2018全国大学生数学建模大赛模板

2018全国大学生数学建模大赛模板
2018全国大学生数学建模大赛模板

全国大学生数学建模竞赛论文格式规范

(全国大学生数学建模竞赛组委会,2018年修订稿)

为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。

一、纸质版论文格式规范

第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

二、电子版论文格式规范

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和

提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

第十一条,支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

三、本规范的实施与解释

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。请特别注意,纸质版应包括附录,但无需打印支撑材料(按第五条要求放入正文附录的内容除外)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

(4)在不违反本规范原则的前提下,各赛区组委会可对论文格式提出更高要求。

赛区评阅编号(由赛区组委会填写):

2018年高教社杯全国大学生数学建模竞赛

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上QQ群、微信群等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。

我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):

我们的报名参赛队号(12位数字全国统一编号):

参赛学校(完整的学校全称,不含院系名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

(指导教师签名意味着对参赛队的行为和论文的真实性负责)

日期:年月日

(请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

赛区评阅编号(由赛区组委会填写):

2018年高教社杯全国大学生数学建模竞赛

编号专用页

送全国评阅统一编号(赛区组委会填写):

全国评阅随机编号(全国组委会填写):

(请勿改动此页内容和格式。此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页。)

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

2018全国大学生数学建模大赛模板

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2018年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

2018年高教社杯全国大学生数学建模竞赛题目-B-Chinese-Appendix1

附件1:智能加工系统的组成与作业流程 1.系统的场景及实物图说明 在附图1中,中间设备是自带清洗槽和机械手的轨道式自动引导车RGV,清洗槽每次只能清洗1个物料,机械手臂前端有2个手爪,通过旋转可以先后各抓取1个物料,完成上下料作业。两边排列的是CNC,每台CNC前方各安装有一段物料传送带。右侧为上料传送带,负责为CNC输送生料(未加工的物料);左边为下料传送带,负责将成料(加工并清洗完成的物料)送出系统。其他为保证系统正常运行的辅助设备。 附图1:RGV—CNC车间布局图附图2:带机械手臂和清洗槽的RGV实物图 附图2是RGV的实物图,包括车体、机械臂、机械手爪和物料清洗槽等。 附图3:RGV机械手臂前端的2个手爪实物图 在附图3左图中,机械臂前端上方手爪抓有1个生料A,CNC加工台上有1个熟料B。RGV机械臂移动到CNC加工台上方,机械臂下方空置的手爪准备抓取熟料B,在抓取了熟料B后即完成下料作业。 在附图3右图中,RGV机械臂下方手爪已抓取了CNC加工台上的熟料B抬高手臂,并旋转手爪,将生料A对准加工位置,安放到CNC加工台上,即完成上料作业。 2.系统的构成及说明 智能加工系统由8台CNC、1台带机械手和清洗槽的RGV、1条RGV直线轨道、1条上料传送带和1条下料传送带等附属设备构成。 (1)CNC:在上料传送带和下料传送带的两侧各安装4台CNC,等距排列,每台CNC同一时间只

