铂_石墨烯氧还原电催化剂的共还原法制备及表征

铂_石墨烯氧还原电催化剂的共还原法制备及表征
铂_石墨烯氧还原电催化剂的共还原法制备及表征

[Article]

https://www.360docs.net/doc/1312575612.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.?Chim.Sin .2012,28(12),2879-2884

December Received:July 5,2012;Revised:September 13,2012;Published on Web:September 25,2012.?

Corresponding author.Email:zfma@https://www.360docs.net/doc/1312575612.html,;Tel:+86-21-54742894.

The project was supported by the National Natural Science Foundation of China (21073120,21176155)and Science and Technology Foundation of Shanghai Municipality,China (10JC1406900).

国家自然科学基金(21073120,21176155)及上海市自然科学基金(10JC1406900)资助项目

?Editorial office of Acta Physico ?Chimica Sinica

doi:10.3866/PKU.WHXB 201209252

铂/石墨烯氧还原电催化剂的共还原法制备及表征

王万丽

马紫峰*

(上海交通大学化学工程系,上海200240)

摘要:

使用硼氢化钠共还原法制备40%(w )铂/石墨烯电催化剂用于氧还原反应.通过循环伏安测试发现,这

种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差,但稳定性有所提高.在稳定性测试中,铂/石墨烯电催化性能衰减为50%,较铂/碳(79%)好.X 射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用,这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因.通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.关键词:

石墨烯;共还原法;电催化剂;氧还原反应;质子交换膜燃料电池

中图分类号:

O646

Synthesis and Characteristics of Pt/graphene by Co-Reduction

Method for Oxygen Reduction Reactions

WANG Wan-Li

MA Zi-Feng *

(Department of Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,P .R.China )

Abstract:40%(w )Pt/graphene composites were prepared by sodium borohydride chemical co-reduction,and were subsequently used as an electrocatalyst for oxygen reduction reactions.The electrocatalytic activity and stability was evaluated by cyclic voltammetry.The results indicated that the initial activity of Pt/graphene was lower than that of Pt/C due to the oxygen diffusion inhibition;however,the Pt/graphene showed superior durability characteristics.Degradation tests showed a 50%degradation of Pt/graphene,which was substantially less than that of Pt/C (79%).X-ray diffraction and transmission electron microscope results showed that the composite formed strong interactions between the platinum nanoparticles and the graphene supports.The graphene supports may also prevent the graphene sheets from folding or re-stacking,which would hinder platinum nanoparticles ?aggregation.The performance of a single cell was also tested,confirming an improvement in durability.Key Words:Graphene;

Co-reduction method;

Electrocatalyst;

Oxygen reduction reaction;

Proton exchange membrane fuel cell

1Introduction

Gaphene has attracted great attention from researchers in both theoretical and applied chemistry in recent years.Its use has also been studied in capacitors,1,2lithium batteries,3-6and fuel cells 7-9because of its interesting properties,such as ultra-high surface area (there is a theoretical surface area of 2620

m 2·g -1for an isolated graphene sheet),special quantum proper-ties 10-13and so on.

Proton exchange membrane (PEM)fuel cells have been de-veloped as a promising energy technology because of their in-herent advantages,such as simplicity,viability,and quick start-up,which give them of great potential in almost any con-

2879

Acta Phys.?Chim.Sin.2012V ol.28

ceivable application.14However,several problems still hinder its commercialization.One major problem is the corrosion of carbon support which results in the catalyst being degraded quickly.Much research has been done,however,to improve the durability of carbon support.It was found that carbon mate-rials with nanostructure can improve catalytic properties signif-icantly because of their special electronic properties.15Gra-phene has also been studied as one of the candidates with the most likely potentiality for its ultrahigh surface area and rela-tively high conductivity.16

The Pt/graphene nanocomposite has been identified as a ma-terial possibly able to play an important part in the develop-ment of low temperature fuel cells.9,17The nano composite has a large surface area,a high electrochemical surface area (ECSA),and well dispersity of platinum particles.However, its performance in a single cell,particularly the durability of the catalyst,still needs to be further researched.

In this study,Pt/graphene composite was co-reduced,charac-terized,and compared with Pt/C for oxygen reduction reaction. The electrochemical properties of Pt/graphene were discussed from several aspects,especially its durability.

2Experimental

2.1Material synthesis

All the chemicals used were analytical reagents,purchased from Sigma-Aldrich(USA).

Prior to Pt/gaphene preparation,graphite oxide(GO)was synthesized by the modified Hummers method.18,19In brief,the graphite powder(1g)was stirred in concentrated sulfuric acid with potassium permanganate added gradually in a water bath till completely oxidized.The reaction was terminated by the ad-dition of a large amount of distilled water and30%(w)H2O2 solution,and then the mixture was centrifuged and washed sev-eral times till a natural pH value.The dried film was stored and dispersed in solvents as needed.

The Pt/graphene was fabricated by a co-reduction process. 10mg GO was exfoliated into10mL water by ultrasonication to form GO dispersion.Adding H2PtCl6·6H2O with stirring and adjusting its pH value to13by1mol·L-1potassium hydrox-ide,the dispersion was then reduced by0.1mol·L-1sodium bo-rohydride added dropwise at room temperature for4h.Pt/gra-phene powder was gathered by filtration through a mixed cellu-lose ester membrane filter(0.45μm pore size),and then it was dried in air.After grinding and sifting through a200-mesh sieve,the powder was roasted at200°C for1.5h.

