520~550550~605605~630630~660K m ~K d /nm -1~-41~4-3~-50~37~810~14K m 1~K d

/nm -2~01~3-2~-31~244~65 结 论

LED 的发光光谱为准单色光分布(除白色LED 外),影响其发光颜色的主要因素有峰值波长K p 带宽、主波长K d 和质心波长K m 。K d 描述了人眼对LED 发光的目视感觉。用分光光度法测量LED 的相对光谱功率分布P (K )来获得K d ,精度达1nm ,但需要较复杂的分光系统和CCD 采样系统。而测量K m 来估算K d ,其误差小于3nm ,方便用于LED 颜色的快速检测和区别。参 考 文 献:

[1] Commission I nt ernationale de I ?Eclairag e.M easur e-ment of L EDs[S].publication CIE 127-1997:19.[2] Co mmissio n Internationale de I ?Eclair age.Colo rim e-tr y [S].publicatio n CI E 15.2-1986.

[3] ZHA N G Sheng -bin ,WA N G Q ing -you ,G U O Q ing .A

Study o n T a rg et Size A utom atio n M easur em ent U sing

Color L inear [J ].J .of Op toelectr onics ?L aser (光电子?激光),2001,12(11):1159-1161.(in Chinese)[4] ZHA N G Jian-mei,Y AN Hui-min.A N ov el Opto -elec-tr ic Co rr elated P ha se Discr iminat or Sy stem Based on CCD [J].J .of Op toelectr onics ?L aser (光电子?激光),2001,12(10):996-999.(in Chinese )

[5] 吴继宗,叶关荣.光辐射测量[M ].北京:机械工业出版

社,1992.209-211.

作者简介:

金尚忠 (1963-),浙江宁波人,中国计量学院信息工程学院,副教授,主要从事LED 、荧光粉、光纤元器件等光电子参数的检测和光纤光栅传感、光纤拉曼放大器的研究.

?

827? 第8期 金尚忠等:发光二极管光谱参数测试方法的研究

LED发光二极管检测方法

1.发光二极管的特点 ? 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 ?????? L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

晶体二极管的主要参数

晶体二极管的主要参数: 1 电阻 ⑴直流电阻 在晶体二极管上加上一定的直流电压V,就有一对那个的直流电流I,直流电压V与直流电流I的比值,就是晶体二极管的等效直流电流。 ⑵动态电流 在晶体二极管上加一定的直流电压V的基础上,再加上一个增量电压,则晶体二极管也有一个增量电流△I。增量电压△V与增量电流△I的比值,就是晶体二极管的动态电阻,即动态电阻为晶体二极管两端电压变化与电流变化的比值。 二极管的正向直流电阻和动态电阻都是随工作点的不同而发生变化的。 普通晶体二极管反响运动时,其直流电阻和动态电阻都很大,通常可以尽是为无穷大。 2 额定电流 晶体二极管的额定电流是指晶体二极管长时间连续工作时,允许通过的最大正向平均电流。在二极管连续工作时,为使PN结的温度不超过某一极限值,整流电流不应超过标准规定的允许值。 例如:2AP1 的额定电流为12mA; 2AP5为16mA;2AP9为5mA。 对于大功率晶体二极管,为了降低它的温度,增大电流,必须加装散热片。 3 反向击穿电压 反向击穿电压是指二极管在工作中能承受的最大反向电压,它也是使二极管不致反响击穿的电压极限值。在一般情况下,最大反向工作电压应小于反向击穿电压。选用晶体二极管时,还要以最大反向工作电压为准,并留有适当余地,以保证二极管不致损坏。 例如:2AP21型二极管的反向击穿电压为15V最大反向工作电压小于10V;2AP26的反向

击穿电压为150V,最大反向工作电流小于100V。 4 最高工作频率 最高工作频率是指晶体二极管能正常工作的最高频率。选用二极管时,必须使它的工作频率低于最高工作频率。 例如:2AP8BD 最高工作频率为150MHz;2CZ12的最高工作频率为3kHz;2AP16的最高工作频率为40MHz。 晶体二极管的分类: 按用途分: 检波二极管

LED发光二极管技术参数常识

LED发光二极管技术参数常识 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度E g有关,即λ≈1240/Eg (mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm 红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性