能安装1种刀具加工1个物料。 如果物料的加工过程需要两道工序,则需要有不同的CNC安装不同的刀具分别加工完成,在加工过程中不能更换刀具。第一和第二道工序需要在不同的CNC上依次加工完成,完成时间也不同,每台CNC 只能完成其中的一道工序。 (2)RGV:RGV带有智能控制功能,能够接收和发送指令信号。根据指令能在直线轨道上移动和停止等待,可连续移动1个单位(两台相邻CNC间的距离)、2个单位(三台相邻CNC间的距离)和3个单位(四台相邻CNC间的距离)。RGV同一时间只能执行移动、停止等待、上下料和清洗作业中的一项。 (3)上料传送带:上料传送带由4段组成,在奇数编号CNC1#、3#、5#、7#前各有1段。由系统传感器控制,只能向一个方向传动,既能连动,也能独立运动。 (4)下料传送带:下料传送带由4段组成,在偶数编号CNC2#、4#、6#、8#前各有1段。由传感器控制,只能向同一个方向传动,既能连动,也能独立运动。 3. 系统的作业流程 (1)智能加工系统通电启动后,RGV在CNC1#和CNC2#正中间的初始位置,所有CNC都处于空闲状态。 (2)在工作正常情况下,如果某CNC处于空闲状态,则向RGV发出上料需求信号;否则,CNC处于加工作业状态,在加工作业完成即刻向RGV发出需求信号。 (3)RGV在收到某CNC的需求信号后,它会自行确定该CNC的上下料作业次序,并依次按顺序为其上下料作业。根据需求指令,RGV运行至需要作业的某CNC处,同时上料传送带将生料送到该CNC 正前方,供RGV上料作业。 RGV为偶数编号CNC一次上下料所需时间要大于为奇数编号CNC一次上下料所需时间。 (4)在RGV为某CNC完成一次上下料作业后,就会转动机械臂,将一只机械手上的熟料移动到清洗槽上方,进行清洗作业(只清洗加工完成的熟料)。 具体过程:首先用另一只机械手抓取出清洗槽中的成料、转动手爪、放入熟料到清洗槽中,然后转动机械臂,将成料放到下料传送带上送出系统。这个作业过程所需要的时间称为RGV清洗作业时间,并且在这个过程中RGV不能移动。 熟料在清洗槽中的实际清洗时间是很短的,远小于机械手将成料放到下料传送带上的时间。 (5)RGV在完成一项作业任务后,立即判别执行下一个作业指令。此时,如果没有接到其他的作业指令,则RGV就在原地等待直到下一个作业指令。 某CNC完成一个物料的加工作业任务后,即刻向RGV发出需求信号。如果RGV没能即刻到达为其上下料,该CNC就会出现等待。 (6)系统周而复始地重复(3)至(5),直到系统停止作业,RGV回到初始位置。

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

2018年当代大学生数学建模竞赛题目

问题B 智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC)、1辆轨道式自动引导车(Rail Guide Vehicle,RGV)、1条RGV直线轨道、1条上料传送带、1条下料传送带等附属设备组成。RGV是一种无人驾驶、能在固定轨道上自由运行的智能车。它根据指令能自动控制移动方向和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能够完成上下料及清洗物料等作业任务(参见附件1)。 图1:智能加工系统示意图 针对下面的三种具体情况: (1)一道工序的物料加工作业情况,每台CNC安装同样的刀具,物料可以在任一台CNC上加工完成; (2)两道工序的物料加工作业情况,每个物料的第一和第二道工序分别由两台不同的CNC依次加工完成; (3)CNC在加工过程中可能发生故障(据统计:故障的发生概率约为1%)的情况,每次故障排除(人工处理,未完成的物料报废)时间介于10~20分钟之间,故障排除后即刻加入作业序列。要求分别考虑一道工序和两道工序的物料加工作业情况。 请你们团队完成下列两项任务: 任务1:对一般问题进行研究,给出RGV动态调度模型和相应的求解算法; 任务2:利用表1中系统作业参数的3组数据分别检验模型的实用性和算法的有效性,给出RGV 的调度策略和系统的作业效率,并将具体的结果分别填入附件2的EXCEL表中。 表1:智能加工系统作业参数的3组数据表时间单位:秒 系统作业参数第1组第2组第3组RGV移动1个单位所需时间20 2318 RGV移动2个单位所需时间33 4132 RGV移动3个单位所需时间46 5946 CNC加工完成一个一道工序的物料所需时间560 580545 CNC加工完成一个两道工序物料的第一道工序所需时间400 280455 CNC加工完成一个两道工序物料的第二道工序所需时间378 500182 RGV为CNC1#,3#,5#,7#一次上下料所需时间28 3027 RGV为CNC2#,4#,6#,8#一次上下料所需时间31 3532 RGV完成一个物料的清洗作业所需时间25 3025 附件1:智能加工系统的组成与作业流程 附件2:模型验证结果的EXCEL表(完整电子表作为附件放在解答材料中提交)

