离子交换树脂及其目前的应用领域及发展前景

离子交换树脂及其目前的应用领域及发展前景
离子交换树脂及其目前的应用领域及发展前景

离子交换树脂及其目前的应用领域及发展前景

摘要:本文主要针对离子交换树脂及其目前的应用领域和基本情况进行简要介绍,着重对离子交换树脂在一些方面的应用做了综述,在医药卫生、水处理、食品工业、冶金工业、催化领域、化学化工等几个方面各举了一些简单的例子简述了离子交换树脂在该领域的基本应用的操作方法、操作条件和分离效果。最后通过这些重要应用,对离子交换树脂未来的发展前景提出了展望。

关键词:离子交换树脂;应用;发展前景

1 引言

离子交换树脂是一类带有功能基的网状结构的高分子化合物,它由两部分构成:一是由不溶性的三维空间网状结构组成的骨架。骨架部分一般与酸、碱和一般的溶剂都不起作用,化学性质非常稳定;二是连接在骨架上可以电离的、可被交换的活性基团(交换基团)[1]。活性基团对离子交换剂的交换性质起着决定性作用,可与溶液中的离子进行离子交换反应。

离子交换树脂用途非常广泛,很多方面都能用到离子交换树脂,如分析化学中的富集、纯化,工业中的回收、分离、纯化和催化等等。近年来,我国平均每年生产离子交换树脂的量约为27.0万吨,约占世界总产量的三分之一,且产量还在逐年增加[2]。其应用方面也有很大发展,2016年,我国离子交换树脂的表观消费量达19.2万吨,主要应用于水处理、吸附工艺、催化剂这三个领域,消费结构占比见图1[2]。

2 离子交换树脂在化学分离中的应用

2.1 离子交换树脂在水处理中的应用

从上一节中对离子交换树脂的应用基本情况的阐述中可见,离子交换树脂的众多应用中,水处理方面的应用是我国离子交换树脂消费结构中最多的部分。其中水处理方面的应用又可细分为三个重要领域:给水处理、废水处理和废液中某些物质的提取、分离和回收。在给水处理这个领域中,离子交换树脂可用于制备软化水、纯水和超纯水,尤其超纯水在微电子工业、半导体工业以及原子能工业、医疗卫生等方面有着重要的作用。在废水处理中,可用于去除废水中的某些如汞等有害物质,回收有价值的化学品等。

2.1.1 纯水的制备

张晓滨等[3]对如何用离子交换树脂制备纯水进行了研究。他选了两种制备纯水用的国产的离子交换树脂,一种是732型聚苯乙烯强酸型阳离子交换树脂;另一种是717或711型聚苯乙烯强碱型阴离子交换树脂。选好后进行新树脂的处理,将树脂进行浸泡、酸碱反复处理、用酸碱分别转成H+、OH-后即可装入柱中待用。

他采用了复合式(串联在一起的两个以上的阳、阴离子交换柱)和混合式(将阴、阳两种树脂均匀地混合装入一个或多个交换柱内)组装在一起的联合式工艺流程,此种工艺既有复合式的优点也有混合式的优点,即交换能力强,出水质量高,交换容量大,使用时间长,是制备纯水较常用的组合形式。进行完准备工作后,将待纯化的水依次通过强酸型树脂柱、强碱型树脂柱、强碱型树脂柱、强碱强酸型树脂混合柱,即可得到质量较高的纯水[3]。

孙惠国等[4]研究了在电子工业有着重要作用的超纯水的制备工艺。超纯水的制备工艺一般有三道流程,在这三道工序中,后处理工序是关键部分,主要采用“一次性”使用的混合型离子交换树脂(一般由凝胶强碱阴离子交换树脂(OH-型)和凝胶强酸阳离子交换树脂(H+型)按一定比例高度均匀混合而成)作为工序中“精制混床”的核心,主要用于精脱盐及脱除经紫外光谱的紫外线分解有机物的产物。做完准备后,经图2的超纯水制备工艺流程可进行超纯水的制备[4]。

2.1.2 废水处理

2.1.2.1 废水中硒的去除

硒在生产生活中如电子工业、玻璃工业、颜料、冶金、农业等有着重要作用,在人及动植物体中也是不可或缺的微量元素之一,但硒的过度摄入也会发生硒中毒。针对我国某些地区水体中硒含量超标的问题,昆明理工大学的毛云等人对离子交换法去除水中的硒进行了研究。

由于地下水和废水中亚硒酸根离子较为普遍,毒性也较大,所以毛云等[5]的研究主要针对含硒超标废水中亚硒酸根离子的去除。实验采用的树脂为201×7型强碱性阴离子交换树脂,以R代表201×7型强碱性阴离子树脂的骨架,则此实验依据的原理为:

SeO32-(水溶液)+2(RCl)=R2SeO3+2Cl-

实验的流程为:

原水池→微型泵→高位恒水位箱→离子交换柱→出水

实验方法:将201×7型强碱性阴离子交换树脂经处理后装入柱中,再将原水经泵进入高水位箱,流入离子交换柱进行试验。

最后,他们的实验结果显示:在搅拌时间为一个小时以上、原水浊度在00~930之间、原水温度在10~30℃、PH=7~13范围内、树脂用量在4.00g/l左右时水中硒的去除率可达95%以上[5][6]。

此研究表明,使用离子交换树脂在除去废水中的硒时操作简易、选择性好、工作效率高,而且除硒效果较好,能使水中硒的含量降低到可排放标准以下。2.1.2.2 废水中痕量放射性核素的去除

