RCS-993E型失步解列及频率电压紧急控制装置调试大纲

RCS-993E型失步解列及频率电压紧急控制装置调试大纲
RCS-993E型失步解列及频率电压紧急控制装置调试大纲

报告编号:

武安发电公司2×300MW机组工程

失步解列装置静态

调试大纲

电控维护班 2011-12-27编制人:韩辉

工程名称:大唐武安发电有限公司2×300MW机组工程报告名称:失步解列装置静态调试报告

报告编号:

编制:大唐武安发电有限公司生产准备部电控维护报告编写:

审核:

批准:

目录

~~~~~~~~~~~~~~~

1 概述

武安发电有限公司2×300MW机组工程失步解列装置采用国网电力科学研究院稳定技术研究所南京南瑞集团公司稳定技术分公司生产的RCS-993E型失步解列及频率电压紧急控制装置,两条线路共配置两套装置,一条线路对应一套装置。该装置主要用于失步震荡解列,同时可完成低频、低压自动解列、切负荷功能。

2 调试目的

本次单体调试是对失步解列装置进行定值整定试验、逻辑功能试验以及整组传动等试验,保证装置可靠动作,确保系统安全运行。

3编制标准和依据

3.1《继电保护和电网安全自动装置检验规程》DL/T 995-2006

3.2《继电保护和安全自动装置技术规程》GB/T 14285-2006

3.3《河北南部电网继电保护运行管理规程》冀电调(2007)27文

3.4 《RCS-993E型失步解列及频率电压紧急控制装置技术及使用说明书》

4调试使用仪器

4.1天进MC2000系列继电保护测试仪

4.2 Kyoritsu 3007A型绝缘摇表(500V)

5 实验前注意事项

5.1试验前应检查屏柜及装置在运输过程中是否有明显的损伤或螺丝松动。

5.2一般不要插拨装置插件,不触摸插件电路,需插拨时,必须关闭电源,释放手上静

电或佩带静电防护带

5.3使用的试验仪器必须与屏柜可靠接地。

*以下除传动试验,均应断开保护屏上的出口压板。

5.4 RCS993E 频率电压紧急控制功能判断的对象是同一系统的两段母线电压或线路电压,所以试验时如果两组电压输入都加了量时,必须两组电压输入的正序电压或频率同

时下降或升高。如一组电压输入不加量或发生TV断线,装置自动取正常的那组电压进行判断。

5.5 在RCS993E装置上接直流电源时,应保证直流电压110V,达不到时应对整流装置进行调节,并用万用表测量电压值,调节误差在*范围内,

6 保护装置的准备

6.1试验前请详细阅读《RCS-993E 失步解列及频率电压紧急控制装置说明书》。

6.2 直流电源上电检查

(1) 核对装置或屏柜直流电压极性、等级,检查装置或屏柜的接地端子应可靠接地。

(2) 加上直流电压,1QD7接直流“+”、1QD10接直流“-”(单体),若直流母线带电可不考虑上述单体情况;合上屏后空气开关1K以及装置电源开关。

(3) 功能菜单及按键检查:检查各功能菜单与说明书一致,所有按键功能正确,操作灵活可靠。

(4)电源检查:拉合电源开关三次,装置工作正常,无异常报警,电源缓慢上升和下降试验过程中保护装置无异常,80%额定电压下逆变电源可靠启动。

(5)自检功能检查:装置上电后全面自检,自检完成后,液晶显示屏显示正常,面板指示灯指示正确。上电延时几秒钟,装置“运行”绿灯亮,“报警”黄灯灭,“跳闸”红灯保持出厂前状态 (若亮可复归)。

(6) 时钟整定与校核:时钟修改整定正确,断、合直流电源后,时钟走时仍准确。

(7) 保护定值输入及固化检查:定值输入及固化良好,断、合直流电源后,保值不丢失和改变。

6.3按使用说明所述方法进入保护菜单,熟悉装置的采样值显示、报告显示、报告打

印、整定值输入、时钟整定等方法。

6.4 名称配置。进入菜单“定值整定-名称配置”,出线如下界面:

1 单元1名称厂柏I

2 单元2名称厂柏II

3 过频解列/切机?解列(或第1轮)……………