发光二极管光谱参数测试方法的研究

发光二极管光谱参数测试方法的研究X 金尚忠1,2,王东辉1,周 文2,张在宣1 (1.中国计量学院信息工程学院,浙江杭州310034; 2.浙江大学信息工程学院,浙江杭州310027) 摘要:影响发光二极管(L ED)颜色的光谱参数有:峰值波长、带宽、主波长和质心波长。峰值波长和带宽反映了L ED发光的物理特性,主波长反映了L ED发光的目视感觉,质心波长是L ED的几何对称波长。 用分光光度法和CCD器件测量L ED的光谱参数,精度达1nm。用质心波长来估算主波长,误差小于 3nm。 关键词:发光二极管(L ED);峰值波长;主波长;质心波长;色品坐标 中图分类号:T P216;T N312+.8 文献标识码:A 文章编号:1005-0086(2002)08-0825-03 Research on Measurement of Spectrum Parameters in LED JIN Shang-zhong1,2,WANG Do ng-hui1,ZHOU Wen2,ZHAN G Zai-x uan2 (1.Institute of I nfo rm atio n Eng ineer ing,China Instit ute of M etr olog y,Hangzhou310034,China; 2.In- stitute o f Infor matio n Eng ineer ing,Zhejia ng U niv ersity,Hang zho u310027,China) Abstract:Peak w av eleng th,bandw ith,domain wav eleng th,and centro id w avelength ar e facto rs affect ing on lig ht color of LED.P eak wav eleng th and bandwith stand for the physical pro per ty of lig ht o f L ED, domain w av elengt h co rr espo nds to feel of eyes,centr oid w av elengt h is g eometr ic sym metry w avelength of L ED.T hey wer e measured using concave disper sio n sy st em and CCD.T heir accur acies are1nm.Do- main w avelength w as estimated by centr oid w aveleng th,its err or is less t ha n3nm. Key words:L ED;P eak wav eleng th;Do main w avelength;Cent ro id wav eleng th;Colo r coo rdinate 1 引 言 发光二极管(LED)由于其光强高、功耗低、寿命长、可靠性高、易驱动和易与IC相衔接等特点,已被广泛用于交通、广告和仪器仪表的显示中。LED的颜色是影响显示效果的关键因素,决定LED颜色的则是它的波长特性。由于LED的相对光谱功率分布是一种窄带的准单色光光谱,因此测量它的波长就尤为重要。 2 测量原理 LED在可见光区域内发光的相对光谱功率分布为P(K)。图1所示为绿色LED的P(K)曲线,量大值所对应的波长K P称为它的峰值波长。它的颜色可用色坐标(x,y)来表示。按CIE规定[1],LED的三刺激值X、Y和Z为 X=k∫780380P(K)x-(K)d K Y=k∫780380P(K)y-(K)d K Z=k∫780380P(K)z-(K)d K (1) 式中,x-(K)、y-(K)和z-(K)为1931CIE-X YZ标准色度观察者光谱三刺激值;k称为调整系数 k=100/∫780380P(K)y-(K)d K( 2) 图1 LED的相对光谱功率分布 Fig.1 Relative spectrum energy distribution of LED 光电子?激光 第13卷 第8期 2002年8月 Jo urnal of O pt oelect ro nics?L aser Vo l.13 N o.8 A ug.2002 X收稿日期:2002-01-21 修订日期:2002-02-06

测试LED的电特性

LED的测试方法 LED测试标准的制定 解决方案: 测试LED的电特性、光特性、开关特性、颜色特性、热学特性、可靠性 半导体发光二极管(LED)已经被广泛应用于指示灯、信号灯、仪表显示、手机背光、车载光源等场合,尤其是白光LED技术的发展,LED在照明领域的应用也越来越广泛。但是过去对于LED的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内LED产业的发展受到严重影响。因此,半导体发光二极管测试方法国家标准应运而生。 LED测试方法 基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。 1、电特性 LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN 结二极管中的一种,其电压-电流之间的关系称为伏安特性。由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。 LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。 2、光特性 类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。 (1)光通量和光效

