(完整版)题型五二次函数与几何图形综合题

(完整版)题型五二次函数与几何图形综合题
(完整版)题型五二次函数与几何图形综合题

目录

题型五二次函数与几何图形综合题 (2)

类型一与特殊三角形形状有关 (2)

类型二与特殊四边形形状有关 (8)

类型三与三角形相似有关 (18)

类型四与图形面积函数关系式、最值有关 (23)

类型五与线段、周长最值有关 (29)

题型五二次函数与几何图形综合题

类型一与特殊三角形形状有关

针对演练

1. (’16原创)如图,已知抛物线y=-x2+bx+c的对称轴为x=1,与y轴的交点第1题图C为(0,3),与x轴交于点A、B,顶点为D.

(1)求抛物线的解析式;

(2)求A、B、D的坐标,并确定四边形ABDC的面积;

(3)点P是x轴上的动点,连接CP,若△CBP是等腰三角形,求点P的坐标.

2. (’15长沙模拟)如图,抛物线y=ax2+bx+c的图象过点M(-2,3),顶点为N

(-1, 43

3

),与x轴交于点A、B(点A在点B的右侧),与y轴交于点C.

(1)求抛物线解析式;

(2)判断△ABC的形状,并说明理由;

(3)若点Q是抛物线对称轴上一点,当△QBC是直角三角形时,求点Q的坐标.

3. (’16原创)如图,抛物线y = -1

2

x2+mx+n与x轴交于点A、B两点,与y轴

交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2).

(1)求抛物线的解析式;

(2)判断△ACD的形状,并说明理由;

(3)在抛物线对称轴上是否存在一点P,使得△PBC是以P为直角顶点的直角三角形,若存在,求点P的坐标;若不存在,说明理由.

4. 如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.

(1)写出A、B两点的坐标;

(2)二次函数L2:y=kx2-4kx+3k(k≠0),顶点为P.

①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;

②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;

③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.

答案

1. 解:(1)∵抛物线y =-x 2+bx +c 的对称轴为112

b

x =-=-?, 解得b =2,∵抛物线过点C (0,3),∴c =3, ∴抛物线解析式为y =-x 2+2x +3;

(2)由抛物线y =-x 2+2x +3,令y =0得,-x 2+2x +3=0, 解得x 1=-1,x 2=3,∴点A (-1,0),点B (3,0), 当x =1时,y =-12+2+3=4,∴点D 的坐标为(1,4). 如解图,过D 作DM ⊥AB 于M ,则OM =1,DM =4, ∴S 四边形ABDC =S △AOC +S 四边形OMDC +S △BMD =12AO ·OC +12(OC +MD )·OM +12BM ·DM =12×1×3+12×(3+4)×1+12×4×2 =9.

(3)设点P 的坐标为(t ,0),则PC 2=t 2+32,PB 2=(3-t )2, ∴BC 2=32+32=18, 若△PBC 是等腰三角形,

则有①PC 2=PB 2,即t 2+9=(3-t )2,解得t =0,此时点P 的坐标为(0,0); ②PC 2=BC 2,则t 2+9=18,解得t =3(舍)或t =-3,此时点P 的坐标为(-3,0); ③PB 2=BC 2则(3-t )2=18,解得t =3+32或t =3-32, 此时点P 的坐标为(3+32,0)或(3-32,0). 2. 解:(1)由抛物线的顶点为N (-1,

43

),故设抛物线的顶点式为y =a (x +1)2+

43

, 将点M (-2,

3)代入解析式得,

a ×(-2+1)2+

3=3,

解得a =3

-

,

∴抛物线的解析式为y = -3 (x +1)2+3

.

即y =2.

(2)对于抛物线y =2-,令y = 0,

得3-

2-3

-x , 解得x 1=1,x 2=-3,

∴点A (1,0),点B (-3,0),

令抛物线x =0,得y

∴点C 的坐标为(0,

.

∴AB 2=42=16,AC 2=12)2=4,BC 2=32)2=12, ∴AB 2=AC 2+BC 2, ∴△ABC 是直角三角形.