将表中的第1、2项整定为厂柏I 、厂柏II,装置过频控制功能用于过频解列,则上表第3项整定为“解列”,若用于过频切机,则上表第3项整定为“第一轮”。

7 调试内容

7.1 第一套装置校验

7.1.1 装置铭牌及软件版本号检查

装置型号模块名称CRC校验码版本号管理码出厂日期

7.1.2 装置一般性检查

检查项目装置配置外观检查装置内插件检查背板接线检查检查结果

7.1.3 装置绝缘测试

测试项目交流电压回路

对地

交流电流回路

对地

直流回路对地出口回路对地

测试值(MΩ)

7.1.4 交流回路精度检验(失步解列一)

电流输入量接线,输入交流Ia,Ib,Ic,In,分别接1ID1,1ID2,1ID3,1ID4。

电压输入量接线,输入交流Ua,Ub,Uc,Un,分别接1UD1,1UD2,1UD3,1UD4。(再与实际端子排核对)

DSP交流回路采样

名称输入值(A) A相B相C相A-B B-C C-A 误差(%)

厂柏I 0.1 ≤5

0.5 ≤5

1.0 ≤5 5

名称输入值(V) A相B相C相A-B B-C C-A 误差(%)

厂柏I

10 ≤5 57.74 ≤5

CPU交流回路采样

名称输入值(A) A相采样值(A) \ \ 误差(%)

厂柏I 0.1 \ \ ≤5

0.5 \ \ ≤5

1.0 \ \ ≤5 5.0

名称输入值(V) A相采样值\ C相采样值误差(%)

线一

10 \ ≤5 57.74 \ ≤5

DSP交流回路采样

名称输入值(A) A相B相C相A-B B-C C-A 误差(%)

厂柏II 0.1 ≤5

0.5 ≤5

1.0 ≤5 5.0

名称输入值(V) A相 B相C相A-B B-C C-A 误差(%)

厂柏II

10 ≤5 57.7 ≤5

CPU交流回路采样

名称输入值(A) A相采样值(A) \ \ 误差(%)

厂柏II 0.1 \ \ ≤5

0.5 \ \ ≤5

1.0 \ \ ≤5 5.0

名称输入值(V) A相采样值\ C相采样值误差(%)

厂柏II

10 \ ≤5 57.74 \ ≤5

例如:在线路厂柏I中加入额定电压57.7伏,电流加入1安,在保护状态中看线路厂柏I线电压和电流的采样值是否在误差允许的范围内,然后再依次加入不同等级的

电压和电流,看是否在误差允许范围内。

7.1.5频率回路采样试验

输入值

34Hz 38Hz 42Hz 46Hz 48Hz 50Hz 52Hz 54Hz 58Hz 62Hz 试验值

厂柏I电压

厂柏II电压

7.1.6开入量检查

开入量名称装置端子号屏柜端子号装置开入显示结果(正确与否)打印915-901

对时915-902

投检修状态915-903

信号复归915-904

线路1失步解列915-905

线路2失步解列915-906

二取二方式915-907

低频投入915-908

过频投入915-909

低压投入915-910

过压投入915-911

7.1.7开出量检查

开出量名称装置端子号屏柜端子号接点动作情况结果

厂柏I线跳闸1 B02-B01 1CD1-1CD31

厂柏I线跳闸2 B04-B03 1CD3-1CD33

厂柏II线跳闸1 B06-B05 1CD5-1CD35

厂柏II线跳闸2 B08-B07 1CD7-1CD37

#1主变跳闸1 B10-B09 1CD9-1CD39

#1主变跳闸2 B12-B11 1CD11-1CD41

#2主变跳闸1 B14-B13 1CD13-1CD43

#2主变跳闸2 B16-B15 1CD151-1CD45

开关5跳闸1 B18-B17 1CD17-1CD47

开关5跳闸2 B20-B19 1CD19-1CD49

开关6跳闸1 B22-B21 1CD21-1CD51

开关6跳闸2 B24-B23 1CD23-1CD53