近年来,随着化石燃料资源的枯竭,越来越多的国家开始使用核能,由此产生了很多含有放射性物质的废水,若废水处理不当,将会导致生态系统和人的健康受到极大的危害。基于此,唐熹霖等对弱碱性阴离子交换树脂去除低浓度放射性废水中的痕量放射性核素进行了研究,在比较了不同含量废水中几种不同类型的离子交换树脂的去除能力后,得出了结论:A847型弱碱性阴离子交换树脂能够有效的吸附低浓度废水中的放射性核素(Sr2+、Co2+、Cs+)。并且,采用弱碱性阴离子树脂除去水中极少量的重金属具有良好效果,出水水质能达到国家饮用水的标准[7]。

2.1.2.3 含汞废水的处理

一般来说,自然界的水中本就含有汞,淡水鱼体内汞含量可高达0.2ppm[8]。这种情形下,如果含汞废水不经过严格的处理便排放的话,很容易在鱼体内富集,从而使食用了污染水或者水中的鱼类后发生汞中毒。

以Hg2+形式存在的酸性废水,通常用如001×7、SG-1型的阳离子交换树脂;可用如KB-4P-2型的弱酸性阳离子交换树脂来去除碱性废水中的Hg2+,其对汞的交换容量可达9mmol/g。某些如AT21类的强碱性阴离子交换树脂对含[HgCl4]2-废水的处理能力很强[9]。

还可将含微量汞的废水进行处理,生成复盐或络合物(HgCl2+2NaCl→

Na2HgCl2),再使其经过Cl-型强碱性阴离子交换树脂生成HgCl3-、HgCl42-(2R-Cl+Na2HgCl2→R2-HgCl4+2NaCl)、然后被MR型强碱性阴离子交换树脂吸附。此时流出的液体中汞含量下降到0.01~0.05ppm,再用亚氨基二乙酸螯合树脂处理,流出液的含汞量下降到0.001~0.002ppm,达到排放标准[10]。2.1.2.4 含酚废水的处理

酚是一种较贵重且用途广泛的有机试剂,但同时又是一种对人和动植物都有害的有毒物质。随着煤加工业、石油工业和化学工业的发展,产生的含酚废水会对环境造成污染,因此处理含酚废水对环境保护和贵重原料的回收具有重要意义。

陈建林等[8]用弱碱性阴离子交换树脂对含酚废水进行试验,经过树脂预处理、吸附、脱附和放大实验,结果显示H-103树脂在pH=4,温度为25℃时对酚的吸附量为600mg/g,酚的回收率高达96%。所以离子交换法能有效达到处理含酚废水的目的。

2.1.3 溶液中有用元素的提取和回收

海水中含有许许多多的元素,而其中的溴作为重要的卤素在海水淡化后的浓海水中含量尤其高。因此,为资源的综合利用和海洋污染的减少,提取浓海水中的溴资源具有重要意义。

杨芳芳等[8]对此进行了研究,研究表明:在适当的条件下离子交换树脂吸附溴的能力较强,且抗氧化性能和抗有机污染、循环使用周期及其机械强度都较好,离子交换树脂吸附经过处理的海水中的溴的工艺较为稳定[9]。国外也有很多类似的研究,Gradishar Frederick John等用季胺型强碱性阴离子交换树脂从海水中提取溴。他们将含0.001%~0.1%溴离子的海水酸化使其pH<7,经氯氧化后在20℃下通过树脂塔,最后用汽提法解吸树脂中的溴,回收率可达85%~95%[11]。

2.2 离子交换树脂在冶金工业中的应用

2.2.1 贵金属的提取

八十年代以来,贵金属包括金、银、铂、钯、铑、铱、钌、锇的生产与消费逐年增加,离子交换法在贵金属的湿法冶金中的应用也飞速发展。本段主要介绍离子交换法提取金、铂和钯。

金在自然界中主要以天然金属或金/银合金等形式与铁、银、砷、铜等金属的硫化物共存于矿石中,可用硫代硫酸盐、氰化物、氯、硫脲等络合剂的水溶液浸出,用螯合树脂进行吸附后洗脱下来,然后经电解得到纯度在95%以上的金[12]。在此过程中,还可用相似的方法提取出银。

在近年电子产品的流行和金制饰品、镀金产品的需求增多的情况下,金作为稀缺资源,若不加强金的回收利用,则会造成极大的浪费和资源短缺。因此金的回收利用也极为重要。林雪等采用螯合树脂对废水中的金进行吸附,此种树脂选择性较好,在一定的酸碱度范围中对金的吸附量可达5.58mmol/g树脂。江川博明合成的含硫基树脂在PH为2和4时,对金的吸附量分别为5.87mmol/g和

5.95mmol/g树脂,含杂环树脂在1mol/lHCl中,对金的静态吸附量达到了

660mg/g树脂[13]。

一般铂族金属的分离纯化是非常困难的,但经过多年的发展,我国分离铂族金属的工艺技术已达到相当的水平。将冰铜矿浸取残渣经焙烧氰化、树脂吸附、解吸、蒸馏、萃取等一系列操作后可得到含98%铂和钯的有机相,分离处理后即可得到铂[12]。

钯的提取可由上述有机相先后加入硫氰酸盐和硫脲沉淀剂使二者分步沉淀出来[12],实现分离。也可在其他途径由聚酰胺树脂进行提取,在0.001~2.0mol/l 的HCl介质中平均吸附率为98.4%,解吸后的富集倍数可达100倍[13]。