有两种方法可以用于光通量的测试,积分球法和变角光度计法。变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。 图2 积分球法测LED光通量 此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。 图3 辅助灯法消除自吸收影响 在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。 (2)光强和光强分布特性 图4 LED光强测试中的问题 如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。因此,CIE-127提出了两种推荐测试条件使得各LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。 图5 CIE-127推荐LED光强测试条件(3)光谱参数 LED的光谱特性参数主要包括峰值发射波长、光谱辐射带宽和光谱功率分布等。单色LED的光谱为单一波峰,特性以峰值波长和带宽表示,而白光LED的光谱由多种单色光谱合成。所有LED的光谱特性都可由光谱功率分布表示,而由LED的光谱功率分布还可计算得到色度参数。 光谱功率分布的测试需要通过分光进行,将各色光从混合的光中区分出来进行测定,一般可以采用棱镜和光栅实现分光测定。 图6 白光LED光谱功率分布

各种类型发光二极管详细概述

发光二极管的作用及分类详细资料1.发光二极管的作用 发光二极管(LED)是一种由磷化镓(GaP)等半导体材料制成的、能直接将电能转变成光能的发光显示器件。当其内部有一定电流通过时,它就会发光。图4-21是共电路图形符号。 发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。 2.发光二极管的分类 发光二极管有多种分类方法: 按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaAsP)发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsInP)发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。 按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。 按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种,图4-22为几种发光二极管的外形。

塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。而圆形发光二极管的外径从¢2~¢20mm,分为多种规格。 按发光二极管的发光颜色又可人发为有色光和红外光。有色光又分为红色光、黄色光、橙色光、绿色光等。 另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。 3.普通单色发光二极管 普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。 图4-23是普通发光二极管的应用电路。 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。

LED投光灯规格书技术参数

LED 投光灯规格书 客户代码: 品名: LED 150W投光灯 规格: L425 * W325 * H190 mm 送样日期: 2014年6月30日 本厂型号: HTG06150 档案号: 送样数量: 承认书份数: 1份 一.产品材质: 高纯度铝制反射器,灯壳及散热体;高强度钢化玻璃罩;大功率LED 光源;搭配高效率恒流电源. 二.适用场所: 主要用于户外投光照明、建筑物外墙、港口码头等,户外广告。厂区、体育馆、停车场、广场、码头、工地、广告牌、桥梁、江河堤岸、园林、景观、庭院、草坪、池塘以及其他夜景亮化、照明的场所。 三、特点: 1.采用集成大功率LED(50W)作为光源。运用独特的多颗芯片集成式单模组光源设计,选用进口高亮度半 导体晶片。 2.散热器与灯壳一体化设计,LED 直接与外壳紧密相接,通过外壳散热翼与空气对流散热,充分保证了LED 灯的使用寿命。 3.灯壳采用铝合金压铸成型,可以有效的散热和防水、防尘。灯具表面进行了耐紫外线抗腐蚀处理,整体 灯具达到P65 标准。 4.采用单体椭圆反射腔配合球状弧面来设计,针对性地将LED 发出的光控制在需要的范围内,提高了灯具 出光效果的均匀性和光能的利用率,更能凸显LED泛光灯节能优点。与传统的纳灯相比,可节电70%以上. 5.无不良眩光、无频闪。消除了普通灯不良眩光引起的刺眼、视觉疲劳与视线干扰。 6.启动无延时,通电即亮,无需等待,消除了传统灯具长时间的启动过程。 7.绿色环保无污染,不含铅、汞等污染元素,对环境没有任何污染。

四、投光灯技术参数 五、使用说明 1.产品使用工作电压:AC 85V~265V 50/60Hz。勿超出工作电压范围。 2.贮存环境温度-50℃~+50℃.工作环境温度:-40℃~+50C℃,最佳工作环境温度为-0℃~+30℃。 3.由于灯具有玻璃配件,在搬运,贮存的时候请注意轻拿轻放,勿重压。

发光二极管特性参数(精)