中央信号装置闭锁A08-A10 1XD1-1XD3

中央信号装置异常A08-A12 1XD1-1XD4

中央信号跳闸A28-A30 1XD2-1XD5

遥信装置闭锁A02-A04 1YD1-1YD3

遥信装置异常A02-A06 1YD1-1YD4

遥信跳闸A24-A26 1YD2-1YD5

7.1.8出口组态整定

装置中共提供14组跳闸出口,可灵活组态到各轮出口上。整定范围0000H~3FFFH,根据调度整定后填写。

动作轮次整定值解释线路1失步解列0001H Bit0,出口1

线路2失步解列0000H 不出口低频解列

过频第1轮

过频第2轮

过频第3轮

低压解列

过压解列

备用

备用

备用

备用

举例说明:线路1失步解列需切除线路1,可以跳闸出口1出口。具体如何出口需根据地调下达定值单及跳闸出口后确定。组态整定值Bit中的定义如下:

位(Bit)出口

0 跳闸出口1(4付接点)

1 跳闸出口2(4付接点)

2 跳闸出口3(4付接点)

3 跳闸出口4(4付接点)

4 跳闸出口5(4付接点)

5 跳闸出口6(4付接点)

6 跳闸出口7(4付接点)

7 跳闸出口8(2付接点)

8 跳闸出口9(2付接点)

9 跳闸出口10(2付接点)

10 跳闸出口11(2付接点)

11 跳闸出口12(2付接点)

12 跳闸出口13(3付接点)

13 跳闸出口14(4付接点)

8 功能校验

8.1确定功能板投入,RCS-933E型失步解列及频率电压紧急控制装置内部软压板也投入。电流输入量接线,输入交流Ia,Ib,Ic,In,分别接1ID1,1ID2,1ID3,1ID4。

电压输入量接线,输入交流Ua,Ub,Uc,Un,分别接1UD1,1UD2,1UD3,1UD4。如厂柏I 线跳闸1动作,应通过1CD1,1CD31,将信号反馈至继电保护测试仪中。查看装置及测试仪中的延时时间。

8.1.1 低电压试验

8.1.1.1做低压试验时需要注意下列三个闭锁条件:

(1)Ⅰ、Ⅱ母线正序电压均<0.15Un(电压消失)

(2)Ⅰ、Ⅱ母线负序电压均>0.15Un(电压不对称)

(3)-du/dt≥Du3(滑差闭锁)

满足以上任何一个闭锁条件,装置均不做低压判断。

8.1.1.2 低压试验电压滑差也必须满足平稳变化,防止电压突变闭锁(滑差闭锁)。

8.1.1.3按照定值作如下试验(请注意参看《RCS-993E 失步解列及频率电压紧急控制装置技术及使用说明书》中低压减载工作原理)

U≤ULqd,t≥0.05s 低压起动

U≤ULzd,t≥TULzd 低压解列动作

◇注意:低压元件动作量是电压正序,做试验时一定要注意。

8.1.1.4低电压动作过程图

8.1.1.5低电压定值检测

定值:启动值85%Un,低压定值80%Un,延时1s,电压变化率动作值du/dt=0.2UnV/S 3

/

100

Un。

整定值80%Un 动作延时1S du/dt=0.19

Un V/S du/dt=0.21 Un V/S

1.015 装置不动作装置动作

8.1.1.5如果做低压试验时,若低压解列对应的出口组态定值整定为0000H,则低压动作时,有低压解列的动作报告,而无跳闸信号,也不会出口。

8.1.2 低频试验

8.1.2.1做低频试验时需要注意下列三个闭锁条件:

(1)Ⅰ、Ⅱ母线正序电压均<0.15Un(电压消失)

(2)-df/dt≥Df3(滑差闭锁)

(3)f<33Hz 或 f>65Hz(频率异常)

满足以上任何一个闭锁条件,装置均不做低频判断。

按照定值作如下试验

f≤FLqd,t≥0.05s 低频起动

f≤FLzd,t≥TFLzd 低频解列动作

8.1.2.2 低频动作过程图

8.1.2.3 低频定值整定

定值:低频定值48.5HZ ;延时1s ,频率变化率动作du/dt=6HZ/S 3

/100 Un