(3)由抛物线顶点N (-1,

)知抛物线的对称轴为x =-1, 设点Q 的坐标为(-1,t ),

则BQ 2=(-3+1)2+t 2=4+t 2,CQ 2=(-1)2+(t )2=t 2-+4,BC 2=12. 要使△BQC 是直角三角形,

(ⅰ) 当∠BQC =90°,则BQ 2+QC 2=BC 2,

即4+t 2+t 2-+4=12,

解得t 1

=

2

+2,t 2

=2

-Q 的坐标为(-1

,2

+2

)或(-1

,2

-2

);

(ⅱ)当∠QBC =90°,则BQ 2+BC 2=QC 2,

即4+t 2+12=t 2

-+4,解得t

=-Q 的坐标为(-1,

-; (ⅲ)当∠BCQ = 90°时,则QC 2+BC 2=BQ 2,

即t 2

-+4+12=4+t 2,解得t

=Q 的坐标为(

-1, . 综上,当△QBC 是直角三角形时,点Q 坐标为(-1

2

),(-1,

± 3. 解:(1)∵点A (-1,0),C (0,2)在抛物线上,

∴1022m n n ?--+=???=?,解得322

m n ?=???=? ∴抛物线解析式为y =-

12x 2+3

2

x +2; (2)△ACD 是等腰三角形. 理由:∵抛物线y =-12x 2+32x +2的对称轴为直线x =3

2

∴点D (3

2,0),

∵A (-1,0),C (0,2), ∴AC

AD =1+

32=5

2

,CD

52=,

∴AD =CD ≠AC ,

∴△ACD 是等腰三角形;

(3)令抛物线y =-12x 2+3

2x +2=0,得x 1=-1,x 2=4,

∴点B 的坐标为(4,0),则BC

= 取BC 的中点为S ,则点S 的坐标为(2,1);

设点P(3

2

,t),

则PS =1

2

BC 5(2-

3

2

)2+(t-1)2=5,

解得t119

,t2

19

∴存在这样的点P,其坐标为(3

2

193

2

19

).

4.解:(1)当y=0时,x2-4x+3=0,

∴x1=1,x2=3,

即:A(1,0),B(3,0);

(2)①二次函数L2与L1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x=2或顶点的横坐标都为2;(Ⅱ)都经过A(1,0),B(3,0)两点;

②存在实数k,使△ABP为等边三角形.

∵y=kx2-4kx+3k=k(x-2)2-k,

∴顶点P(2,-k).

∵A(1,0),B(3,0),∴AB = 2,

要使△ABP为等边三角形,必满足|-k|=3,∴k=±3;

③线段EF的长度不会发生变化.

∵直线y=8k与抛物线L2交于点E、F两点,

∴kx2-4kx+3k=8k,

∵k≠0,∴x2-4x+3=8,

∴x1=-1,x2=5,

∴EF =x2-x1=6,

∴线段EF的长度不会发生变化且EF=6.

类型二与特殊四边形形状有关

针对演练

1. 抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,点D在x轴的正半轴. (1)求抛物线与x轴的交点坐标;

(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由.

2. 如图,已知平面直角坐标系xOy中,O是坐标原点,抛物线y=-x2+bx+c(c>0)的顶点D在第二象限,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使AC =2BC,连接OA,OB,BD和AD.

(1)若点A的坐标为(-4,4),求抛物线的解析式;

(2)在(1)的条件下,求直线BD的解析式;

(3)是否存在b、c使得四边形AOBD是矩形,若存在,直接写出b与c的关系式;若不存在,说明理由.

3. 如图,已知直线y =4

3

-x+8与x轴交于点A,与y轴交于点B,C是线段AB

的中点,抛物线y=ax2+bx+c(a>0)过O、A两点,且其顶点的纵坐标为

4 3 -.

(1)分别写出A、B、C三点的坐标;

(2)求抛物线的函数解析式;

(3)在抛物线上是否存在点P,使得以O、P、B、C为顶点的四边形是菱形?若存在,求所有满足条件的点P的坐标;若不存在,请说明理由.