发光二极管特性参数 IF 值通常为 20mA 被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试 二极管的各项性能参数,具体见特性曲线图。 IF 特性: 1. 以正常的寿命讨论,通常标准 IF 值设为 20 - 30mA ,瞬间( 20ms )可增至 100mA。 2. IF 增大时 LAMP 的颜色、亮度、 VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件, IF 值增大:寿命缩短、 VF 值增大、波长偏低、温度上升、亮度增大、 角度不变,与相关参数间的关系见曲线图; 1.VR ( LAMP 的反向崩溃电压) 由于 LAMP 是二极管具有单向导电特性,反向通电时反向电流为 0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用 “ VR ”来表示。 VR 特性: 1. VR 是衡量 P/N 结反向耐压特性,当然 VR 赿高赿好; 2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏; 3. VR 又通常被设定一定的安全值来测试反向电流( IF 值),一般设为 5V ; 4. 红、黄、黄绿等四元晶片反向电压可做到 20 - 40V ,蓝、纯绿、紫色等晶片反向 电压只能做到 5V 以上。 2.IR (反向加电压时流过的电流) 二极管的反向电流为 0 ,但加上反向电压时如果用较精密的电流表测量还是有很小的电流,只不过它不会影响电源或电路所以经常忽略不记,认为是 0 。 IR 特性: 1. IR 是反映二极管的反向特性, IR 值太大说明 P/N 结特性不好,快被击穿; IR 值 太小或为 0 说明二极管的反向很好; 2. 通常 IR 值较大时 VR 值相对会小, IR 值较小时 VR 值相对会大; 3. IR 的大小与晶片本身和封装制程均有关系,制程主要体现在银胶过多或侧面沾胶, 双线材料焊线时焊偏,静电亦会造成反向击穿,使 IR 增大。

发光二极管参数(精)

二极管参数 普通发光二极管的正向饱和压降为1.6V~2.1V, 正向工作电流为5~20mA LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在0.6·IFm以下。 (2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。一般是在IF=20mA时测得的。发光二极管正向工作电压VF在1.4~3V。在外界温度升高时,VF将下降。 (3)V-I特性:发光二极管的电压与电流的关系 在正向电压正小于某一值(叫阈值)时,电流极小,不发光。当电压超过某一值后,正向电流随电压迅速增加,发光。由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。正向的发光管反向漏电流IR<10μA以下。 LED的分类 1.按发光管发光颜色分 按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。 根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。 2.按发光管出光面特征分 按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。 由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类: (1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可

发光二极管参数的测量

发光二极管参数的测量 一发光二极管的结构和基本原理 1发光二极管的结构 发发光二极管(light emission diode LED )图 1 显示了 LED 的结构截面图。要使 LED 光, 有源层的半导体材料必须是直接带隙材料,越过带隙的电子和空穴能够直接复合发射出光子。为 了使器件有好的光和载流子限制,大多采用双异质结( DH )结构。 P 电极(+) P 型隔离层 光 有源层 N 型隔离层 N型衬底 N电极 (-) 图 1 边发射 LED 结构截面 2 LED 的基本工作原理 LED是一种直接注入电流的发光器件,是半导体晶体内部受激电子从高能级回复到低能 级时,发射出光子的结果,这就是通常所说的自发发射跃迁。当LED 的 PN 结加上正向偏压,注入的少数载流子和多数载流子(电子和空穴)复合而发光。值得注意的是,对于大量 处于高能级的粒子各自分别自发发射一列一列角频率为ν=E g/h 的光波,但各列光波之间 没有固定的相位关系,可以有不同的偏振方向,并且每个粒子所发射的光沿所有可能的方向传 播,这个过程称为自发发射。其发射波长可用下式来表示: λ( μm)= 1.2396/E g(eV) 二发光二极管的特性及测试方法 1 LED的光谱特性及测试方法 由于 LED 没有光学谐振腔选择波长,所以它的光谱是以自发发射为主的光谱,图 2 显示出了 LED 的典型光谱曲线。发光光谱曲线上发光强度最大时所对应的波长称为发光峰值 波长,光谱曲线上两个半光强点所对应的波长差称为谱线宽度(简称线宽),其典型值在30-40nm 之间。峰值波长和谱线宽度的测试方法如图 3 所示,当被测器件的正向工作电流达 到规定值时,旋转单色仪波鼓,使指示器达到最大值,读出波长峰值,此即为该器件的发光

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

二极管的符号、判别、参数和分类

二极管符号 二极管(国标) 2.半导体二极管的极性判别及选用 (1) 半导体二极管的极性判别

一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP1 7等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。 无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。 根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R ×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。 (2) 半导体二极管的选用 通常小功率锗二极管的正向电阻值为300~500?,硅管为1k?或更大些。锗管反向电阻为几十千欧,硅管反向电阻在500k?以上(大功率二极管的数值要大得多)。正反向电阻差值越大越好。 点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。 选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