2.2.2 放射性元素铀的提取

近年来,铀的提取工艺发展迅速,用氨基磷酸型螯合树脂Duolite ES 467可从湿法磷酸生产的粗磷酸中富集分离UO22+,通过解析可得到96%的铀[12]。

D290强碱性阴离子树脂也能有效的通过吸附UO2Ac-而从铀矿废水中富集微量的铀。

除此之外,海水中铀的储量非常可观,从海水中提取铀也是一个重要的领域。聚(丙烯偕胺肟)型螯合树脂对铀的吸附量最大,可达到1.8μg/g[12]。

2.2.3 稀土元素的提取

不同稀土元素与某种络合剂形成的络合物稳定性也有差异,当所有络合物通过酸性离子交换树脂柱时,重稀土络合物稳定性较大,络合物会解络吸附在树脂床下部,轻稀土络合物稳定较性小,则吸附在的上部。淋洗后通过一系列树脂柱分离,可得到含各种稀土金属的纯溶液,再处理可制得稀土金属产品,其纯度高达99.99%[12]。

2.3 离子交换树脂在食品工业中的应用

2.3.1 糖类

离子交换树脂的吸附作用可用于生产精制糖和高级实用糖浆,其能很好的除去糖液中的各种杂质,尤其有色物质和灰分。近年来,糖尿病的发病率大大增

加,人们开始注重木糖醇等类健康甜味剂的研究与生产,运用钙型离子交换树脂可对多元醇进行分离,制备纯的木糖醇。

甜菊苷是一种天然甜味剂,有热值低、甜度高的特点,可用大孔吸附树脂提取甜菊苷,这种提取方法操作简便、提取效率较高、用原材料较少,成本较低。甘草酸是从甘草中提取的一种重要甜味剂,可用于食品及制药工业。甘草酸可通过将甘草提取液经醛型的吸附树脂吸附,洗脱后每1kg的甘草碎片能提取到40.2g的纯甘草酸[14]。

2.3.2 酒类

离子交换树脂可用于白酒除浊中吸附油酸乙酯、棕榈酸乙酯和亚油酸乙酯等使白酒浑浊的大分子物质,保留己酸乙酯、乙酸乙酯、乳酸乙酯等分子较小的香味物质。在葡萄酒和果酒的生产中,离子交换树脂可用于除去因含量过高被氧化后使酒变浑浊的铁。苏联生产红白葡萄酒用离子交换树脂去除其中的重金属离子去除率可达90%~92%。广东肇庆市技术开发公司生产的除铁树脂,除铁率可达87%~90%,每升54mg的含铁量可降至每升7mg左右[15]。

2.3.3 食品添加剂

离子交换树脂还可用于食品添加剂的提纯,苹果酱的脱酸,桔汁、槭树汁、梨汁、的脱色,去除蜂蜜中的铜、铁,天然色素的提取,海产食品和豆浆的去味,果酱的脱盐,香料的脱色等方面。

2.4 离子交换树脂在催化领域的应用

离子交换树脂在有机领域中可作为众多类型的反应的催化剂,如烷基化反应,缩醛、缩酮反应,烯烃的低聚反应和异构化,酯化、醚化反应,环氧化反应和开环反应等等,均有较好的效果。下面是几个典型的例子:

范文革[16]采用强酸性阳离子交换树脂催化苯酚与甲基叔丁基醚的烷基化反应制取2,4-二叔丁基苯酚,产率可达到95%左右。

全氟化磺酸酯型阳离子树脂催化下,十二酸与十二硫醇在110℃下反应制得酯,产率为91%[16]。

Tejero等[16]采用凝胶型酸性离子交换树脂催化由戊醇脱水制备二戊醚,产率可达96.4%。

Chen用Amberlyst 15型强酸性阳离子交换树脂催化环氧己烷水合生成环己二醇,环氧化物的转化率大于99%,环己二醇的产率达95%以上[16]。

2.5 离子交换树脂在医药领域方面的应用

2.5.1核苷酸及核酸的分离纯化

脱氧核苷酸和核糖核苷酸都是两性化合物,含有可形成阴离子的磷酸基和可形成阳离子的碱基,因此用阴离子树脂和阳离子树脂都可对其进行提取。脱氧核糖核酸酶解后,用离子交换树脂经过一系列操作后可得到纯的四种核苷酸。三磷酸腺苷粗品用弱碱性阴离子交换树脂吸附后再进行洗脱沉淀后可得到ATP的钠盐。用特定的离子交换树脂提取S-腺苷-L-高半胱氨酸,产率为88%,产物纯度最高可达99.5%[17][18]。

2.5.2 抗生素的提取

抗生素是一类天然抗菌、抗病毒药物,其分子中往往含有许多种化学基团,在强碱强酸条件下容易导致药理活性丧失。因此分离纯化抗生素的离子交换树脂主要为弱碱性阴离子交换树脂或弱酸性阳离子交换树脂。若要用到强碱或强酸性树脂,通常则需将阳离子交换树脂转化为Na+型或NH4+型,将阴离子交换树脂转化为Cl-型或SO42-型。表1是一些抗生素的分离纯化选择树脂的实例[17]。

2.5.3 生物碱的分离纯化

生物碱是自然界中广泛存在的一类碱性含氮化合物,是许多中草药的重要有效成分。它们在中性或酸性条件下以阳离子形式存在,可用阳离子交换树脂从其提取液中富集分离出来。钩吻总生物碱具有良好的抗癌作用,徐坚等[17]用离子交换树脂提取分离后所得浸膏总收率为1.07%。其纯度达96%以上[18]。

2.6 离子交换树脂在化学化工方面的应用

开发稀土金属时,盐酸是其中的重要原料,但工业盐酸一般含有较高浓度的铁,会影响高纯度氧化钇的提纯,因此盐酸的除铁极为重要。蔡秀真等用

“717”阴离子交换树脂进行试验,进行一些列树脂预处理、除铁、树脂洗脱再生的操作后,得出了结论:强碱型“717”阴离子交换树脂对高浓度盐酸中的FeCl4-有很强的交换能力,操作简便、易洗脱、无污染,且酸回收率达98%以上[19]。