4. (’15毕节16分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.第4题图

(1)求抛物线的解析式;

(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;

(3)是否存在过A、B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

5. (’15黄冈14分)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求OE的长;

(2)求经过O,D,C三点的抛物线的解析式;

(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP =DQ;(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.

答案

1. 解:(1)把A (0,2),B (3,2)代入y =x 2+bx +c ,得

2932c b c =??

++=?,解得3

2b c =-??=?, ∴抛物线的解析式为:y =x 2-3x +2, 当y =0时,x 2-3x +2=0,解得x 1=1,x 2=2, ∴抛物线与x 轴的交点坐标为(1,0)、(2,0). (2)存在.

理由:∵A (0,2),B (3,2), ∴AB ∥x 轴,且AB =3,

要使A 、B 、C 、D 四点为顶点的四边形是平行四边形, 则只要CD =AB =3.

①当C 点坐标为(1,0)时,D 坐标为(4,0); ②当C 点坐标为(2,0)时,D 坐标为(5,0).

∴存在点D ,使以A ,B ,C ,D 四点为顶点的四边形是平行四边形,D 点的坐标为(4,0)或(5,0).

2. 解:(1)∵CA ∥x 轴,点A 的坐标为(-4,4), ∴点C 的坐标为(0,4), 将点A 与点C 代入y =-x 2+bx +c 得

16444b c c --+=??

=?,解得4

4b c =-??=?, ∴抛物线的解析式为y =-x 2-4x +4; (2)∵AC =2BC ,∴BC =2, ∴点B 的坐标为(2,4),

由抛物线y =-x 2-4x +4得顶点D 的坐标为(-2,8),

设直线BD 的解析式为y =kx +m ,

则2824k m k m -+=??+=?,解得16k m =-??=?,

∴直线BD 的解析式为y =-x +6.

(3)存在,b 与c 的关系式为b c .

【解法提示】∵点C 的坐标为(0,c ),抛物线的对称轴为x =2

b

<0,即b <0,AC ∥x 轴,

∴点A 的坐标为(b ,c ),

∵AC =2BC ,∴点B 的坐标为(-2

b

,c ),

则AB 的中点坐标为(4

b

,c ),

若四边形AOBD 是矩形, 则需①OD 的中点坐标为(4

b

,c );②OD =AB , 由①得点D 的坐标为(4

b

,2c ), 由②得(

32

b )2=(4b )2

+(2c )2,整理得2c 2=b 2,

∵c >0,b <0,

∴b c .

3. 解:(1)令y =0,即-4

3x +8=0,得x =6,∴A 点坐标为(6,0),

令x =0,则y =8,∴B 点坐标为(0,8), ∴C 点坐标为(3,4).

(2)∵点C 在抛物线的对称轴上,

∴抛物线顶点坐标为(3,-4

3

).

依题意有036604

933c a b c a b c ?=??++=??++=-??,解得427890

a b c ?=??

?

=-???=?

?,

∴抛物线的函数解析式为248

279

y x x =-; (3)存在.

∵∠AOB =90°,A (6,0)、B (0,8), ∴22226810AB OA OB =+=+=, ∵C 是AB 的中点,

∴OC =1

2AB =BC =5,

∵OB =8,

∴OB >OC ,且OB >BC ,

∴当以O 、P 、B 、C 为顶点的四边形是菱形时,OB 是菱形的对角线, 连接PC ,则OB 是PC 的垂直平分线, ∴点P 与点C 关于y 轴对称, ∵C (3,4), ∴P (-3,4),

把点P (-3,4)代入抛物线解析式248

279

y x x =-得: 当x =-3时,y =

427×(-3)2-8

9

×(-3)=4, ∴点P (-3,4)在抛物线上.

故在抛物线上存在点P ,使以O 、P 、B 、C 为顶点的四边形是菱形,且点P 的坐标是(-3,4).