2018年中国研究生数学建模竞赛E题

2018年中国研究生数学建模竞赛E题 多无人机对组网雷达的协同干扰 组网雷达系统是应用两部或两部以上空间位置互相分离而覆盖范围互相重叠的雷达的观测或判断来实施搜索、跟踪和识别目标的系统,综合应用了多种抗干扰措施,具有较强的抗干扰能力,因而在军事中得到了广泛应用。如何对组网雷达实施行之有效的干扰,是当今电子对抗界面临的一个重大问题。 诸多干扰方式中较为有效的是欺骗干扰,包括距离欺骗、角度欺骗、速度欺骗以及多参数欺骗等。本赛题只考虑距离假目标欺骗,其基本原理如图1所示,干扰机基于侦察到的敌方雷达发射电磁波的信号特征,对其进行相应处理后,延迟(或导前)一定时间后再发射出去,使雷达接收到一个或多个比该目标真实距离靠后(或靠前)的回波信号。 图 1 对雷达实施距离多假目标欺骗干扰示意图 在组网雷达探测跟踪下,真目标和有源假目标在空间状态(如位置、速度等)上表现出显著的差异:对于真目标,其空间状态与雷达部署位置无关,在统一坐标系中,各雷达探测出的真目标空间状态是基本一致的,可以认为它们是源自于同一个目标(同源);对于有源假目标,它们存在于雷达与干扰机连线以及延长线上,其空间状态由干扰机和雷达部署位置共同决定,不同雷达量测到的有源假目标的空间状态一般是不一致的,有理由认为其来自于不同目标(非同源),利用这种不一致性就可以在组网雷达信息融合中心将假目标有效剔除。这种利用真

假目标在组网雷达观测下的空间状态差异来进行假目标鉴别的思想简称为“同源检验”,它是组网雷达对真假目标甄别的理论依据。 为了能对组网雷达实施有效干扰,现在可利用多架无人机对组网雷达协同干扰。如图2所示,无人机搭载的干扰设备对接收到的雷达信号进行相应处理后转发回对应的雷达,雷达接收到转发回的干扰信号形成目标航迹点信息,传输至组网雷达信息融合中心。由于多无人机的协同飞行,因此在融合中心就会出现多部雷达在统一坐标系的同一空间位置上检测到目标信号,基于一定的融合规则就会判断为一个合理的目标航迹点,多个连续的合理目标航迹点就形成了目标航迹,即实现了一条虚假航迹。通过协同控制无人机的飞行航迹,可在敌方的组网雷达系统中形成一条或多条欺骗干扰航迹,迫使敌方加强空情处置,达到欺骗目的。 图 2 多无人机协同干扰组网雷达系统示意图 某组网雷达系统由5部雷达组成,雷达最大作用距离均为150km,也就是只能对距雷达150 km范围内的目标进行有效检测。5部雷达的地理位置坐标分别为雷达1(80,0,0),雷达2(30,60,0),雷达3(55,110,0),雷达4(105,110,0),雷达5(130,60,0)(单位:统一为km)。雷达将检测到的回波信号经过处理后形成航迹点状态信息(本赛题主要关心目标的空间位置信息)传输到融合中心,融合中心对5部雷达获取的目标状态信息进行“同源检验”,只要有

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

2018年肇庆学院数学建模竞赛题目

2018年肇庆学院数学建模竞赛题目

2018年肇庆学院数学建模竞赛题目 D题:红绿灯设置对城市道路通行能力的影响 交通高峰时期,在很多车道会见到长长的车队等待红绿灯放行,良好的红绿灯设置以及车道的指示可以使得拥挤的交通有序进行。有时候交通事故会占用车道,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。 附件一的十字路口是一个双向六车道公路,每个车道的行驶方向如图所示。其中东西向是主干路,限速70公里/小时, 来去两个方向中间有隔离带,右拐的车道和直行的车道有很长的一段栅栏隔离,可以认为互不影响。南北向不是主干路,限速40公里/小时。因为车流量的不同,两个方向绿灯设置时间也不相同。 城市交通中信号灯通常采用周期控制,在一个周期内,通过不同颜色的信号等组合,控制不同方向车辆的通行与禁行。每一种信号灯组合称为一个相位,如附件二所示,控制自东向西方向的路灯为第一相位,自西向东为第二相位,自南