For comparison,40%(w)Pt/C was fabricated using the same procedure using Vulcan XC-72R(Cabot Corporation, USA)instead of graphene.Pure graphene powder was pre-pared in the same procedure without the platinum precursor. 2.2Characterization

The content of platinum in samples was analyzed by induc-tively coupled plasma mass spectrometer(ICP-MS,Agilent Technologies,USA).The powder X-ray diffraction(XRD)measurements of the samples were recorded on an X-ray pow-der diffractometer(D/max-2200/PC,Rigaku Corporation,Ja-pan)using Cu Kαradiation(λ=0.15406nm)with scattering an-gles(2θ)of20°-80°.Scanning electron microscope(SEM, S-4800,Hitachi Corporation,Japan)and energy-dispersive X-ray(EDX)spectroscopy(Inca Oxford,U.K.)attached to the SEM were used to confirm the deposition of Pt on the gra-phene.The catalyst features were characterized by a transmis-sion electron microscope(TEM,JEM-2010,Jeol,Japan).

2.3Electrochemical measurements

The electrochemical measurements were conducted in a three-electrode cell recorded by a potentiostat/galvanostat mod-el273(EG&G Princeton Applied Research,USA).Platinum mesh and saturated calomel electrode(SCE)were used as the counter and reference electrodes,respectively.0.5mol·L-1 H2SO4were employed as the electrolyte.The sample inks were prepared by mixing10mg sample powder with0.45mL deion-ized water,0.03mL isopropanol,and0.02mL Nafion?solu-tion(5%(w),Dupont Company,USA),followed by sonication in a water bath for10min.20μL ink was dispensed and dried in air on the glassy carbon electrode(φ=0.5cm).The electrode was immersed in de-aerated electrolyte and pretreated in cy-cles between-0.24and1V at a scan rate of100mV·s-1for 100cycles.The anodic corrosion was measured by anodic lin-ear sweep voltammetry from-0.05V(vs open circuit voltage) to1.76V at a scan rate of5mV·s-1.The cyclic voltammetry (CV)performance of supported platinum catalyst was mea-sured in a standard way between-0.24and0.96V at a scan rate of5mV·s-1.The electrochemical surface area was calcu-lated from the hydrogen adsorption-desorption peak of the CV profiles.20The accelerated durability was measured by cyclic voltammetry in the range of-0.24to0.96V for1000cycles at a scan rate of50mV·s-1.Oxygen reduction reaction(ORR) performance was evaluated by rotating disc electrode(RDE) technique.The polarization curves for oxygen reduction reac-tion were measured in an oxygen saturated electrolyte by scan-ning the potential from0.9to0.1V at a scan rate of5mV·s-1. All potentials were reported with respect to the normal hydro-gen electrode(NHE)scale.

The gas diffusion layer for the cathode and the gas diffusion electrode(1.0mg·cm-2)for the anode were purchased from ElectroChem,Inc.The platinum loading at the anode side is relatively high,so the overpotential due to the anode half reac-tion can be neglected allowing the focus to be solely on the cathode side.21In this experiment,catalyst suspension was mixed by a supported platinum catalyst,Nafion(5%(w),Du-pont Company,USA),and isopropanol.The mass ratio of cata-lyst to Nafion was3:4.After being thoroughly dispersed,the suspension was brushed on the gas diffusion layer at the plati-num loading until0.4mg·cm-2using as the cathode electrode. Nafion117membrane(Dupont Company,USA)was pretreat-ed by boiling in5%(w)hydrogen peroxide for1h,followed by treating in1mol·L-1sulfuric acid.After each step the Na-

2880

WANG Wan-Li et al .:Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reductions No.12fion membrane was boiled in deionized water for 30min.The prepared anode and cathode were positioned on the both sides of the membrane and hot pressed at 2tons and 110°C for 4min to form the membrane electrode assembly (MEA).

The PEM fuel cell was tested in a fuel cell testing unit with an active electrode area of 1.5cm×1.5cm.The cell was operat-ed at atmospheric pressure.The oxygen and hydrogen flow rate was 200mL ·min -1.The temperature of the cell was 50°C.The current -voltage curves were collected after an activation process at a constant operation voltage of 0.6V .

3Results and discussion

3.1Material properties

The amounts of platinum loaded on Pt/C and Pt/graphene were determined by ICP-MS showing that the contents of plati-num were 39.62%(w )and 40.73%(w ),respectively.XRD pat-terns of Pt/graphene and graphene are shown in Fig.1,which contain typical platinum diffraction peaks and a broadening C (002)peak.The peaks at the 2θof 39.86°,46.25°,and 67.69°are assigned to (111),(200),and (220)facets of the face-cen-tered cubic structure of platinum respectively,which are in agreement with the standard card of platinum (JCPDS No.4-802).The crystallite size is calculated from Scherrer equa-tion as following:D =K λ

βcos θ

where,D is the crystallite size;K is the Scherrer constant (K =0.89);βis the peak width at half height;θis the angle of dif-fraction;λis the wavelength of X-ray (λ=0.154056).The crys-tallite size of platinum is calculated as 7.7nm,bigger than that of Pt/C (6.8nm).The calculated lattice constants of platinum supported by graphene and carbon are a =b =c =0.3912nm and a =b =c =0.3938nm,respectively.The change between these val-ues shows clearly that a stronger interaction exists when plati-num particles are deposited onto graphene.22On the other hand,carbon diffraction peaks of Pt/graphene composite are broad-ened and weakened compared to that of pure graphene,which suggests that there might be a certain interaction between plati-num particles and graphene support.It may be caused by plati-num particles embedding into the spaces between graphene lay-ers and leading to graphene lattices growing disorderly.8These

results also confirm that the platinum precursor and graphite oxide are reduced to the composite of Pt/graphene.