4. 解:(1)∵抛物线与x 轴交于点A (-1,0),B (3,0),

∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3;……………………(4分)

(2)∵抛物线y =x 2-2x -3=(x -1)2-4, ∴点M 的坐标为(1,-4). ∵点M 与点M′关于x 轴对称,

∴点M′的坐标为(1,4),…………………………………………………(6分) 设直线AM′的解析式为y =kx +m , 将点A (-1,0),点M′(1,4)代入得,

4

k m k m -+=??

+=?,解得22k m =??=?, ∴直线AM′的解析式为y =2x +2,…………………………………………(8分) 将直线AM′与抛物线y =x 2-2x -3联立得

2

22

23

y x y x x =+??=--?,解得1110x y =-??=?,22512x y =??=? ∴点C 的坐标为(5,12),……………………………………………………(10分) 又∵AB =3-(-1)=4,

∴S △CAB =1

2×4×12=24. ……………………………………………………(12分)

(3)∵四边形APBQ 是正方形, ∴PQ 垂直且平分AB ,且PQ =AB ,

设PQ 与x 轴交点为N ,则PN =1

2AB =2,

∵抛物线的对称轴为x =1,

∴点P 的坐标为(1,2)或(1,-2). …………………………………(13分) 设过A 、B 两点的抛物线的解析式为y =a (x +1)(x -3),

将点(1,2)代入得a =-1

2,

此时抛物线解析式为y =-12 (x +1)(x -3)=- 12x 2+x +3

2;………………(15分)

将点(1,-2)代入得a =1

2

此时抛物线解析式为2113

(1)(3)222y x x x x =+-=--.……………………(16分)

5. 解:(1)∵四边形OABC 为矩形,

∴BC =OA =5,OC =AB =4,∠COA =90°,

又∵△CED 是△BCD 沿直线CD 折叠得到的,点B 的对应点为点E , ∴CE =BC =5,

在Rt △COE 中,OE 2=CE 2-OC 2, ∴OE =2254-∴OE =3. ………………………………………………………………………(2分) (2)设AD =m ,

则DE =BD =4-m .∵OE =3, ∴AE =OA -OE =5-3=2.

在Rt △ADE 中,AD 2+AE 2=DE 2,即m 2+22=(4-m )2,

∴m =32,

∴D (-3

2,-5). ………………………………………………………………(4分)

又∵C (-4,0),O (0,0),

∴设过O ,D ,C 三点的抛物线的解析式为y =ax (x +4),

∴-5=-32a ·(-3

2+4),

∴a =43

∴经过O ,D ,C 三点的抛物线的解析式为y =43x 2+16

3x . …………………(6分)

(3)①由于运动时间为t 秒,则EQ =t ,CP =2t , 如解图①,∵△BCD 沿直线CD 折叠得到△ECD , ∴BD =DE , 若DP =DQ ,

则Rt △P BD ≌Rt △QED (HL ),

∴PB=QE,即CB-CP=EQ. ∴5-2t=t,

解得t=5

3 .………………………………………………………………………(8分)

(4)(ⅰ)如解图②,当M点在对称轴右侧,即为M1点,M1N∥CE且M1N =CE时,四边形ECNM 1为平行四边形,过M 1作M1F垂直对称轴于点F,则△M1FN ≌△COE,∴FM1=OC,∵对称轴为直线x=-2,

∴此时,点M1的横坐标为2,

对于y =4

3

x2+

16

3

x,当x=2时,y=16,

∴点M1的坐标为(2,16). ………………………………………………(10分) (ⅱ)如解图③,当M点在对称轴左侧,即为M2,M2N∥CE

且M 2N =CE时,四边形ECM 2N为平行四边形,过M 2作M

2

F垂直对称轴于点F,则△M 2FN ≌△COE,

∴FM 2=OC,

∵对称轴直线x=-2,

∴此时,点M 2的横坐标为-6.

对于y =4

3

x2+

16

3

x,当x=-6时,y=16,

∴点M 2的坐标为(-6,16). ………………………………………………(12分) (ⅲ)如解图④,当M点在抛物线的顶点上,即为点

M 3,CN∥M 3E且CN = M 3E时,四边形EM 3CN为平

行四边形,CE与NM 3相交于点O′,则O′为线段CE的

中点,

又∵点M 3在对称轴上,则M 3的横坐标为-2,

对于y =4

3

x2+

16

3

x,当x=-2时,y=-

16

3

∴点M 3的坐标为(-2,-16

3

).