向北第三相位,自北向南第四相位。每相位前行和左转以及掉头的绿灯同时亮起,时间见附件二的注释;绿灯按照1,2,3,4相位的顺序亮起,周而复始。当某一相位的绿灯亮起时,其他相位都是红灯。 1.第一相位一个周期的绿灯可以通过多少辆 车?第三相位一个周期可以通过多少辆 车?可以满足多大的车流量? 2.假设第一相位(自东向西车道)的车流量为 1200辆/小时,试计算在第一相位变绿灯之 前排队等候的车辆的长度。如果此时 车道 出现了两车追尾使得此车道阻塞,试分析对 该相位车流量的影响。车流量减少到多少才 能使堵塞情况得到缓解。 3.假设东西方向车流量一直是南北方向车流 量2倍,讨论在交通高峰、正常以及车辆稀 少时现在的红绿灯设置是否能够满足要求,能否继续优化使得车辆的等候时间尽量少。 附件1:十字路口示意图 附件2:各相位通行顺序 注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

2018年研究生数学建模A题

2018年中国研究生数学建模竞赛A题 关于跳台跳水体型系数设置的建模分析 国际泳联在跳水竞赛规则中规定了不同跳水动作的代码及其难度系数(见附件1),它们与跳水运动员的起跳方式(起跳时运动员正面朝向、翻腾方向)及空中动作(翻腾及转体圈数、身体姿势)有关。裁判员们评分时,根据运动员完成动作的表现优劣及入水效果,各自给出从10到0的动作评分,然后按一定公式计算该运动员该动作的完成分,此完成分乘以该动作的难度系数即为该运动员该动作的最终得分。因此,出于公平性考虑,一个跳水动作的难度系数应充分反映该动作的真实难度。但是,有人说,瘦小体型的运动员在做翻腾及转体动作时有体型优势,应当设置体型系数予以校正,请通过建模分析,回答以下问题: 1. 研究分析附件1的APPENDIX 3-4,关于国际泳联十米跳台跳水难度系数的确定规则,你们可以得到哪些对解决以下问题有意义的结论? 2. 请应用物理学方法,建立模型描述运动员完成各个跳水动作的时间与运动员体型(身高,体重)之间的关系。 3. 请根据你们的模型说明,在10米跳台跳水比赛中设置体型校正系数有无必要。如果有,校正系数应如何设置? 4. 请尝试基于你们建立的上述模型,给出表1中所列的十米跳台跳水动作的难度系数。你们的结果与附件1中规定的难度系数有无区别?如果有区别,请作出解释。 表1: 十米跳台难度系数表(部分动作)

[动作代码说明](1)第一位数表示起跳前运动员起跳前正面朝向以及翻腾方向,1、3表示面朝水池,2、4表示背向水池;1、2表示向外翻腾,3、4表示向内翻腾。(2)第三位数字表示翻腾圈数,例如407,表示背向水池,向内翻腾3周半。(3)B表示屈体,C表示抱膝。(4)如果第一位数字是5,表示有转体动作,此时,第二位数字意义同说明(1),第三位数字表示翻腾圈数,第四位数字表示转体圈数,例如5375,表示面向水池向内翻腾3周半,转体2周半。 附件1:2017-2021_diving 附件2:参考文献

全国数学建模大赛简介2020年最新

一、什么是数学建模? 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。 自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 二、数学建模的几个过程 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