在分析化学中,离子交换树脂可用于痕量离子分析中待测离子的预富集和其他干扰元素的去除,然后可进行痕量或超痕量离子的分析。在无机分析中,离子交换树脂可用于金属离子和无机阴离子的富集和分析,还开拓了新的混合离子分析技术——离子色谱。离子交换树脂还可用于有机酸、有机碱、两性化合物、极性的非离子有机化合物以及生物高分子的富集纯化和离子交换色谱分离。除上述用途之外,亦可用离子交换机理制成离子交换树脂显色剂、离子交换树脂-碳糊电极和比色分析用的离子交换膜等等[20]。

3 离子交换树脂的应用前景展望

随着离子交换树脂应用的研究,离子交换树脂被应用在了更多的领域,新型的树脂不断被开发出来,离子交换分离法在应用方面高选择性、高效率、高适用性、操作简便等的优势也逐渐无可替代。近年来,离子交换树脂无论生产或使用,国内都达到了较高水平,国产离子交换树脂的出口量也逐渐增大。随着各个行业的发展,离子交换树脂的市场规模逐渐增大,应用方面也开始向高端科技领域如航天等领域渗透和发展,可以说离子交换树脂的前景非常广阔,未来几年将是世界离子交换树脂行业的一个飞速发展的黄金时期[1]。

各种橡胶的性能

各种橡胶的性能 橡胶材质材质说明优缺点经常用途 丁睛胶NBR (Nitrile Rubber)由丙烯睛与丁二烯共聚合而成, 丙烯睛含量由 18%~50% ,丙烯 睛含量愈高,对石化油品碳氢燃 料油之抵抗性愈好,但低温性能 则变差,一般使用温度范围为 -25~100 ℃。丁睛胶为目前油封 及 O 型圈最常用之橡胶之一。 优点: 具良好的抗油、抗水、抗溶剂及 抗高压油的特性。 具良好的压缩歪,抗磨及伸长 力。 缺点: 不适合用于极性溶剂之中,例如 酮类、臭氧、硝基烃, MEK 和 氯仿。 用于制作燃油箱、润滑油箱以及 在石油系液压油、汽油、水、硅 润滑脂、硅油、二酯系润滑油、 甘醇系液压油等流体介质中使 用的橡胶零件,特别是密封零 件。可说是目前用途最广、成本 最低的橡胶密封件。 氢化丁睛胶HNBR (Hydrogenate Nitrile)氢化丁睛胶为丁睛胶中经由氢 化后去除部份双链,经氢化后其 耐温性、耐候性比一般丁睛橡胶 提高很多,耐油性与一般丁睛胶 相近。一般使用温度范围为 -25~150 ℃。 优点: 较丁睛胶拥有较佳的抗磨性 具极佳的抗蚀、抗张、抗撕和压 缩歪的特性 在臭氧、阳光及其它的大气状况 下具良好的抵抗性 一般来说适用于洗衣或洗碗的 清洗剂中 缺点: 不建议使用于醇类,酯类或是芳 香族的溶液之中。 空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 汽车发动机系统密封件。 氟橡胶FPM / FKM (Fluoro Carbon Rubber)分子内含氟之橡胶,依氟含量 ( 即单体构造 ) 而有各种类 型。目前广用的六氟化系氟橡胶 最早由杜邦公司以 "Viton" 商 品名上市。耐高温性优于硅橡 胶,有极佳的耐化学性、耐大部 分油及溶剂 ( 酮、酯类除 外 ) 、耐候性及耐臭氧性;耐 寒性则较不良,一般使用温度范 围为 -20~250 ℃。特殊配方可 耐低温至 -40 ℃。 优点: 可抗热至250 ℃ 对于大部份油品及溶剂都具有 抵抗的能力,尤其是所有的酸 类、脂族烃、芳香烃及动植物油 缺点: 不建议使用于酮类,低分子量的 酯类及含硝的混合物。 汽车、机车、柴油发动机及燃料 系统。 化工厂的密封件。 三元乙丙胶EPDM (Ethylene propylene Rubber)由乙烯及丙烯共聚合而成主链 不合双链,因此耐热性、耐老化 优点: 具良好抗候性及抗臭氧性 高温水蒸汽环境之密封件。 卫浴设备密封件或零件。

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

高分子化学实验报告-离子交换树脂

离子交换树脂的制备与性能测定 一. 实验目的: 1.熟悉悬浮共聚合的方法及特点。 2.通过对共聚物的磺化反应,了解高分子反应的一般规律。 3.掌握离子交换树脂的净化方法和交换当量的测定。 二、实验背景 2.1 离子交换树脂基础介绍 离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。 离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。 离子交换树脂的命名方式:离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。 2.2 离子交换树脂的种类 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 (3) 强碱性阴离子树脂 这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。(4) 弱碱性阴离子树脂 这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶

离子交换树脂及其目前的应用领域及发展前景

离子交换树脂及其目前的应用领域及发展前景 摘要:本文主要针对离子交换树脂及其目前的应用领域和基本情况进行简要介绍,着重对离子交换树脂在一些方面的应用做了综述,在医药卫生、水处理、食品工业、冶金工业、催化领域、化学化工等几个方面各举了一些简单的例子简述了离子交换树脂在该领域的基本应用的操作方法、操作条件和分离效果。最后通过这些重要应用,对离子交换树脂未来的发展前景提出了展望。 关键词:离子交换树脂;应用;发展前景 1 引言 离子交换树脂是一类带有功能基的网状结构的高分子化合物,它由两部分构成:一是由不溶性的三维空间网状结构组成的骨架。骨架部分一般与酸、碱和一般的溶剂都不起作用,化学性质非常稳定;二是连接在骨架上可以电离的、可被交换的活性基团(交换基团)[1]。活性基团对离子交换剂的交换性质起着决定性作用,可与溶液中的离子进行离子交换反应。 离子交换树脂用途非常广泛,很多方面都能用到离子交换树脂,如分析化学中的富集、纯化,工业中的回收、分离、纯化和催化等等。近年来,我国平均每年生产离子交换树脂的量约为27.0万吨,约占世界总产量的三分之一,且产量还在逐年增加[2]。其应用方面也有很大发展,2016年,我国离子交换树脂的表观消费量达19.2万吨,主要应用于水处理、吸附工艺、催化剂这三个领域,消费结构占比见图1[2]。 2 离子交换树脂在化学分离中的应用 2.1 离子交换树脂在水处理中的应用 从上一节中对离子交换树脂的应用基本情况的阐述中可见,离子交换树脂的众多应用中,水处理方面的应用是我国离子交换树脂消费结构中最多的部分。其中水处理方面的应用又可细分为三个重要领域:给水处理、废水处理和废液中某些物质的提取、分离和回收。在给水处理这个领域中,离子交换树脂可用于制备软化水、纯水和超纯水,尤其超纯水在微电子工业、半导体工业以及原子能工业、医疗卫生等方面有着重要的作用。在废水处理中,可用于去除废水中的某些如汞等有害物质,回收有价值的化学品等。

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

各种橡胶基本特性(精)

1.3 、应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2. 羧基丁腈橡胶(XNBR 2.1 :基本特性: 2.1.1 硫化速度比丁腈胶快,易焦烧。 2.1.2 纯胶配合显示高的拉伸强度。 2.1.3 硫化胶的耐热性、耐磨性好。 2.1.4 与酚酫树脂相容性好。 2.2 、应用范围:主要用于胶管、密封件、垫圈、油封、各种模型制品和粘合剂等。

3 、丁腈橡胶 - 聚氯乙烯共混胶(NBR/PVC 3.1 、基本特性: 3.1.1 耐臭氧和耐天候老化性能比通常丁腈橡胶显著提高。 3.1.2 比通常丁腈橡胶提高了耐燃性。 3.1.3 耐磨耗、耐油性、耐化学药品等性能比通常丁腈橡胶有所改善。 2.1.4 提高了压出、压延工艺性能。 2.1.5 可任意着色制作艳色制品。 2.1.6 低温特性、弹性降低,压缩变形增大。 2.1.7 比通常的聚氯乙烯改善了低温特性、耐油性、伸长率等。 3.2 应用范围:主要用于电线电缆护套,油管和燃油管外层胶,皮辊和皮圈,汽车模压零件,微孔海绵,发泡绝热层,安全靴和防护涂层等。 4 、氢化丁腈橡胶(HNBR 4.1 、基本特性 4.1.1 氢化丁腈橡胶虽经氢化饱和,但仍然保持原丁腈的特性。具有拉伸结晶性,因而强度较高。 4.1.2 有良好的耐热和耐臭氧、耐天候老化性能以及耐化学酸碱性能。 4.1.3 良好的耐技术液体(包括含腐蚀添加物的油类的溶胀性能。 4.1.4 良好的机械性能,即使在温升条件下仍保持相当水平。 4.1.5 在极有害的条件下,有显著的耐磨耗性能。

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

离子交换树脂应用进展

离子交换树脂应用进展 廖庄华 (化学与生物工程系应化091班学号0906********) 摘要:介绍了离子交换树脂在药学、天然产物提取分离有机催化剂的应用进展。 关键词:离子交换树脂口服药物树脂液体缓控释给药系统催化剂废水处理 离子交换树脂是一类带有功能基团的可以再生、反复使用且不溶性惰性高分子材料,不为生物体吸收。整个分子由三部分组成[1]:具有三维空间立体结构的网状骨架;与网状骨架载体以共价键连接不能移动的活性基团,亦称功能基团;与活性基团以离子 键结合,电荷与活性基团相反的活性离子,亦称平衡离 子。如聚苯乙烯磺酸型树脂,其骨架是聚苯乙烯高分子, 活性基团是磺酸基,平衡离子是钠离子。如图1所示。 根据可交换离子的不同,离子交换树脂分为阳离子 交换树脂和阴离子交换树脂两大类,由于酸碱性强弱不 同又可分强酸性和弱酸性阳离子交换树脂及强碱性和弱 碱性阴离子交换树脂。在水介质中,离子与树脂间发生 液固两相间的传质与化学反应过程,它们的结合是可逆 的,即在一定条件下能够结合,条件改变后也可以被释 放出来。 离子交换反应进行的速度与程度受到其结构参数, 如酸(碱)性、交换容量、交联度、粒径等的影响。 1.离子交换树脂在药学方面的应用 1.1 药物树脂缓控释给药系统 离子交换树脂的控释应用主要是在胃肠道中控制药物释放(口服药物树脂缓控释系统)和作为载体用于靶向释放系统。由于离子交换的可逆性,药物树脂口服进入胃肠道后,与胃肠道中的生理性离子发生反向离子交换反应而持续释放药物,发挥疗效。由于胃肠液中的离子种类及其强度相对恒定,故药物释放特性可精确服从为目标制剂所设计的控释标准,而不依赖于胃肠道的pH 值、酶活性及胃肠液的体积等生理因素。但鉴于药物从药树脂复合物中释放较快,因此采取了微囊化技术进一步控制药物的释放,从而形成了第一代的口服药树脂控释系统。同时为避免贮存期及在胃肠道内因树脂膨胀而引发的控释膜破裂,造成药物“突释”,美国Pennwalt 公司对第一代离子交换胃肠道控释给药系统进行了改进,即将药树脂用浸渍剂(impregnating agent)如PEG4000 和甘油处理,阻止了树脂在水性介质中的膨胀,最后采用空气沸腾床包衣等技术用水不溶性但可渗透的聚合物,如乙基纤维素对药树脂包衣作为速率控制屏障来调节药物释放,由此得到第二代口服药树脂控释系统,即Pennkinetic?系统。 与其他给药系统相比,口服药物树脂缓控释制剂具有如下特点:1)药物的释放不依赖于胃肠道内的pH 值、酶活性、温度以及胃肠道液的体积。另外,由于胃肠道液中的离子种类及其强度维持相对恒定,因此药物在体内可以恒定速率释放;2)制剂中含有大量的药树脂微囊,服用时可消除胃排空的