综上所述,当点M的坐标为(2,16)、(-6,16)、(-2,-16

3

)时,以M,N,C,E

为顶点的四边形为平行四边形. ……………………………………………(14分)

类型三与三角形相似有关针对演练

1. (’15黔南州12分)如图,在平面直角坐标系xOy中,抛物线y=-1

6

x2+bx+c

过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作x轴的垂线,过点A作y轴的垂线,两直线相交于点D.

(1)求b、c的值;

(2)当t为何值时,点D落在抛物线上;

(3)是否存在t,使得以A、B、D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.

2. (’15常德模拟)已知抛物线y =ax2-2x+c与x轴交于A(-1,0)、B两点,与

y轴交于点C,对称轴为x =1,顶点为E,直线y =-1

3

x+1交y轴于点D.

(1)求抛物线的解析式;

(2)求证:△BCE∽△BOD;

(3)点P是抛物线上的一动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?

答案

解:(1)由抛物线y =-1

6

x 2+bx +c 过点A (0,4)和C (8,0)可得,

∴4164806c b c =???-?++=??,解得564

b c ?

=???=?

故b 的值为5

6,c 的值为4;………………………………………………(3分)

(2)∵∠AOP =∠PEB =90°,∠OAP =∠EPB =90°-∠APO ,

∴△AOP ∽△PEB ,则2OA AP

PE PB ==,

∵AO =4,P (t ,0),

∴PE =2,OE =OP +PE = t +2, 又∵DE =OA =4,

∴点D 的坐标为(t +2,4),

∴点D 落在抛物线上时,有-16(t +2)2+5

6

(t +2)+4=4,

解得t =3或t =-2, ∵t >0, ∴t =3.

故当t 为3时,点D 落在抛物线上;…………………………………………(6分) (3)存在,理由:

由(2)知△AOP ∽△PEB ,

则2OP AP BE PB ==, ∵P (t ,0),即OP =t .

∴BE =2t

.

①当0<t <8时, 若△POA ∽△ADB ,则

OP AO

AD BD

=

几何图形初步 基础知识详解+基本典型例题解析(全)

几何图形初步 目录 一、几何图形 二、直线、射线、线段 三、角 四、《几何图形初步》全章复习与巩固 本套“基础知识详解”资料特色是知识点分析汇总,题目比较基础,完全不同于《初中数学典型题思路分析》,是购买典型题书赠送的资料之一。赠送文本为word,按照课本章节分类,有初中全套且群内会陆续分享,敬请关注! 一、几何图形基础知识讲解 【学习目标】 1.理解几何图形的概念,并能对具体图形进行识别或判断; 2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力; 3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程. 【要点梳理】

要点一、几何图形 1.定义:把从实物中抽象出的各种图形统称为几何图形. 要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等. 2.分类:几何图形包括立体图形和平面图形 (1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等. (2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形. 要点诠释: (1)常见的立体图形有两种分类方法: (2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等. (3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系. 要点二、从不同方向看 从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图. 要点三、简单立体图形的展开图 有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图. 要点诠释: (1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形. (2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图. 要点四、点、线、面、体 长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体. 【典型例题1】 类型一、几何图形 1.如图所示,请写出下列立体图形的名称.