The features of pure graphene and Pt/graphene composite are shown in Fig.2.The monolayer graphene sheets are found in TEM images,supporting the platinum particles (black dots).The outstretched wrinkles of graphene sheets are clearly ob-served,which are obviously different from those of Vulcan XC-72.This might be attributed to the dispersion of platinum particles which also hinders the migration of the platinum parti-cles.17The particle size of platinum observed is about 8nm which agrees well with the results from XRD.The multi-crys-tal diffraction rings of platinum can be assigned to the (111),(200),and (220)facets of platinum in the selected area electron diffraction (SAED)pattern.However,Pt/graphene has a partic-ular orientation which can be confirmed by the bright spots on the diffraction rings.This might be caused by the surface groups on the dispersed graphite oxide (epoxy and hydroxyl groups),acting as anchoring sites for platinum particles to de-posit on.The platinum particles could only have adhered to the top or the bottom of the graphene sheets.The graphene sheets are reduced with wrinkles emerging in succession,leading to parts of the platinum particles changing their facet directions on the graphene sheets.23,24This reducing process might have contributed to the morphology of the platinum particles ?deposi-tion.

The deposition of platinum particles is also confirmed by SEM images (Fig.3).From the top view of pure graphene (Fig.3(a)),the irregular wrinkles (bright lines)could be ob-served clearly on the surface,meanwhile,no crack could be found,which proving that the graphene is compact and flat.This suggests that it is both impermeable to gas and water resis-tant.The lamellar structure can be found even it is grinded to a powder.Fig.3(b)indicates that the platinum particles (bright dots)are deposited on the graphene sheets dispersedly.The gra-phene wrinkles are still formed but less than that of pure gra-phene film,which might be caused by preventing restacking of the graphene sheets from van der Waals forces when platinum particles deposited onto.The cross section of the film is a lay-er-by-layer structure as shown in the insert in Fig.3(a).The lay-ers are stacked together closely;they are separated however from each other with only few layers stacking while platinum particles are deposited on the sheets as shown in the insert in Fig.3(b).The layer-by-layer structure is still maintained

while

Fig.1

XRD patterns of Pt/C,Pt/graphene,and

graphene

Fig.2TEM images of (a)graphene and (b)Pt/graphene

Insert is the SAED pattern of Pt/graphene.

2881

Acta Phys.?Chim.Sin .2012

V ol.28

the spaces between sheets are increased,suggesting the parti-cles are acting as holders between layers hence resulting in a less layer-stacking film with a larger surface area,which is to its application ?s advantage.

3.2Electrochemical properties and durability

The electrochemical properties were characterized by cyclic voltammetry in 0.5mol ·L -1sulphuric acid system.Prepared Pt/graphene and Pt/C catalysts exhibit the typical Pt peaks of hy-drogen under-potential deposition and oxidation of hydrogen around 0-0.3V in Fig.4(a,b).These peaks are similar to the published work 25which indicates that the Pt-oxides formation and reduction appear at the same potentials for Pt/graphene and Pt/C.

The peaks also indicate that the platinum particles are active when supported by graphene,agreeing well with the refer-ence.26The electrochemical surface area (ECSA)is calculated according to the equation:20

ECSA =

Q H

[Pt]?210

where,Q H is the peak area of hydrogen adsorption-desorption,and [Pt]is the platinum loading.ECSA is calculated as 30.2and 28.0m 2·g -1for Pt/graphene and Pt/C,respectively.It indi-cates that the numbers of platinum active sites of Pt/graphene and Pt/C are in the same order of magnitude.The ECSA value of Pt/C agrees well with the published data.27It suggests that the number of active sites is not affected when the feature of catalyst support changes into layer structure.

The oxygen reduction reaction behavior was investigated by RDE method.Fig.5(a)shows the result of ORR polarization of

Pt/graphene.The variation of the ORR current density (i )changes significantly with the RDE rotating speed (ω)in the diffusion region.The relationship between i -1vs ω-1/2can be ex-pressed by the Koutecky-Levich equation:28

1i =1i k +1i d

i d =K ω1/2=0.62nFD 23O 2ν

-16

C O 2ω1/2

where,i is the total ORR current density,i k is the kinetic cur-rent density (in the activation region),i d is the diffusion limited current density (in the high ORR reduction potential)where the current is a plateau and its value changes with the RDE ro-tating speed (ω)(Fig.5(b)).K is the Levich ?s slope which con-tains the following parameters:n the number of electron trans-ferred in ORR,F the Faraday constant,C O 2the bulk concentra-tion of oxygen (1.03×10-3mol ·L -1),D O2the diffusion coeffi-cient of oxygen in the bulk solution (2.1×10-5cm 2·s -1),and v the kinematic viscosity of the solution (1.07×10-2cm 2·s -1).

29

Fig.3SEM images of (a)graphene and (b,c)Pt/graphene

Inserts are the cross sections of (a)graphene and (b)

Pt/graphene.

Fig.4

Cyclic voltammetry curves of (a)Pt/graphene and (b)

Pt/C Fig.5

(a)ORR polarization curves and (b)Koutecky-Levich

plots of Pt/graphene

2882

WANG Wan-Li et al.:Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reductions No.12

The calculated n values of the Pt/graphene and Pt/C are3.86

and3.90,respectively.This result indicates that the ORR on

the Pt/graphene electro-catalyst proceeds via a four-electron

transfer process.The kinetic current density i k is obtained by

extrapolation of the Koutecky-Levich plots toω-1/2to zero.The

values are listed in Table1.It is found that i k value of Pt/gra-

phene is lower than that of Pt/C.This is an indication that the

ORR kinetic rate on Pt/graphene might be lower than that of Pt/

C,even the reaction pathway is the same on both electrodes.