离子交换树脂的再生

离子交换树脂的再生 一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80% 。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如:钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的 2 倍(用NaCl 量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2% 的稀硫酸再生。 氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH 型强碱阴树脂则用4%NaOH 溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。 为加速再生化学反应,通常先将再生液加热至70~80℃。它通过树脂的流速一般为1~ 2 BV/h 。也可采用先快后慢的方法,以充分发挥再生剂的效能。再生时间约为一小时。随后用软水顺流冲洗树脂约一小时( 水量约4BV) ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止。 一些树脂在再生和反洗之后,要调校pH 值。因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性。而一些脱色树脂(特别是弱碱性树脂) 宜在微

离子交换树脂_环境影响报告书

前言 001×7离子交换树脂广泛应用于电力、医药、食品行业的硬水软化、超纯水制备;各种工业废水处理与金属回收,特别是电镀、湿法冶金和有色金属的废水处理;药物提取,并用作脱水剂、催化剂等。随着国民经济加速发展,能源的综合利用增加,产品结构优化和质量的提高,离子交换树脂已在很多领域大面积使用。 根据目前市场调查和信息反馈分析,离子交换树脂不论在国内,还是在国外,供需矛盾相对较突出,尤其是国际上的那些大集团如美国罗姆哈斯公司、美国道喔公司、英国莱特公司都是世界顶级的王牌树脂制造公司。目前全部登录我国,在华东、华北建有庞大的树脂生产基地,所有生产树脂90%以上用以出口。其中,有相当一部分树脂都是国内一些生产厂家为其加工而成,可想而知规模之庞大,有带有垄断国际市场的趋势。因而造成国内需求短缺和紧张,并伴有断货现象,发展的势头有增无减。因此,开拓离子交换树脂产品市场,对增加社会效益、经济效益和环境效益,具有十分重大的意义。 鉴于上述情况,黄山市歙县立徽化工有限公司投资500万元建设年产3000吨001×7离子交换树脂项目,并组织专业技术人员专门走访了相关科研院所,最后确定以上海医药工业研究所为主导树脂合成技术来源,采取纵向指导,横向互补的协作方针,建设本项目,进行共同联谊和发展。拟建项目是坑口乡政府招商引资项目,新征地15亩,地处黄山市歙县坑口乡南深公路边、新安江北岸(距歙县县城约15公里)。公司共有员工120人,其中工程技术人员10人。项目总投资500万元,其中环保投资50万元。项目建成后全年工业总产值2175万元,利税合计600万元。 根据《中华人民共和国环境保护法》、国务院253号令《建设项目环境保护管理条例》和国家环保总局《关于执行建设项目环境影响评价制度有关问题的通知》等文件精神,歙县立徽化工有限公司于2006年3月委托安徽省化工研究院承担该项目的环境影响评价工作。环评技术人员在现场踏勘和完成资料收集的基础上,根据拟建项目所在地的环境特点和工程建设、运行可能对环境造成的影响和范围,依据国家和地方有关环保法规及评价技术规定,编制完成《歙县立徽化工有限公司年产3000吨001×7离子交换树脂项目环境影响报告书》,现呈报环保主管部门审批。

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

离子交换树脂催化剂的应用及发展趋势

离子交换树脂催化剂的应用及发展趋势 赵欢 生命科学与化学学院2009级化学班学号2009061407 摘要:对离子交换树脂的应用优势、市场发展现状进行了详尽分析, 并对未来市场消费情况作了分析和预测。 关键词:离子交换树脂; 优点; 现状; 发展趋势 Application and development trends of ion exchange resin catalyst Abstract:The current status and the problems to be solved for ion exchange resin catalyst in China are introduced. The development trends of ion exchange resin catalyst are analyzed in the end. Key word: ion exchange resin ; feature ;current status ;development trends 离子交换树脂催化剂是一种典型的有机固体催化剂。与无机固体催化剂相比,虽然其化学组成、物理性质和使用方法均有很大不同,但在催化反应方面也有许多共同的地方,例如,他们都可用于石油裂解、酯化、烷基化、异构化、加成、聚合等反应。近年来,随着离子交换树脂的进一步开发,其作为固体酸碱催化剂在醚化和醚键裂解反应、水合反应、酯化反应、缩合和环化反应等领域中的应用也得到不断地发展。1离子交换树脂催化剂的催化性能 离子交换树脂催化剂作为固体酸、碱催化剂与均相溶液中的硫酸、盐酸、氢氧化钠(钾)这些常规的酸、碱催化剂的作用是一样的。树脂固载的酸碱催化剂与用硅胶、氧化铝、硅铝酸盐或沸石这些无机载物与催化活性部位接近,有利的微环境甚至可以用假均相的反应体系来处理;而后者在液相或气相反应中,则是真正的非均相体系。因此,在某种意义上说,离子交换树脂的催化性能介于低分子量的酸、碱均相体系和无机固体酸、碱催化体系之间。目前我国主要离子交换树脂催化剂的用途和催化效率见表1。 表1部分化工产品生产工艺使用的离子交换树脂催化剂及催化效率 2离子交换树脂催化剂的优点 2. 1 催化活性可调