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

二次函数与几何综合压轴题题型归纳 学生版

标准实用 二次函数综合压轴题型归类、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系教学目标:1 2、掌握特殊图形面积的各种求法 1、利用图形的性质找 点重点、难点: 2、分解图形求面积 一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总????22x?AB??yy?x:1、两点间的距离公式BAAB x?xy?y??BABA,ABC??的坐标为::线段的中点2 、中点坐标 22??y?kx?bk?0y?kx?bk?0)的位置关系:)与((直线212112??k?bk?kb?k)两直线相交 且(1)两直线平行(2212112??kk?b?1bk?k? 3()两直线重合(4)两直线垂直且2121213、 一元二次方程有整数根问题,解题步骤如下: ?和参数的其他要求确定参数的取值范围;①用②解方程,求出方程的根;(两种形式:分式、 二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 ??22mxm5<m02m?1=x?mx-的值。为整数,求例:关于的一元二次方程有两个整数根,且 x轴的交点为整数点问题。(方法同上)、4二次函数与??2mx3x?y?mx?3m1?为正整数,试确定轴交于两个不同的整数点,且例:若抛物线与此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 文案大全. 标准实用 2mxm0?2m?mx3?3(m?1)x?为何值,方程总为实数)(已知关于,求证:无论的方程有一个固定的根。1x0?m?时,解:当;??3?1?m?3??2x?2?x?1?x0?m0??3m??;、时,当,, 12m2m m为何值,方程总有一个固定的根是1。综上所述:无论 6、函数过固定点问题,举例如下: 2mm2?my?x??mx为何值,该抛物线总经过一个固已知抛物线(,求证:不论是常数)定的点,

最新初中数学几何图形初步易错题汇编附答案解析

最新初中数学几何图形初步易错题汇编附答案解析 一、选择题 1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是() A.B. C.D. 【答案】D 【解析】 解:如右图, 连接OP,由于OP是Rt△AOB斜边上的中线, 所以OP=1 2 AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以 O为圆心的圆弧上,那么中点P下落的路线是一段弧线. 故选D. 2.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于() A.30°B.25°C.18°D.15° 【答案】D 【解析】 【分析】

根据三角形内角和定理可得45ABC ∠=?和30EDF ∠=?,再根据平行线的性质可得45EDB ABC ==?∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数. 【详解】 ∵∠C =90°,∠A =45° ∴18045ABC A C =?--=?∠∠∠ ∵//DE CF ∴45EDB ABC ==?∠∠ ∵∠DFE =90°,∠E =60° ∴18030EDF E DFE =?--=?∠∠∠ ∴15BDF EDB EDF =-=?∠∠∠ 故答案为:D . 【点睛】 本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键. 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴ PB PE PD PE DE ∴+=+= 2,3BE AE BE ==Q

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

一次函数的应用、二次函数与几何知识的综合应用练习题

2012届一次函数的应用、二次函数与几何知识的综合应用练习题 1、某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是 会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书, 若每月租书数量为x 册. (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系 式; (2)写出会员卡租书方式应付金额y 2(元 )与租书数量x (册)之间的函数关 系式; (3)小军选取哪种租书方式更合算? 2、某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知 大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购 车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最 省的方案,并求出该方案所需费用. 3、如图,抛物线y = 2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 4、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物 线交x 轴于另一点C (3,0). 第3题图

⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求 出符合条件的Q 点坐标;若不存在,请说明理由. 5、已知双曲线x k y 与抛物线y=ax 2+bx+c 交于A(2,3)、B(m,2)、c(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积, 6、已知函数y=mx 2-6x +1(m 是常数). ⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 7、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一 个交点为B ,且与y 轴交于点C . 第5题图

几何图形初步练习题集

《几何图形初步》复习学案 知识点一:余角和补角的概念(思考什么叫互为余角,什么叫互为补角) 1.★若∠α=79°25′,则∠α的补角是() A.100°35′B.11°35′C.100°75′D.101°45′ 2 ★已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是() A.56°34′B.47°34′C.136°34′D.46°34′ 3 ★已知α=25°53′,则α的余角和补角各是 4★★已知∠1=30°21’,则∠1的余角的补角的度数是() 知识点二从正面、上面、左面看立体图形 1★画出从正面、上面、左面三个方向看到的立体图的形状 2★从正面、上面、左面看圆锥得到的平面图形是() A.从正面、上面看得到的是三角形,从左面看得到的是圆 B.从正面、左面看得到的是三角形,从上面看得到的是圆 C.从正面、左面看得到的是三角形,从上面看得到的是圆和圆心 D.从正面、上面看得到的是三角形,从左面看得到的是圆和圆心 3★★下列四个几何体中,从正面、上面、左面看都是圆的几何体是() A 圆锥B圆柱C球D正方体 4★★一个几何体从正面、上面、左面看到的平面图形 如右图所示,这个几何体是() A 圆锥B圆柱C球D正方体 5★★观察下列几何体,,从正面、上面、左面看都是长方形的是() 6★★从正面、左面、上面看四棱锥,得到的3个图形是() ABC 7★★★如下图,是一个几何体正面、左面、上面看得到的平面图形,下列说法错误的是