The low kinetic rate on Pt/graphene might be due to the inhibi-

tion of the oxygen diffusion on its surface.Graphene?s layer

structure that platinum particles embedded into it might im-

pede the access of the platinum active sites to oxygen.Howev-

er,the carbon?s spherical structure encourages the oxygen diffu-

sion.Tafel slopes(b)and current density in activation region

of Pt/graphene and Pt/C are listed in Table1.The larger Tafel

slope and the lower current density of Pt/graphene than those

of Pt/C also prove the less activity of Pt/graphene for ORR,al-

though Pt/graphene has almost the same platinum active sites

of hydrogen adsorption-desorption.

The durabilities of both Pt/graphene and Pt/C were investi-

gated under cyclic voltammetry for1000cycles in0.5mol·L-1

sulphuric acid medium.The electrochemical surface area was

calculated every hundred cycles.Fig.6shows the normalized

ECSA of Pt/graphene and Pt/C variation as a function of cy-

cling number.Obvious degradations in ECSA values are found

as30.20m2·g-1before cycles and15.05m2·g-1after cycles of Pt/graphene while28.00m2·g-1before cycles and5.88m2·g-1 after cycles of Pt/C.The degradation of homemade Pt/gra-

phene was slightly less than that in reference17where the de-

crease of activity for ORR was about50%.17Meanwhile,the

decrease of Pt/C was79%,which was much bigger than that of

Pt/graphene.Therefore,platinum on graphene was much more

stable than that on carbon under the test condition.The degra-dation is mainly due to carbon corrosion.As to Pt/C,the car-bon support is spherical which encourages the aggregation of platinum particles,leading to a decrease in the platinum sur-face area.However,the better durability of Pt/graphene could be attributed to the graphene?s interesting electronic properties that there is an interaction between Pt particles and the gra-phene surface,this hindering the metallic phase coalescence.30 Moreover,it is more difficult for platinum particles to aggre-gate because the available particles are the surrounding ones in two dimensions,while the particles up or below are separated by graphene layers.

The performance and durability of Pt/graphene in PEM fuel cell were also investigated.Fig.7(a)shows the performance in a single cell that the open circuit voltage based on Pt/graphene of0.975V and the maximum power density of158.65mW·cm-2at0.317V are observed.The initial performance based on Pt/graphene is poorer than that of Pt/C,which might be due to the inhibition of oxygen diffusion on its catalyst surface as de-scribed above.However,a higher stability is observed in Fig.7 (b).The decrease of voltage at400mA·cm-2as a function of time based on Pt/graphene is less than that of Pt/C,which might be caused by the greater durability of the Pt/graphene

Table1Electron transfer number,dynamic current density,exchange current density,Tafel slope,and current density of

Pt/graphene and Pt/C at850mV

Pt/graphene

Pt/C

n

3.86

3.90

i k/(mA·cm-2)

8.766

11.387

i0/(mA·cm-2)

4.15×10-3

7.89×10-3

b/(mV·dec-1)

152

123

i850mV/(mA·cm-2)

1.40

1.83

Fig.6Normalized electrochemical surface area degradation of

Pt/graphene and Pt/C Fig.7(a)Single cell performance and(b)stability of

Pt/graphene and Pt/C

2883

Acta Phys.?Chim.Sin.2012V ol.28

catalyst.This result indicates that graphene might be more suit-able for PEM fuel cell application than carbon.

4Conclusions

The40%(w)Pt/graphene composite prepared by sodium bo-rohydride chemical co-reduction was introduced as the electro-catalyst for oxygen reduction reaction.The electro catalytic ac-tivity and stability were evaluated.The results show that the layer structure of graphene maintains after reduction and the platinum particles with a particle size of8nm are dispersed on-to graphene.The activity for ORR based on Pt/graphene is low-er than that of Pt/C;however,better stability is observed in degradation test that the decrease of Pt/graphene is50%,which is less than that of Pt/C(79%).On both electrodes,the ORR proceeds via a four-electron process.The performance of a sin-gle cell is also tested.The improvement in durability is con-firmed by the delayed degradation of cell performance based on Pt/graphene.It might therefore be assumed that the gra-phene?s layer structure hinders the aggregation of platinum par-ticles.Meanwhile,the platinum particles act as holders,which against the folding of graphene sheets.This result might be use-ful for the design of the catalyst with carbon support to im-prove the long-term performance in PEM fuel cells.

References

(1)Wang,Y.;Shi,Z.;Huang,Y.;Ma,Y.;Wang,C.;Chen,M.;

Chen,Y.The Journal of Physical Chemistry C2009,113(30),

13103.doi:10.1021/jp902214f

(2)Lu,X.J.;Dou,H.;Yang,S.D.;Hao,L.;Zhang,F.;Zhang,X.

G.Acta Phys.-Chim.Sin.2011,27(10),2333.[卢向军,

窦辉,杨苏东,郝亮,张方,张校刚.物理化学学报,

2011,27(10),2333.]doi:10.3866/PKU.WHXB20111022 (3)Guo,P.;Song,H.;Chen,https://www.360docs.net/doc/1312575612.html,mun.2009,11

(6),1320.doi:10.1016/j.elecom.2009.04.036

(4)Liang,M.;Zhi,L.J.Mater.Chem.2009,19(33),5871.doi:

10.1039/b901551e

(5)Xu,K.;Shen,L.F.;Mi,C.H.;Zhang,X.G.Acta Phys.-Chim.

Sin.2012,28(1),105.[徐科,申来法,米常焕,张校刚.

物理化学学报,2012,28(1),105.]doi:10.3866/PKU.