混炼橡胶物理性能

一.拉伸强度 拉伸强度表征制品能够抵抗拉伸破坏的极限能力 ·橡胶的拉伸强度: 未填充硫化胶:聚氨酯橡胶PUR>天然橡胶NR/异戊IR>氯丁橡胶CR>丁基橡胶IIR>氯磺化聚乙烯CSM>丁晴橡胶NBR/氟橡胶FKM>顺丁橡胶BR>三元乙丙橡胶EPDM>丁苯橡胶SBR>丙烯酸酯橡胶ACM>氯醇橡胶CO>硅橡胶Q 填充硫化胶:聚氨酯橡胶PUR>聚酯型热塑性弹性体>天然橡胶NR/异戊IR>SBS热塑性弹性体>丁晴橡胶NBR/氯丁橡胶CR>丁苯橡胶SBR/三元乙丙橡胶EPDM/氟橡胶FKM>氯磺化聚乙烯CSM>丁基橡胶IIR>顺丁橡胶BR/氯醇橡胶CO>丙烯酸酯橡胶ACM>硅橡胶Q 在快速形变下,橡胶的拉伸强度比慢速形变时高;高温下测试的拉伸强度,远远低与室温下的拉伸强度. ·硫化体系的影响 对常用的软质硫化胶而言,欲通过硫化体系提高拉伸强度时,应采用硫磺-促进剂的传统硫化体系,并适当提高硫磺用量.同时促进剂选用噻唑类如M,DM与胍类并用,并适当增加用量. ·填充体系的影响 *填料的粒径越小,比表面积越大,表面活性越大,则补强效果越好. *结晶型(如天然橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大,可出现单调下降. *非结晶型(如丁苯橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值,然后下降. *低不饱和度橡胶(如三元乙丙橡胶,丁基橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值后可以保持不变. *对热塑型弹性体而言,填充剂使其拉伸强度降低. *一般情况下,软质橡胶的碳黑用量在40-60份时,硫化胶的拉伸性能比较好. ·软化体系的影响 总的来说,加入软化剂会降低硫化橡胶的拉伸强度.但软化剂数量不超过5份时,硫化橡胶的拉伸强度有可能增大.因为含有少量软化剂,可以使碳黑的分散效果好. *芳氢油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响小.用量5-15份

离子交换树脂分类

离子交换树脂分类 一、离子交换树脂的组成 离子交换树脂是一类带有功能基的网状结构高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。 H)(强酸性阳离子交换树脂) 阳离子交换树脂:骨架上结合有磺酸基(-SO 3 或羧酸基(-COOH)(弱酸性阳离子交换树脂)。 阴离子交换树脂:骨架上结合有季铵基(强碱性阴离子交换树脂),伯胺基、仲胺基、叔胺基(弱碱性阴离子交换树脂)。 二、离子交换树脂的分类 按骨架结构不同:凝胶型(干态无孔,吸水后产生微孔)和大孔型(树脂内部无论干、湿或收缩、溶胀都存在着比凝胶型树脂更大、更多的孔)。 根据所带的功能基团的特性:阳离子交换树脂(带酸性功能基,能与阳离子进行交换)、阴离子交换树脂(带碱性功能基,能与阴离子进行交换)和其它树脂。 三、离子交换树脂的命名方法 根据离子交换树脂的功能基的性质,将其分为强酸(0)、弱酸(1)、强碱(2)、弱碱(3)、螯合(4)、两性(5)和氧化还原(6)七类(各类后面的数字为其分类代号)。 离子交换树脂的骨架分为苯乙烯系(0)、丙烯酸系(1)、酚醛系(2)、环氧系(3)、乙烯吡啶系(4)、脲醛系(5)、氯乙烯系(6)七类(各类后面的数字为骨架分类代号)。

命名方法: D ¤△▼×■ D 大孔树脂在名称前加D ¤分类代号(阴、阳、酸、碱、强、弱)△骨架分类代号 ▼顺序号 ×■凝胶型树脂后加*并注明交联度 举例: 001×7强酸性苯乙烯系阳离子交换树脂 D001 大孔强酸性苯乙烯系阳离子交换树脂 D113 大孔弱酸性丙烯酸系阴离子交换树脂

离子交换树脂的氧化和降解

离子交换树脂的氧化和降解 强碱阴树脂遭受氧化后,主要表现为季胺基团的逐渐降解,而不会发生骨架的断链。强碱阴树脂的降解主要是季胺基团按顺序分解为叔、仲、伯胺,甚至非碱性物质。在化学除盐工艺中,其主要表现为中性盐分解容量,特别是硅交换容量的降低。 离子交换树脂的氧化和降解 树脂的氧化和降解 树脂的化学稳定性可以用其耐受氧化剂作用的能力表示。阳树脂被氧化后主要发生骨架的断链,而阴树脂则主要表现为季胺基团的降解。 1、阳树脂的氧化: 阳树脂被氧化后主要表现为骨架断链,生成低分子的磺酸化合物以及羧酸基团 其反应为:—CH—CH2——CH—CH2—︱︱◇ +(O) → ◇ + R SO3H \ \ SO3H SO3H O ‖ —CH—CH2——C—CH2—︱︱◇ +(O) → ◇ \ \ SO3H SO3H 备注:因发表框内不具备插图功能,借用“◇”代表苯环,还望各位见谅。