() A.这是一个棱锥B.这个几何体有4个面 C.这个几何体有5个顶点D.这个几何体有8条棱 8★★★如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数 字表示该位置小立方块的个数,则从正面看该几何体的图形是() 知识点三:度分换算 1度分 °= 度分 °=°′ °=°′ 2分度 79°24′=°29°48′=° 把56°36′换算成度的结果是 把37°54′换算成度的结果是 知识点四对直线、射线、线段三个概念的理解 1 ★图中有条直线,条射线,条线段 2★★过ABC三点中两点的直线有多少条(画图表示) 3★★过ABCD四点中两点的直线有多少条(画图表示) A.1或4B.1或6C.4或6D.1或4或6 4 ★★同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四点的位置关系是()A.任意三点不在同一直线上B.四点都不在同一直线上 C.四点在同一直线上D.三点在同一直线上,第四点在直线外 5 ★★已知A,B,C,D四点都在直线L上,以其中任意两点为端点的线段共有()条;已知A,B,C,D四点都在直线L上,以其中任意一点为端点的射线共有()条 6 ★★下列说法中正确的个数为()个 (1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离; (3)两点之间所有连线中,线段最短;(4)射线比直线小一半. 知识点五线段计算——涉及分类讨论(线段双解问题,画图很重要!!!) 引例★:线段AB=15cm,BC=5cm,则线段AC等于() 1 ★线段AB=7cm, 点C在直线AB上,BC=3cm, 求线段AC长

人教版初中数学几何图形初步经典测试题及答案

人教版初中数学几何图形初步经典测试题及答案 一、选择题 1.下列图形中1∠与2∠不相等的是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据对顶角,平行线,等角的余角相等等知识一一判断即可. 【详解】 解:A 、根据对顶角相等可知,∠1=∠2,本选项不符合题意. B 、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意. C .根据平行线的性质可知:∠1=∠2,本选项不符合题意. D 、根据等角的余角相等,可知∠1=∠2,本选项不符合题意. 故选:B . 【点睛】 本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( ) A . B .

C.D. 【答案】D 【解析】 【分析】 根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】 解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱. 故选:D. 【点睛】 本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键. 3.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是() A.B. C.D. 【答案】D 【解析】 【分析】 根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可. 【详解】 解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D. 【点睛】

(完整版)一次函数与几何图形综合题,精选十道,道道经典。

专题训练:一次函数与几何图形综合 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; x y o B A C P Q x y o B A C P Q M 第2题图①

(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) 第2题图② 第2题图③ C B A l 2 l 1 x y

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

几何图形初步易错题汇编

几何图形初步易错题汇编 一、选择题 1.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=() A.10°B.50°C.45°D.40° 【答案】A 【解析】 【分析】 先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小. 【详解】 ∵DE∥AF,∠CED=50°, ∴∠CAF=∠CED=50°, ∵∠BAC=60°, ∴∠BAF=60°﹣50°=10°, 故选:A. 【点睛】 此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是() A.B. C.D. 【答案】D 【解析】 【分析】

根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可. 【详解】 解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D . 【点睛】 本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】 ∵//BC DE ∴30E BCE ==?∠∠ ∴453075AFC B BCE =+=?+?=?∠∠∠ 故答案为:B . 【点睛】 本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键. 4.下列图形中,是正方体表面展开图的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 利用正方体及其表面展开图的特点解题. 【详解】