2018年中国研究生数学建模竞赛D题

2018年中国研究生数学建模竞赛D 题 基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用 1. 潮汐潮流现象的研究意义 海洋潮汐是在天体引潮力作用下形成的长周期波动现象,在水平方向上表现为潮流的涨落,在铅直方向上则表现为潮位的升降。潮汐潮流运动是海洋中的基本运动之一,它是动力海洋学研究的重要组成部分,对它的研究直接影响着波浪、风暴潮、环流、水团等其他海洋现象的研究,在大陆架浅海海洋中,对潮汐潮流的研究更具重要性。 海岸附近和河口区域是人类进行生产活动十分频繁的地带,而这个地带的潮汐现象非常显著,它直接或间接地影响着人们的生产和生活。潮汐潮流工作的开展和研究,可为国防建设、交通航运、海洋资源开发、能源利用、环境保护、海港建设和海岸防护提供资料。例如,沿海地区的海滩围垦、农田排灌,水产的捕捞和养殖,制盐,海港的选址及建设,以至于潮能发电等活动,无不与潮汐潮流现象有着密切的关系。 2. 潮汐潮流数值模拟所面临的问题 区域海洋潮汐的数值模拟需要提供开边界的水位调和常数,而开边界的水位调和常数,或者来源于观测、或者来源于全球海洋潮汐的数值模拟;而全球海洋潮汐的数值模拟,相当耗费资源。虽然目前有国外学者或研究机构,能够提供区域海洋潮汐的调和常数,但实质上的评价结果难以令人满意。 从区域海洋潮汐的数值模拟的现状来讲,四个主要分潮(2M 、2S 、1K 、1O )的单一分潮的数值模拟与同化可以得到令人满意的结果,但其它分潮( 、 、 、 等)的单一分潮的数值模拟与同化,结果却差强人意;这意味着其它分潮的数值模拟,只有与四个主要分潮同时进行数值模拟,才能得到可以接受的结果。从具体操作来讲,其它分潮由于相对较弱,导致模拟结果的精度难以提高。 长周期分潮( 、 、 、 )的获取,目前已有基于全球长周期分潮数值模拟手段的报道,但其面临的困境,与其它较弱分潮面临的困境没有差别。 从各分潮的调和常数获取的发展史来说,通过对已有观测结果进行插值曾经是首选,但发展过程中逐渐被数值模拟方法所取代。高度计资料的出现,引发部分学者开展了插值方法的研究,并取得了一些值得一提的结果,尽管被所谓的主流方式淹没,但也难掩其光芒所在。鉴于目前已有高度计资料作为支持,其它分潮及长周期分潮的调和常数获取的插

2018年度中国研究生数学建模竞赛A题

2018年度中国研究生数学建模竞赛A题 关于跳台跳水体型系数设置的建模分析 国际泳联在跳水竞赛规则中规定了不同跳水动作的代码及其难度系数(见附件1),它们与跳水运动员的起跳方式(起跳时运动员正面朝向、翻腾方向)及空中动作(翻腾及转体圈数、身体姿势)有关。裁判员们评分时,根据运动员完成动作的表现优劣及入水效果,各自给出从10到0的动作评分,然后按一定公式计算该运动员该动作的完成分,此完成分乘以该动作的难度系数即为该运动员该动作的最终得分。因此,出于公平性考虑,一个跳水动作的难度系数应充分反映该动作的真实难度。但是,有人说,瘦小体型的运动员在做翻腾及转体动作时有体型优势,应当设置体型系数予以校正,请通过建模分析,回答以下问题: 1. 研究分析附件1的APPENDIX 3-4,关于国际泳联十米跳台跳水难度系数的确定规则,你们可以得到哪些对解决以下问题有意义的结论? 2. 请应用物理学方法,建立模型描述运动员完成各个跳水动作的时间与运动员体型(身高,体重)之间的关系。 3. 请根据你们的模型说明,在10米跳台跳水比赛中设置体型校正系数有无必要。如果有,校正系数应如何设置? 4. 请尝试基于你们建立的上述模型,给出表1中所列的十米跳台跳水动作的难度系数。你们的结果与附件1中规定的难度系数有无区别?如果有区别,请作出解释。 表1: 十米跳台难度系数表(部分动作)

[动作代码说明](1)第一位数表示起跳前运动员起跳前正面朝向以及翻腾方向,1、3表示面朝水池,2、4表示背向水池;1、2表示向外翻腾,3、4表示向内翻腾。(2)第三位数字表示翻腾圈数,例如407,表示背向水池,向内翻腾3周半。(3)B表示屈体,C 表示抱膝。(4)如果第一位数字是5,表示有转体动作,此时,第二位数字意义同说明(1),第三位数字表示翻腾圈数,第四位数字表示转体圈数,例如5375,表示面向水池向内翻腾3周半,转体2周半。 附件1:2017-2021_diving 附件2:参考文献