整定值 48.5HZ 动作延时1S du/dt=6HZ/S du/dt=5.9HZ/S 48.5HZ 1.0508 装置不动作 装置动作 8.1.3 过频试验

试验前准备:1LP6()压板投入,控制字:投入

8.1.3.1做过频试验时需要注意下列三个闭锁条件:

(1)Ⅰ、Ⅱ母线正序电压均<0.15Un (电压消失)

(2)df /dt≥D FHbs (滑差闭锁)

(3)f <33Hz 或 f >65Hz (频率异常)

满足以上任何一个闭锁条件,装置均不做过频判断。 过频动作必须同时满足以下三个条件时才能动作出口:

(1) f≥FHnzd ; (2)df/dt ≥0;(3)t ≥THnzd

8.1.3.2过频控制的判别式

f ≥FHqd ,t ≥0.05s 过频起动

f ≥FH1zd ,t ≥TFH1 过频第一轮动作 f ≥FH2zd ,t ≥TFH2 过频第二轮动作 f ≥FH3zd ,t ≥TFH3 过频第三轮动作

8.1.3.3过频控制动作过程

8.1.3.4过频定值检查

定值:高频定值51.2HZ ,延时1.0s ,频率变化率动作du/dt=6HZ/S 3

/100 Un

整定值 51.2HZ 动作延时1S du/dt=5.9HZ/S du/dt=5.85HZ/S

第一轮 51.2HZ 0.991S 装置不动作 装置动作 第二轮 51.6

1.449 装置不动作

装置动作

8.1.3.4 注意

如果做过频试验时,若某一轮对应的触控组态定值整定为0000H ,则此轮动作时,有此轮的动作报告,而无此轮的跳闸信号,也不会有出口。

过频试验频率滑差必须满足平稳变化,主要是考虑到滑差闭锁条件。如果现场发现实验仪器设置正确,做法也正确,但试验却无法做出时,请使用Debug2000及稳控相应文件进行录波分析或者打印波形,主要观察频率变化滑差是否在某时段超过滑差闭锁定值DFHbs ,或者三相电压频率变化非常不一致,波动很大,造成Df/dt<0。

8.1.4 过压试验

8.1.4.1 做过压时注意下列闭锁条件:

I 、II 母线负序电压均>0.15Un (电压不对称)

8.1.4.2 过压控制的判别式:

U ≥UHqd ,t ≥0.02S 过压起动

U ≥UHzd ,t ≥TUHzd 过压解列动作

8.1.4.3 过压动作过程

8.1.4.3 过压定值检查

定值:过压定值1.2Un ,延时2S

整定值 1.2Un 动作延时2S

负序电压

1.2Un

2.034S

闭锁功能正确

8.1.5电压恢复测试

8.1.5.1短路故障闭锁及系统短路故障切除后立即允许低电压切负荷试验。

当系统发生短路故障时,母线电压突然降低,-Du/dt ≥DULbs,此时装置立即闭锁,不再进行低电压判断。而当保护动作切除故障元件后,装置安装处的电压迅速回升,如果恢复不到正常的数值,但大于K1(故障切除后电压恢复定值),则装置立即接触闭锁,允许装置快速切除相应数量的负荷,使电压恢复。装置中“躲过故障切除时间Tfc ”定值,一般应大于后备保护的动作时间。举例:若后备保护最长时间为4S ,则Tfc 可以设为4.5~5秒。如果电压在超过Tfc 时间还未回升到K1以上,则装置发生异常告警信号。做该试验时,可以保护测试仪设定三个状态:正常状态(要保证TV 断线恢复)->电压下降过程(-Du/dt1≥DULbs )->电压回复过程(Du/dt2≥DULbs),第二、三状态保持的时间要求根据Tfc 和滑差进行计算。

8.1.5.2 电压恢复定值检测

定值:恢复电压75%Un 3

/100 Un

整定值

闭锁值

不闭锁值

42V

43.5V

8.1.6失步振荡试验

8.1.6.1试验前的准备

1、系统阻抗Zm (对应装置定值中本侧阻抗);

2、系统阻抗Zn ;

3、线路阻抗Zl (Zn+Zl 对应装置定值中对侧阻抗);

4、振荡初始功角(振荡前的Em 与En 的夹角);

5、振荡周期;