WHXB201228105

(6)Yang,X.W.;He,Y.S.;Liao,X.Z.;Ma,Z.F.Acta Phys.-Chim.

Sin.2011,27(11),2583.[杨晓伟,何雨石,廖小珍,马紫峰.

物理化学学报,2011,27(11),2583.]doi:10.3866/PKU.

WHXB20111123

(7)Li,Y.;Tang,L.;Li,https://www.360docs.net/doc/1312575612.html,mun.2009,11(4),846.

doi:10.1016/j.elecom.2009.02.009

(8)Si,Y.;Samulski,E.T.Chem.Mater.2008,20(21),6792.doi:

10.1021/cm801356a

(9)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S.

G.Acta Phys.-Chim.Sin.2011,27(4),858.[李云霞,魏子栋,

赵巧玲,丁炜,张骞,陈四国.物理化学学报,2011,27(4),

858.]doi:10.3866/PKU.WHXB20110411

(10)Castro Neto,A.H.;Kotov,V.N.;Nilsson,J.;Pereira,V.M.;

Peres,N.M.R.;Uchoa,B.Solid State Commun.2009,149

(27-28),1094.doi:10.1016/j.ssc.2009.02.040

(11)Geim,A.K.Science2009,324(5934),1530.doi:10.1126/

science.1158877

(12)Neto,A.H.C.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.;

Geim,A.K.Reviews of Modern Physics2009,81(1),109.doi:

10.1103/RevModPhys.81.109

(13)Rao,C.N.R.;Sood,A.K.;Subrahmanyam,K.S.;Govindaraj,

A.Angewandte Chemie-International Edition2009,48(42),

7752.doi:10.1002/anie.v48:42

(14)Barbir,F.PEM Fuel Cells——Theory and Practice;Elsevier

Academic Press:Burlington,2005.

(15)Baughman,R.H.;Zakhidov,A.A.;De Heer,W.A.Science

2002,297(5582),787.doi:10.1126/science.1060928

(16)Chen,H.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D.

Adv.Mater.2008,20(18),3557.doi:10.1002/adma.200800757 (17)Kou,R.;Shao,Y.;Wang,D.;Engelhard,M.H.;Kwak,J.H.;

Wang,J.;Viswanathan,V.V.;Wang,C.;Lin,Y.;Wang,Y.;

Aksay,I.A.;Liu,https://www.360docs.net/doc/1312575612.html,mun.2009,11(5),954.

doi:10.1016/j.elecom.2009.02.033

(18)Huffman,G.P.;Shah,N.;Wang,Y.;Huggins,F.E.Prepr.

Pap.-Am.Chem.Soc.,Div.Fuel Chem.2004,49(2),731. (19)Kovtyukhova,N.I.Chem.Mater.1999,11(3),771.doi:

10.1021/cm981085u

(20)Fournier,J.;Faubert,G.;Tilquin,J.Y.;Cote,R.;Guay,D.;

Dodelet,J.P.J.Electrochem.Soc.1997,144(1),145.doi:

10.1149/1.1837377

(21)Gasteiger,H.A.;Panels,J.E.;Yan,S.G.J.Power Sources

2004,127(1-2),162.doi:10.1016/j.jpowsour.2003.09.013 (22)Carmo,M.;Paganin,V.A.;Rosolen,J.M.;Gonzalez,E.R.

J.Power Sources2005,142(1-2),169.doi:10.1016/

j.jpowsour.2004.10.023

(23)Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-

Alonso,M.;Adamson,D.H.;Prud?homme,R.K.;Car,R.;

Saville,D.A.;Aksay,I.A.The Journal of Physical Chemistry B 2006,110(17),8535.doi:10.1021/jp060936f

(24)McAllister,M.J.;Li,J.L.;Adamson,D.H.;Schniepp,H.C.;

Abdala,A.A.;Liu,J.;Herrera-Alonso,M.;Milius,D.L.;Car,

R.;Prud?homme,R.K.;Aksay,I.A.Chem.Mater.2007,19

(18),4396.doi:10.1021/cm0630800

(25)Climent,V.;Markovi?,N.M.;Ross,P.N.The Journal of

Physical Chemistry B2000,104(14),3116.

(26)Takenaka,S.;Matsumori,H.;Matsune,H.;Tanabe,E.;Kishida,

M.J.Electrochem.Soc.2008,155(9),B929.

(27)Cho,Y.H.;Park,H.S.;Cho,Y.H.;Jung,D.S.;Park,H.Y.;

Sung,Y.E.J.Power Sources2007,172(1),89.doi:10.1016/

j.jpowsour.2007.01.067

(28)Wang,C.;Waje,M.;Wang,X.;Tang,J.M.;Haddon,R.C.;Yan,

Y.Nano Lett.2003,4(2),345.