目前正规数学建模比赛有哪些

目前正规数学建模比赛有哪些? ——数学中国总策划致全体中国数学建模爱好者数学中国作为促进数学建模发展公益性组织,其本身代表着数学建模爱好者的价值观,致力于“用数学建模改变中国人对数学枯燥的看法,致力于数学建模市场行业化”的使命,愿意承担起建立中国“数学建模”行业的责任。 然而,从今年上半年开始,数学建模的活动越来越多,尤其以数学建模比赛居多,这就让一些人钻了洞子,利用比赛去赚钱,甚至近期有人发出了【怎样举办一个数模比赛】的帖子,看了之后真是让人触目惊心。其完全是奔着赚钱去考虑的,完全是奔着很多数模者的虚荣心去的,而未考虑对参赛者的责任、未考虑对参赛者的伤害(因为你们的比赛,可能让一个人从此对数学建模反感,从此让他再不踏入数模这扇门,这是在毁灭数学建模行业,毁灭近26年来中国数学建模人的心血)。 目前,数学中国认可的比赛有以下几个,并且均是经过证实的: 1、CUMCM:全国大学生数学建模竞赛(指导单位:中国工业与应用数学学会) 2、MCM/ICM:美国大学生数学建模竞赛(COMAP杂志社主办,指导单位:美国工业与应用数学学会、美国数学学会、运筹研究与管理学会) 3、GMCM:研究生数学建模竞赛(主办单位:全国研究生数学建模竞赛组织委员会发起(朱道远老师),相关组织范畴内的学校轮流作主办方) 4、TZMCM:数学中国数学建模网络挑战赛(主办单位:内蒙古数学学会、全球数学建模认证中心;协办单位:数学中国) 5、EMCM:中国电机工程学(电工)杯数学建模竞赛(主办单位:中国电机工程学会数学委员会) 6、CAMCM:数学中国数学建模国际赛【俗称小美赛】(主办单位:内蒙古数学学会、全球数学建模认证中心;协办单位:数学中国) 7、苏北赛(主办单位:江苏省工业与应用数学学会,中国矿大数模协会) 8、华中赛(主办单位:华中地区高校数模协会轮流举办,华中数模组委会) 9、华东邀请赛(主办单位:上海几个高校数模协会轮流举办,华东数学联盟协会协办) 10、东北赛(主办单位:东北高校数模协会轮流组办,东北三省数模竞赛组委会) 以上比赛,各有特色: 1、CUMCM,国内高校学术认可度比较高,社会认可度有限; 2、MCM/ICM,国内外高校均认可,社会认可度有限; 3、GMCM,国内认可度比较高,社会认可度有限; 4、TZMCM:国内认可度比较高,社会认可度有限(2012年社会认可度有所改变,由于我本人一年多来在全国各个企业家会议上对数模人才进行推广,并且取得了一定得成效,下面做些补充说明); 5、EMCM:国内学术界认可度搞,社会认可度有限; 6、CAMCM:国内认可度一般,社会认可度有限; 7、苏北赛:国内认可度一般,社会认可度有限; 8、华中赛:国内认可度一般,社会认可度有限; 9、华东赛:国内认可度一般,社会认可度有限; 10、东北赛:国内认可度一般,社会认可度有限; 以上比赛也是目前国内正规单位举办的比赛,所以希望大家能够认真辨别,以免收到伤害,而终止自己的数模生涯。凡是数学建模行业有意的事情,比如比赛、活动等,数学中国一定予以鼓励和支持,但是有害于数学建模行业的事情,有悖于数学中国的责任和使命,数学中国也会予以反对。 补充: 上面提案到TZMCM的认可度问题:由于第五届TZMCM的宗旨除了推广数学建模外,还提出了促进数学建模社会化。因此,基于此种宗旨承诺,我用了两年的时间参加了国内大大小小的各种企业家会议,去的最多的是电子商务大会、云计算大会、移动互联网大会、互联网大会等,了解了目前中国对数模人才的需求,以及对数模的评价。 基于以上调查,数学中国下半年推出了针对数模能力认真者的移动互联网实训、中国数学建模人才认证平台、数模人才推介频道(12月份跟大家见面)等促进数模社会化的事宜,将会为数模人才寻找出路引出一条路。