阳树脂遇到的氧化剂主要是游离氯与水反应生成的氧 其反应如下:Cl2 + H2O → HOCl +HCl HOCl → HCl + (O)过去原水中的游离氯主要来自生活用水的消毒。近年来,由于天然水中有机物含量和细菌的增多,在混凝、澄清之前也需加氯,以达到灭菌和降低COD的作用,因此,必须注意游离氯对阳树脂的损害。再生过程中,如果使用质量差的工业盐酸或副产品盐酸,其中含有氧化剂也会对阳树脂造成损害。一般要求进入化学除盐设备的原水中,游离氯的含量应小于0.1mg/L。 防止阳树脂被氧化的方法: (1)活性炭过滤。防止阳树脂被氧化的常用方法是通过活性炭过滤。活性炭脱除游离氯的原理,不单纯是吸附作用,而是一种表面上的化学反应。当活性炭表面吸附的氯达到一定浓度时,就会发生下列反应: Cl2 + H2O → HOCl + HCl C* + HOCl → CO* + HCl 式中:C*——活性炭; CO*——活性炭表面上生成的氧化物。 如果有充分的氯参加反应,CO*可以变为CO或CO2逸出,留下的活性炭可以继续吸附游离氯。为此,为了脱除游离氯,可以

离子交换树脂的研究现状与应用

离子交换树脂 摘要:本文综述了离子交换树脂的发展历史、分类;在各领域的应用、树脂的使用和保管方法及其发展前景等。 关键词:离子交换树脂;分类;应用;保管 1 引言 离子交换树脂是一类带有活性基团的网状结构高分子化合物。在它的分子结构中,一部分为树脂的基体骨架,另一部分为由固定离子和可交换离子组成的活性基团。离子交换树脂具有交换、选择、吸附和催化等功能,在工业高纯水制备、医药卫生、冶金行业、生物工程等领域都得到了广泛的应用。近年来,离子交换树脂无论是从种类、结构还是性能上都出现了很大的变化,其生产和应用也都得到了很大的发展。 我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规离子交换树脂的制备和应用技术已经较为成熟,水平与国外相当。离子交换树脂主要应用于电力、食品、医药、电子和冶金等行业,随着锅炉给水、饮用水和电子用水等对离子交换出水的纯度要求日益提高,促使常规的离子交换树脂生产和应用技术不断完善,同时催生了许多新型的生产工艺不断涌现,使得离子交换树脂产品升级和技术进步的步伐也日益加快。 2 离子树脂的分类 依据离子交换树脂所带活性基团的性质,离子交换树脂课分为阳离子交换树脂和阴离子交换树脂两大类。能与水中阳离子进行交换反应的称为阳离子交换树脂;能与水中的阴离子进行交换反应的称为阴离子交换树脂。根据活性基团上Hˉ和OHˉ电离的强弱程度,又可以分为强酸性阳离子交换树脂和弱酸性阳离子交换树脂,以及强碱性阴离子交换树脂和弱碱性阴离子交换树脂。 2.1强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3ˉ,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸

各种橡胶的性能

各种橡胶的性能材质材质说明优缺点经常用途 丁睛胶NBR (Nitrile Rubber)由丙烯睛与丁二烯共聚合而成, 丙烯睛含量由 18%~50% ,丙烯睛 含量愈高,对石化油品碳氢燃料 油之抵抗性愈好,但低温性能则 变差,一般使用温度范围为 -25~100 ℃。丁睛胶为目前油封 及 O 型圈最常用之橡胶之一。 优点: 具良好的抗油、抗水、抗溶剂及 抗高压油的特性。 具良好的压缩歪,抗磨及伸长力。 缺点: 不适合用于极性溶剂之中,例如 酮类、臭氧、硝基烃, MEK 和氯 仿。 用于制作燃油箱、润滑油箱以及 在石油系液压油、汽油、水、硅 润滑脂、硅油、二酯系润滑油、 甘醇系液压油等流体介质中使用 的橡胶零件,特别是密封零件。 可说是目前用途最广、成本最低 的橡胶密封件。 氢化丁睛胶HNBR (Hydrogenate Nitrile)氢化丁睛胶为丁睛胶中经由氢化 后去除部份双链,经氢化后其耐 温性、耐候性比一般丁睛橡胶提 高很多,耐油性与一般丁睛胶相 近。一般使用温度范围为 -25~150 ℃。 优点: 较丁睛胶拥有较佳的抗磨性 具极佳的抗蚀、抗张、抗撕和压 缩歪的特性 在臭氧、阳光及其它的大气状况 下具良好的抵抗性 一般来说适用于洗衣或洗碗的清 洗剂中 缺点: 不建议使用于醇类,酯类或是芳 香族的溶液之中。 空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 汽车发动机系统密封件。 氟橡胶FPM / FKM (Fluoro Carbon Rubber)分子内含氟之橡胶,依氟含量 ( 即单体构造 ) 而有各种类型。 目前广用的六氟化系氟橡胶最早 由杜邦公司以 "Viton" 商品名 上市。耐高温性优于硅橡胶,有 极佳的耐化学性、耐大部分油及 溶剂 ( 酮、酯类除外 ) 、耐候 性及耐臭氧性;耐寒性则较不良, 一般使用温度范围为 -20~250 ℃。特殊配方可耐低温 至 -40 ℃。 优点: 可抗热至250 ℃ 对于大部份油品及溶剂都具有抵 抗的能力,尤其是所有的酸类、 脂族烃、芳香烃及动植物油 缺点: 不建议使用于酮类,低分子量的 酯类及含硝的混合物。 汽车、机车、柴油发动机及燃料 系统。 化工厂的密封件。 三元乙丙胶EPDM (Ethylene propylene Rubber)由乙烯及丙烯共聚合而成主链不 合双链,因此耐热性、耐老化性、 耐臭氧性、安定性均非常优秀, 优点: 具良好抗候性及抗臭氧性 具极佳的抗水性及抗化学物 高温水蒸汽环境之密封件。 卫浴设备密封件或零件。 制动 ( 刹车 ) 系统中的橡胶零

各种类型离子交换树脂常用再生剂及其用量(打印)

各种类型离子交换树脂常用再生剂及其用量 离子交换树脂性能降解原因 树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。 (2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。 (3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理 (1)阳离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。 (2)阴离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。 (3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

相关文档
最新文档