(29)Chen,Z.;Waje,M.;Li,W.;Yan,Y.Angew.Chem.2007,119

(22),4138.doi:10.1002/ange.200700894

(30)Rochefort,A.;Yang,D.Q.;Sacher,E.Carbon2009,47(9),

2233.doi:10.1016/j.carbon.2009.04.013

2884

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

选择性还原氧化石墨烯

文章编号: 1007?8827(2014)01?0061?06 选择性还原氧化石墨烯 徐 超1, 员汝胜1, 汪 信2 (1.福州大学光催化研究所福建省重点实验室?国家重点实验室培育基地,福建福州350002; 2.南京理工大学教育部软化学与功能材料重点实验室,江苏南京210094) 摘 要: 还原氧化石墨烯已被广泛用于制备基于石墨烯的材料三目前,还原处理方法均是尽可能地将氧化石墨烯中的功能团去除,恢复石墨烯的电子结构三由于氧化石墨烯中氧基功能团(如羟基二羧基及环氧基)不同的反应活性,氧化石墨烯是可能通过分步的方法进行还原三利用醇溶剂如乙醇二乙二醇二丙三醇还原氧化石墨烯,并采用不同分析手段对样品进行表征三结果发现,在一定条件下这些醇可选择性地还原氧化石墨烯三经这些醇的处理后,氧化石墨烯中环氧功能团被大部分去除,而其他的功能团如羟基和羧基仍被保留三这种选择性去除氧化石墨烯表面功能团的方法可利于有效地控制氧化石墨烯的还原程度二获得具有特定功能团的石墨烯衍生物,从而扩大这类材料的使用范围三 关键词: 氧化石墨烯;氧化功能团;醇;选择性还原 基金项目:国家自然科学基金(21201036,21077023);福建省自然科学基金(2010J01035,2012J01039). 作者简介:徐 超,博士,讲师.E?mail:cxu@https://www.360docs.net/doc/1312575612.html, Selective reduction of graphene oxide XU Chao1, YUAN Ru?sheng1, WANG Xin2 (1.Research Institute of Photocatalysis,Fujian Provincial Key Laboratory of Photocatalysis??State Key Laboratory Breeding Base,Fuzhou University,Fuzhou350002,China; 2.Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education,Nanjing University of Science and Technology,Nanjing210094,China) Abstract: The reduction of graphene oxide has been widely used to control the properties of graphene?based materials.Traditional methods thoroughly remove oxygenated functional groups in graphene oxides.We show that ethanol,ethylene glycol and glycerol can se?lectively reduce epoxy groups in graphene oxide while hydroxyl and carboxyl groups remain unchanged.Hydrazine hydrate can reduce ox?ygen functional groups except carboxyl groups.These selective removals can be used to control the reduction degree of graphene oxides and their properties.The electrical conductivity of the reduced graphene oxides with different types of oxygen functional groups varied sig?nificantly and increased with the degree of reduction. Keywords: Graphene oxide;Oxygenated functional groups;Alcohols;Selective reduction CLC number: TQ127.1+1Document code: A Received date:2013?07?10; Revised date:2013?12?22 Corresponding author:XU Chao,Ph.D,Lecturer.E?mail:cxu@https://www.360docs.net/doc/1312575612.html, Foundation items:National Natural Science Foundation of China(21201036,21077023);Natural Science Foundation of Fujian Province (2010J01035,2012J01039). English edition available online ScienceDirect(http:∕∕https://www.360docs.net/doc/1312575612.html,∕science∕journal∕18725805). DOI:10.1016/S1872?5805(14)60126?8 1 Introduction Graphene oxide(GO),utilized as precursor for a large?scale production of graphene?based materials,has attracted a great deal of attention in recent years[1?5]. GO sheets are electrically insulating,owing to their oxygenated functional groups(hydroxyl,carboxyl and epoxy groups)on surface,which usually need further treatments to restore the electrical conductivity for spe?cific applications[6].A lot of methods,such as chemi?cal reduction[7?9],laser irradiation[10,11],microwave ir?radiation[12,13],photocatalysis[14,15],solvothermal re?duction[16,17],have been explored to remove these atta?ched groups thoroughly and to recover graphene net?works of sp2bonds. Actually,researchers recently have found that the reduction degree of graphene oxide or oxidation degree of graphene has certain influences on their properties,such as electrical conductivity,catalysis activity and semi?conductive band positions[18?20]. Among these research work,the reduction degree of  第29卷 第1期 2014年2月新 型 炭 材 料 NEW CARBON MATERIALS Vol.29 No.1 Feb.2014

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

铁氰化铈-还原石墨烯纳米材料的制备及其对水合肼的电化学检测

中国测试CHINA MEASUREMENT &TEST Vol.42No.12December ,2016 第42卷第12期2016年12月铁氰化铈/还原石墨烯纳米材料的制备 及其对水合肼的电化学检测 刘超 (内蒙古化工职业学院, 内蒙古呼和浩特010070)摘要:通过电沉积的方法,在玻碳电极表面上沉积铁氰化铈/石墨烯(CeHCF/RGO )纳米复合材料。用扫描电子显微镜(SEM )对其形貌进行表征,发现其粒径大小均一。用循环伏安法(CV )研究水合肼在不同电极的电化学行为。结果表 明,与RGO 修饰电极(RGO/GCE )和铁氰化铈修饰电极(CeHCF/GCE )相比, 铁氰化铈/石墨烯复合物修饰电极对水合肼具有更好的电催化氧化性能。在一定条件下,它对水合肼响应的线性范围为2.87?10-7~8.56?10-4mol/L ,检出限为8.5?10-8mol/L 。可用于水合肼的电化学传感检测。关键词:铁氰化铈; 还原石墨烯;水合肼;电催化文献标志码:A 文章编号:1674-5124(2016)12-0049-04 Preparation of CeHCF/RGO composite and its application in electrochemical determination of hydrazine LIU Chao (Inner Mongolia Vocational College of Chemical Engineering ,Hohhot 010070,China ) Abstract:The CeHCF/RGO composite have been modified on the glassy carbon electrode surface by the method of electrodeposition.The morphology of the CeHCF/RGO composite have been characterized by scanning electron microscope (SEM ).The particle size was uniform.The electrochemical behavior of hydrazine on different electrode was studied by cyclic voltammetry (CV ).The results showed that the electrocatalytic activity of CeHCF/RGO/GCE to hydrazine was better than CeHCF/GCE.The resulted electrochemic sensor exhibited good current response to hydrazine with a wide linear range extended from 2.87?10-7to 8.56?10-4mol/L ,and the detection limit was 8.5?10-8mol/L (S/N =3),which can be applied for determination of hydrazine.Keywords:cerium hexacyanoferrate ;reducted graphene ;hydrazine ;electrocatalysis 收稿日期:2016-05-27;收到修改稿日期:2016-07-03 作者简介:刘超(1982-),女,内蒙古呼和浩特市人,讲师, 硕士,研究方向为工业分析技术﹑环境监测三0引言水合肼(N 2H 4?H 2O),也叫水合联氨三是一种还原性非常强的化工原料三在药物生产方面,如治疗肺 结核的异烟碱,抗心率失调的盐酸阿齐利特,下呼吸 道感染的他唑巴坦酸等的制备都需要以水合肼为原料[1]三在农药方面,它广泛用于杀虫剂﹑除草剂和生长调节剂等方面[2]三然而,水合肼也是一种神经毒素,对人体的肝﹑血液和肾脏等器官具有毒副作用,严重时甚至会损害中枢神级系统,导致失明[3]三因此,建立一种快速﹑高灵敏的检测生产过程中水合肼残留量就显得尤为重要三 doi : 10.11857/j.issn.1674-5124.2016.12.011 万方数据