全国数学建模竞赛题目A,B

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”) A题车道被占用对城市道路通行能力地影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低地现象.因为城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道地通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵. 车道被占用地情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力地影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据. 视频1<附件1)和视频2<附件2)中地两个交通事故处于同一路段地同一横断面,且完全占用两条车道.请研究以下问题: 1.根据视频1<附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通 行能力地变化过程. 根据问题1所得结论,结合视频2<附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响地差异. 构建数学模型,分析视频1<附件1)中交通事故所影响地路段车辆排队长度与事故 横断面实际通行能力、事故持续时间、路段上游车流量间地关系. 假如视频1<附件1)中地交通事故所处横断面距离上游路口变为140M,路段下游方 向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且 事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上 游路口. 附件1:视频1 附件2:视频2 附件3:视频1中交通事故位置示意图 附件4:上游路口交通组织方案图 附件5:上游路口信号配时方案图 注:只考虑四轮及以上机动车、电瓶车地交通流量,且换算成标准车当量数.

2018年中国研究生数学建模竞赛D题

2018年中国研究生数学建模竞赛D题 基于卫星高度计海面高度异常资料 获取潮汐调和常数方法及应用 1?潮汐潮流现象的研究意义 海洋潮汐是在天体引潮力作用下形成的长周期波动现象,在水平方向上表现为潮流的涨 落,在铅直方向上则表现为潮位的升降。潮汐潮流运动是海洋中的基本运动之一,它是动力 海洋学研究的重要组成部分,对它的研究直接影响着波浪、风暴潮、环流、水团等其他海洋现象的研究,在大陆架浅海海洋中,对潮汐潮流的研究更具重要性。 海岸附近和河口区域是人类进行生产活动十分频繁的地带,而这个地带的潮汐现象非常 显著,它直接或间接地影响着人们的生产和生活。潮汐潮流工作的开展和研究,可为国防建 设、交通航运、海洋资源开发、能源利用、环境保护、海港建设和海岸防护提供资料。例如, 沿海地区的海滩围垦、农田排灌,水产的捕捞和养殖,制盐,海港的选址及建设,以至于潮能发电等活动,无不与潮汐潮流现象有着密切的关系。 2?潮汐潮流数值模拟所面临的问题 区域海洋潮汐的数值模拟需要提供开边界的水位调和常数,而开边界的水位调和常数, 或者来源于观测、或者来源于全球海洋潮汐的数值模拟;而全球海洋潮汐的数值模拟,相当耗费资源。虽然目前有国外学者或研究机构,能够提供区域海洋潮汐的调和常数,但实质上的评价结果难以令人满意。 从区域海洋潮汐的数值模拟的现状来讲,四个主要分潮(M 2、S2、K,、O,)的单一 分潮的数值模拟与同化可以得到令人满意的结果,但其它分潮(’’?等)的单 一分潮的数值模拟与同化,结果却差强人意;这意味着其它分潮的数值模拟,只有与四个主要分潮同时进行数值模拟,才能得到可以接受的结果。从具体操作来讲,其它分潮由于相对较弱,导致模拟结果的精度难以提高。 长周期分潮(^ ^ )的获取,目前已有基于全球长周期分潮数值模拟手 段的报道,但其面临的困境,与其它较弱分潮面临的困境没有差别。 从各分潮的调和常数获取的发展史来说,通过对已有观测结果进行插值曾经是首选, 但发展过程中逐渐被数值模拟方法所取代。高度计资料的出现,引发部分学者开展了插值方法的研究,并取得了一些值得一提的结果,尽管被所谓的主流方式淹没,但也难掩其光

相关文档
最新文档