发光二极管的类型、主要参数

.普通单色发光二极管普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮.它属于电流控制型半导体器件,使用时需串接合适地限流电阻. 普通单色发光二极管地发光颜色与发光地波长有关,而发光地波长又取决于制造发光二极管所用地半导体材料.红色发光二极管地波长一般为,琥珀色发光二极管地波长一般为,橙色发光二极管地波长一般为左右,黄色发光二极管地波长一般为左右,绿色发光二极管地波长一般为. 常用地国产普通单色发光二极管有(厂标型号)系列、(部标型号)系列和系列.常用地进口普通单色发光二极管有系列和系列等. .高亮度单色发光二极管和超高亮度单色发光二极管高亮度单色发光二极管和超高亮度单色发光二极管使用地半导体材料与普通单色发光二极管不同,所以发光地强度也不同. 通常,高亮度单色发光二极管使用砷铝化镓()等材料,超高亮度单色发光二极管使用磷铟砷化镓()等材料,而普通单色发光二极管使用磷化镓()或磷砷化镓()等材料.. .变色发光二极管变色发光二极管是能变换发光颜色地发光二极管.变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管. 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管. 常用地双色发光二极管有系列和系列,常用地三色发光二极管有、、等型号,见表. .闪烁发光二极管闪烁发光二极管()是一种由集成电路和发光二极管组成地特殊发光器件,可用于报警指示及欠压、超压指示. 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当地直流工作电压()即可闪烁发光. 表是几种常用闪烁发光二极管地主要参数. .电压控制型发光二极管普通发光二极管属于电流控制型器件,在使用时需串接适当阻值地限流电阻.电压控制型发光二极管()是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端. 电压控制型发光二极管地发光颜色有红、黄、绿等,工作电压有、、、、、共种规格. 表为系列电压控制型发光二极管地主要参数. .红外发光二极管红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去地发光器件,主要应用于各种光控及遥控发射电路中. 红外发光二极管地结构、原理与普通发光二极管相近,只是使用地半导体材料不同.红外发光二极管通常使用砷化镓()、砷铝化镓()等材料,采用全透明或浅蓝色、黑色地树脂封装. 常用地红外发光二极管有系列、系列、系列、系列、系列和系列等 ·发光亮度 亮度是发光性能又一重要参数,具有很强方向性.其正法线方向地亮度,指定某方向上发光体表面亮度等于发光体表面上单位投射面积在单位立体角内所辐射地光通量,单位为或. 若光源表面是理想漫反射面,亮度与方向无关为常数.晴朗地蓝天和荧光灯地表面亮度约为(尼特),从地面看太阳表面亮度约为×. 亮度与外加电流密度有关,一般地,(电流密度)增加也近似增大.另外,亮度还与环境温度有关,环境温度升高,η(复合效率)下降,减小.当环境温度不变,电流增大足以引起结结温升高,温升后,亮度呈饱和状态. 文档来自于网络搜索 ·寿命

发光二极管测试方法(精)

https://www.360docs.net/doc/129544540.html, 电子发烧友 https://www.360docs.net/doc/129544540.html, 电子技术论坛 发光二极管测试方法 摘要 系统地介绍了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求。 1 前言 半导体发光二极管是一种重要的光电子器件,它在科学研究和工农业生产中均有非常广泛的应用.发光二极管虽小,但要准确测量它的各项光和辐射参数并非一件易事.目前在世界范围内的测试比对还有较大的差异.鉴于此,CIE(国际照明委员 会)TC2-34小组对此进行了研究,所提出的技术报告形成了CIE127-1997文件. 中国光学光电子行业协会光电器件专业分会根据国内及行业内部的实际情况,初步制定了行业标准"发光二极管测试方法",2002年起在行业内部试行.本文叙述了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求,以期收到抛砖引玉之效果. 本文涉及的测试方法适用于紫外/可见光/红外发光二极管及其组件,其芯片测试可以参照进行。 2 术语和定义 2.1发光二极管 LED 除半导体激光器外,当电流激励时能发射光学辐射的半导体二极管。严格地讲,术语LED应该仅应用于发射可见光的二极管;发射近红外辐射的二极管叫红外发光二极管(IRED,Infrared Emitting Diode);发射峰值波长在可见光短波限附近,由部份紫外辐射的二极管称为紫外发光二极管;但是习惯上把上述三种半导体二极管统称为发光二极管。 2.2光轴 Optical axis 最大发光(或辐射)强度方向中心线。 2.3正向电压VF Forward voltage 通过发光二极管的正向电流为确定值时,在两极间产生的电压降。 2.4反向电流IR Reverse current 加在发光二极管两端的反向电压为确定值时,流过发光二极管的电流。 2.5反向电压VR Reverse voltage 被测LED器件通过的反向电流为确定值时,在两极间所产生的电压降。 2.6总电容C Capacitance 在规定正向偏压和规定频率下,发光二极管两端的电容。 2.7开关时间 Switching time 涉及以下概念的最低和最高规定值是10%和90%,除非特别注明。 2.7.1开启延迟时间td(on) Turn-on delay time