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

氧化石墨烯的绿色还原方法

龙源期刊网 https://www.360docs.net/doc/1312575612.html, 氧化石墨烯的绿色还原方法 作者:肖祖萍 来源:《学校教育研究》2018年第14期 石墨烯是一种单原子层的碳二维纳米材料,它是由碳六元环组成的二维蜂窝状点阵结构,碳原子的排列与石墨原子层排列相同。地球上不缺少石墨材料,为制备石墨烯材料提供了充足的原材料。目前常用的石墨烯只要由两大类方法制备,一种是将石墨氧化为氧化石墨烯,再通过化学方法将氧化石墨烯还原为石墨烯。另一种是通过化学方法或某些操作将石墨直接转化为石墨烯。在本文主要研究第一种方法中的绿色还原方法。本文中的石墨烯都是由氧化石墨烯通过还原得到的。石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。因为石墨烯的晶格结构,常会被误认为它很僵硬,但实际上却并非如此。例如,石墨烯作为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中;石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域的应用至关重要。 一、氧化石墨烯的制备 氧化石墨烯即石墨烯的氧化物,它是由石墨粉末经化学氧化及剥离后的产物。氧化石墨烯一般由石墨经强酸氧化而得。主要有三种制备氧化石墨的方法:Brodie法、Staudenmaier法和Hummers法。其中Hummers法的制备过程的时效性相对较好而且制备过程中也比较安全。目前最常用的制取氧化石墨烯的方法是由一个修改过的Hummer方法制备的。 二、氧化石墨烯的还原 1.绿色还原法 随着社会的发展和人们都环境的关注,我们越来越需要研究一些绿色的还原方法。绿色的还原方法即在还原氧化石墨烯的过程中不使用有毒的还原剂或不产生对环境产生危害的物质。绿色还原法对环境不会有危害或危害几乎可以不计,并可以得到较好的石墨烯。但有些绿色还原法还存在无法大规模生产的弊端,无法在应用到工业生产中去。目前常见的绿色还原方法有水热热还原氧化石墨烯、电化学还原氧化石墨烯、柠檬酸钠还原氧化石墨烯法、超声辅助镍粉绿色还原制备石墨烯、氧化石墨热解膨胀氢气还原法等。下面我们对这几种绿色还原方法做一个介绍。 (1)水热热还原氧化石墨烯 水热热还原氧化石墨烯是指在密封的压力容器中,以水为溶剂,在高温、高压的条件下进行的化学反应。将氧化石墨烯溶解于溶剂中,在液相或超临界条件下,反应物分散且变得活

氧化还原法制备石墨烯

创新实验课报告 题目:石墨烯的制备 专业…………………学生……… 学号……………指导教师……… 日期2014.05.09 哈尔滨工业大学

目录 1.绪论 (3) 1.1纳米技术概述 (3) 1.2碳纳米结构概述 (3) 1.3石墨烯的结构 (4) 1.4石墨烯的性能简介 (4) 2.实验目的及意义 (7) 3. 实验方案与实验步骤 (8) 3.1氧化还原法制备石墨烯概述 (8) 3.2 实验设备和实验试剂 (9) 3.3 制备氧化石墨烯 (10) 3.4 制备石墨烯 (11) 3.5 实验操作注意事项 (13) 4. 实验结果和分析 (15) 4.1 石墨烯的SEM分析 (15) 4.2 石墨烯的IR分析 (16) 4.2 石墨烯的Raman分析 (16) 5. 课程体会与建议 (18)