初中数学几何图形初步难题汇编附答案解析

初中数学几何图形初步难题汇编附答案解析 一、选择题 1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是() A.20°B.22°C.28°D.38° 【答案】B 【解析】 【分析】 过C作CD∥直线m,根据平行线的性质即可求出∠2的度数. 【详解】 解:过C作CD∥直线m, ∵∠ABC=30°,∠BAC=90°, ∴∠ACB=60°, ∵直线m∥n, ∴CD∥直线m∥直线n, ∴∠1=∠ACD,∠2=∠BCD, ∵∠1=38°, ∴∠ACD=38°, ∴∠2=∠BCD=60°﹣38°=22°, 故选:B. 【点睛】 本题考查了平行线的计算问题,掌握平行线的性质是解题的关键. ⊥,从A地测得B地在A地的北偏东43?2.如图,有A,B,C三个地点,且AB BC 的方向上,那么从B地测得C地在B地的()

A .北偏西43? B .北偏西90? C .北偏东47? D .北偏西47? 【答案】D 【解析】 【分析】 根据方向角的概念和平行线的性质求解. 【详解】 如图,过点B 作BF ∥AE ,则∠DBF=∠DAE=43?, ∴∠CBF=∠DBC-∠DBF=90°-43°=47°, ∴从B 地测得C 地在B 地的北偏西47°方向上, 故选:D. 【点睛】 此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键. 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

新初中数学几何图形初步技巧及练习题

新初中数学几何图形初步技巧及练习题 一、选择题 1.如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ?的面积是( ) A .25米 B .84米 C .42米 D .21米 【答案】C 【解析】 【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可. 【详解】 连接OA ∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD = ∴点O 到AB 、AC 、BC 的距离为4 ∴ABC AOC OBC ABO S S S S =++△△△△ ()142 AB BC AC =??++ 14212 =?? 42=(米) 故答案为:C . 【点睛】 本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.

2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A. 【点睛】 本题考查余角、补角的计算. 3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是() A.B.C. D. 【答案】D 【解析】 解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D. 首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可. 4.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

(易错题精选)初中数学几何图形初步易错题汇编及答案解析

(易错题精选)初中数学几何图形初步易错题汇编及答案解析 一、选择题 1.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( ) A .15° B .25° C .30° D .45° 【答案】A 【解析】 【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解. 【详解】 ∵∠BOD=90°-∠3=90°-30°=60°, ∠EOC=90°-∠1=90°-45°=45°, ∵∠2=∠BOD+∠EOC-∠BOE , ∴∠2=60°+45°-90°=15°. 故选:A . 【点睛】 此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键. 2.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )

A.B.C. D. 【答案】D 【解析】 解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D. 首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可. 3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是() A.20°B.30°C.35°D.50° 【答案】C 【解析】 【分析】 由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数. 【详解】 解: 由垂线的性质可得∠ABC=90°, 所以∠3=180°﹣90°﹣∠1=35°, 又∵a∥b, 所以∠2=∠3=35°. 故选C. 【点睛】

八年级数学一次函数与几何图形综合题专题训练

一次函数与几何图形综合题专题训练 1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的 值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 第2题图① 第2题图②

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF = 第2题图③

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

七年级上册数学 几何图形初步易错题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难) 1.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D. (1)若,,求∠D的度数; (2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由. 【答案】(1)解:∵BD平分∠ABC, ∴∠CBD= ∠ABC= ×75°=37.5°, ∵CD平分△ABC的外角, ∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°, ∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°. (2)解:猜想:∠ D = ( ∠ M + ∠ N ? 180 ° ). ∵∠M+∠N+∠CBM+∠NCB=360°, ∴∠D=180°- ∠CBM-∠NCB- ∠NCE. =180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE. =180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE. = ∠M+ ∠N- ∠NCB- ∠NCE= ,

或写成 【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数; (2)由四边形内角和与角平分线性质即可求解. 2.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补 (1)试判断直线AB与直线CD的位置关系,并说明理由 (2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH (3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.) 【答案】(1)解:如图, ∵∠1和∠2互补,∠2和∠3互补, ∴∠1=∠3 ∴AB∥CD (2)解:如图,

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系.

相关文档
最新文档