LED性能参数及测试方法

LED选修课总结 LED性能参数及测试方法 院(系)名称 专业班级 学号 学生姓名 指导教师 2011年11月24日

摘要 发光二极管(英语:Light-Emitting Diode,简称LED)是一种能发光的半导体电子元件。这种电子元件早在1962年出现,早期只能发出低光度的红光,之后发展出其他单色光的版本,时至今日能发出的光已遍及可见光、红外线及紫外线,光度也提高到相当的光度。而用途也由初时作为指示灯、显示板等;随着白光发光二极管的出现而续渐发展至被用作照明。 LED只能往一个方向导通(通电),叫作正向偏置(正向偏压),当电流流过时,电子与电洞在其内重合而发出单色光,这叫电致发光效应,而光线的波长、颜色跟其所采用的半导体物料种类与故意渗入的元素杂质有关。具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点。但当LED的发光强度达至足以用于室内照明的话,其效率会下降到比萤光灯更差(比萤光灯耗电),成本也高至极不合理水平,这是当前LED照明未能普及的重要原因。(September,2011)白光LED的发光效率,在近几年来已经有明显的提升,同时,在每千流明的购入价格,也因为投入市场的厂商相互竞争的影响,而明显下降。因此,LED照明虽然尚未达到全面普及的程度,但是在光电转换效率及有效照度对用电量的比值上,均已经超过萤光灯,甚至有机会挑战低压钠灯(Low Pressure Sodium light)。 关键词:正向偏置、电致发光 ·

目录 Ⅰ检测性能参数的方法 (1) ⅡLED的重要特性及测试 (2) 1电特性测试方法 (2) 2光特性测试 (3) 3光谱参数 (5) 4热学特性 (6) 5可靠性 (6) 总结 (7) 参考文献 (8)

LED发光二极管检测方法

1.发光二极管的特点 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。 LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。 3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。 (2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。 (3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。 (4)严禁用有机溶液浸泡或清洗。 (5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

二极管的检测方法与经验

二极管的检测方法与经验 四、二极管的检测方法与经验 检测小功率晶体二极管 判别正、负电极 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于的多为高频管。 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为~,反向电阻值为无穷大。 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 检测双向触发二极管 将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 瞬态电压抑制二极管(TVS)的检测 用万用表R×1k挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4kΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 高频变阻二极管的检测 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。 测量正、反向电阻来判断其好坏 具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为~,反向电阻为无穷大。 变容二极管的检测 将万用表置于R×10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。必要时,可用替换法进行检查判断。 单色发光二极管的检测

发光二极管主要参数与特性

发光二极管主要参数与特性 https://www.360docs.net/doc/129544540.html,发布日期:2007-2-5 17:12:17 信息来源:LED 发光二极管主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C -V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流I F与外加电压呈指数关系 I F = I S (e qVF/KT –1) -------------------------I S 为反向饱和电流。 V>0时,V>V F的正向工作区I F 随V F指数上升 I F = I S e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - V R 时,反向漏电流I R(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- V R ,V R 称为反向击穿电压;V R 电压对应I R为反向漏电流。当反向偏压一直增加使V<- V R时,则出现I R突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压V R也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mi l (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。 C-V特性呈二次函数关系(如图2)。由1MH Z交流信号用C-V特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED的电流为I F、管压降为U F则功率消耗为P=U F×I F LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = K T(Tj – Ta)。 1.4 响应时间 响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~1 0-5S,CRT、PDP、LED都达到10-6~10-7S(us级)。 ① 响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t0值很小,可忽略。 ② 响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED的点亮时间——上升时间t r是指接通电源使发光亮度达到正常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

相关文档
最新文档