1.绪论 1.1纳米技术概述 纳米技术被称为第四世界的难题和21世纪的化学难题。纳米技术的重要意义在于,其技术应用尺度在0.1nm数量级至10nm数量级间,这属于量子尺度和静电尺度的模糊边界。从而导致纳米材料具有很特殊的性质,这种特殊性比较全面的表现在材料的物理性质和化学性质的各个方面。例如表面效应,在进行纳米尺度堆垛时,表面原子所占的比例越大的情况下堆垛体的直径越小。 1.2碳纳米结构概述 在石墨烯被发现后,碳纳米结构形成了一个从零维到三维的完整的体系。包括富勒烯,碳纳米管和石墨烯。 1.2.1 富勒烯 富勒烯即为,是第三种形式的单质碳。富勒烯这一名字来源于一次世博会上类 似的结构,在英文中也被称为Bucky Ball。在富勒烯被发现的过程中,有很多有趣的设想和实验。如Kroto设想红巨星附近的碳长链分子是一种碳团聚。Rice大学利用TOF-MS (飞行时间质谱仪)发现了峰。1985年《Science》上一篇文章的发表表明富勒烯的发现,但更伟大的意义在于这一事件标志着纳米技术的开端。 富勒烯由12个五边形和20个六边形构成,满足“定点数+面数-棱数=2”,D=0.7nm。这是一种完美的对称结构,在科研上具有很大的价值。例如富勒烯是一个可装入金属离子的绝缘体,有开发吵到材料的潜力,这也是笼中化学的范畴。但是富勒烯由于难以大量生产,实际应用的意义收到了很大限制。 1.2.2 碳纳米管 碳纳米管在1991年的时候由日本名城大学的S.Iijima发现,93年的时候,单壁碳纳米管被制备出来。碳纳米管是一种一维结构,在一维方向上具有非常高的强度和韧性,可以作为一种“超级纤维”使用。同时可以功能化为公家碳纳米管和非共价碳纳米管。 1.2.3 石墨烯 石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子,但实际上10层以内的石墨结构也可称作石墨烯。而10层以上的则被称为石墨薄膜。在石墨烯发现前,科学界已经有无法制备出石墨烯的结论。从传统的物理学来讲,越薄的材料越易气化;朗道物理学中的观点是:在有限温度下,任何二维晶格体系都不能稳定存在。也就是说除非绝对零度,石墨烯不会存在,然而绝对零度是不可能达到的,也就是说无法得到稳定存在的石墨烯。即使这样,依旧有科学家不断尝试制备出石墨烯:在99年的时候,

石墨烯氧化还原法

四:石墨烯的氧化还原法制备及结构表征 摘要:采用改进的 Hummers 法对天然鳞片石墨进行氧化处理制备氧化石墨,经超声分散,然后在水合肼的作用下加热还原制备了在水相条件下稳定分散的石墨烯。用红外光谱、拉曼光谱、扫描探针显微镜和ζ电位仪对样品进行了结构、谱学、形貌和ζ电位分析。结果表明,石墨被氧化后形成以 C=O、C-OH、-COOH 和 C-O-C 等官能团形式的共价键型石墨层间化合物;还原氧化石墨后形成的石墨烯表面的官能团与石墨的相似;氧化石墨烯和石墨烯在碱性条件下可形成稳定的悬浮液;氧化石墨烯和石墨烯薄片厚度为 1.0 nm 左右。考察并讨论了还原过程中水合肼用量,体系反应温度、反应时间和 pH 值对石墨烯还原程度和稳定性的影响,水合肼用量和反应时间是影响石墨烯还原程度的主要因素;pH 值对石墨烯稳定性影响较大。 实验部分 1.1原料:天然鳞片石墨(~74 μm);高锰酸钾,浓硫酸,水合肼 (50%),均为化学纯,市售;5% H2O2溶液,0.05mol · L-1HCl 溶液,体系的 pH 值用 0.1mol · L-1NaOH溶液调节。 1.2制备 氧化石墨制备:将 10 g 石墨、230 mL 98%浓硫酸混合置于冰浴中,搅拌 30 min,使其充分混合,称取 40 g KMnO4加入上述混合液继续搅拌 1 h 后,移入 40 ℃中温水浴中继续搅拌 30 min;用蒸馏水将反应液(控制温度在 100 ℃以下)稀释至 800~1 000mL 后加适量 5% H2O2,趁热过滤,用 5% HCl 和蒸馏水充分洗涤至接近中性,最后过滤、洗涤,在 60℃下烘干,得到氧化石墨样品。石墨烯制备:称取上述氧化石墨 0.05 g,加入到100 mL pH=11 的 NaOH 溶液中;在 150 W 下超声90 min 制备氧化石墨烯分散液;在 4000 r· min-1下离心 3 min 除去极少量未剥离的氧化石墨;向离心

hummers法制备石墨烯

主要原材料:石墨粉(粒度小于30μm的粒子。含量大于95%,碳含量99.85%), 浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80% 氧化石墨(GO)的制备 采用Hummers 方法[12]制备氧化石墨。具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。 石墨烯的制备 将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。 具体实验步骤: 一:氧化石墨烯的制备 1:一只大烧杯250Ml,里面放冰块,提供冰水浴 2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,0.5g硝酸钠,3g高锰酸钾 3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。 4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶 5:控制温度小于20℃,搅拌反应2个小时 6:升温至35℃,继续搅拌30分钟 7:将水和蒸馏水配置46mL的去离子水(14摄氏度) 8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟 9:取出5g双氧水(30%),加入锥形瓶 10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。 二:石墨烯的制备 1:干燥后的氧化石墨烯,取出100mg分散于100g水溶液中,得到棕黄色悬浮液 2:把悬浮液放到超声波洗涤箱中,在超声波条件分散1小时 3:取出溶液放到四口烧杯中,升温到80℃,再滴加20ml水合肼,反应24小时过滤 4:得到的产物以此用甲醇和水冲洗 5:得到的固体在60℃干燥箱中充分干燥,保存备用。 三:实验原材料的作用 浓硫酸:强质子酸,进入石墨层间。高锰酸钾:强氧化剂氧化,生成氧化石墨(GO)经过超声剥离得到氧化石墨烯。水合肼:还原剂,出去氧化石墨烯表面的含氧官能团,得到石墨烯。硝酸钠:在强酸环境下,硝酸根具有强氧化性。双氧水:除去氧化中多余的高锰酸钾,氧化成2价锰离子除去。稀盐酸:洗去其中的金属离子,硫酸根离子,氯化钡:检测其中的硫酸根离子。

相关文档
最新文档