6、振荡次数(改参数需大于装置定值振荡次数);

整定值

动作值

不动作值 79.1%Ue 1.05欧 80%Ue 1欧

8.1.7 PT 断线报警功能检查,CT 断线检查

PT 断线报警功能正确,CT 断线功能正确。

9 跳闸输出接点检查

本项检查在保护功能试验完成后进行出口组态完成。

(1) 出口组态整定

装置的各轮出口采用二进制整定方式,各轮出口组态各自独立。即各轮动作后跳何开关可以按用户需要自由整定。跳闸矩阵各位所表示的功能定义如下:

跳闸控制字的整定将直接影响跳闸输出接点的动作行为。只有某跳闸原件的跳闸控制字整定为跳某开关,这个元件的动作才会使对应的跳闸接点动作。检查跳闸接点时要

位 13 12 11 10 9 8 7 6 5 4 3 2 1 0 功

能 跳闸出口

14 跳闸出口

13 跳闸出口

12 跳闸出口

11 跳闸出口

10 跳闸出口

9

跳闸出口8

跳闸出口7

跳闸出口6

跳闸出口5

跳闸出口4

跳闸出口3

跳闸出口2

跳闸出口1

特别注意。6结论

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

利用LM331进行频率电压转换教学教材

.ffff5.1 频率/电压变换器* 一、概述 本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化; 正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择 可供选择的方案有两种,它们是: ○ 1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○ 2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○ 2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理 LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. -输入比较器 定时比较器 + +56 7 1s Q T C t R t V CC 2/3V CC 9/10V CC s 置“1”端 置“0”端 R R L C L -V 0 fi 图5-1-1 +V CC Q + 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:

2/3V CC v ct t 1.1R t C t t 0V 0 v CL t 3.5v p-p V CC 1/f i t 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

全过电压抑制柜、消弧柜、消弧线圈的比较

全过电压抑制柜和消弧线圈、消弧柜的比较(一)消弧线圈 消弧方面:利用电感电流和电容电流相位差为180°的特点,当电网发生接地故障后,消弧线圈提供一电感电流,补偿故障点电容电流,使接地电流减小,达到熄灭电弧的目的。 缺点:1、消弧线圈对工频电容电流能起到一定的补偿作用,对高频电流无法起到补偿作用,而电缆线路发生单相电弧接地时,电弧电流以高频电流为主。 2、消弧线圈的使用还会降低小电流选线的灵敏度。 3、消弧线圈体积大,造价高,受电网规模的影响,不利于电网的长远规划。(二)消弧柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、PT柜功能:系统正常运行时,装置可以作PT柜用不会给系统增加任何额外负担。 3、具备微机消谐功能。 缺点:同一系统内大量使用消弧柜,也会造成弧光接地时多台消弧柜同时动作,形成多点接地。若其中有消弧柜发生相别误判或误动,则会形成严重的相间短路事故。 (三)全过电压抑制柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、根据不同用户的系统进行针对性设计生产,同一系统中不同位置选用不同型号的全过电压限制装置,使装置动作的协调性大大提高,避免出现弧光接地时多台接地开关同时动作形成多点接地或误动引起的相间短路事故。保护功能也更加完善合理,有效消除系统过电压保护死区。 3、可以有效抑制系统中大气过电压、操作过电压,装置中配有特制的尖峰过电压吸收装置,可有效抑制大气过电压、操作过电压等过电压尖峰,缓和过电压波头陡度。内部采用专制的尖峰过电压吸收装置吸收过电压能量大,2ms方波电流可以达到3200A。

电力频率调整及控制

频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。 12.1.2.3电力系统频率特性 电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出: 式中――电力系统有功功率变化量的百分值: ――系统频率变化量百分值; ――为备用容量占系统总有功负荷的百分值。 12.1.2.4一次调频 一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。

智能过电压综合抑制柜SHK-XGB

智能过电压综合抑治柜SHK-XGB 说明书 上海合凯电力保护设备有限公司 2013年11月

?概述 我国3-35kV系统中存在如下几种过电压:断路器动作过程中产生的操作过电压、电容元件和非线性电感在一定条件下产生的谐振过电压、雷电时产生的大气过电压和单相接地时产生的弧光过电压等。目前尚无针对这些过电压的完整的保护方案,从而会发生电缆放炮、电动机绝缘击穿、避雷器爆炸和电压互感器烧毁等事故。此类事故发生的原因,除了与系统中安装的过电压保护装置的性能有关外,系统本身的复杂性对过电压装置的选择有着重要的影响,对于不同的系统,选择过电压保护时需考虑系统输电线路的类型,输配电线路的网络结构,负载的性能和系统的接地方式等。 针对如此复杂的系统,难以孤立的使用某种或某几种过电压保护装置来全面抑制各种类型的系统过电压,且这些不同厂家生产的过电压保护产品,因保护特性不能相互匹配,而无法彻底有效的抑制系统过电压。 针对目前中压系统过电压防治的现状,我公司研制生产了智能过电压综合抑治柜(简称抑治柜,型号为SHK-XGB),该柜可消除系统中过电压保护元件及装置的保护死区,优化系统过电压的保护特性。 本装置中所有的主要器件由我公司针对消弧工况研发、试验和生产,使用了我公司3项专利。专利号分别为:ZL 2011 2 0205412.0、ZL 2011 2 0203815.1、ZL 2012 2 0721125.X 。 ?产品的功能、特点 ◆主要元器件功能 ?高能容能量吸收器SHK-LEP

高能容能量吸收器(SHK-LEP),能够有效平缓过电压的上升前沿并消平电压尖峰,并能够耐受过电压产生的超大能量,该专用元件与本公司生产的过电压保护器及消弧柜的保护特性相匹配,可以全面消除系统过电压保护的死区。 2ms的方波电流可以达到3200A。 ?半导体自限流强阻尼抑制器SHK-SIDR SHK-SIDR半导体自限流强阻尼抑制器能够消除电压互感器产生的铁磁谐振。限制电压互感器一次绕组的激磁电流突增,防止因电压互感器一次绕组电流增加,熔断器熔断后因能量不足不能灭弧引发的母线短路事故。 装置安装在PT中性点与地之间,采用了正温度技术,利用电阻的阻尼作用,可破坏其谐振条件,使谐振消除。在正常运行状态下电阻为0,不改变PT的零序回路,因此不会影响互感器的测量精度,也不会放大中性点不平衡电压;在谐振发生时,电阻趋于∞,相当于互感器不接地,也就破坏了零序谐振回路。 ?防磁饱和式PT SHK-USPT SHK-USPT系列防磁饱和式电压互感器是一种特殊的变压器,按比例变换电压。它被广泛应用于供电系统中向测量仪表和继电器的电压线圈供电,实现测量仪表、保护设备及自动控制设备的标准化、小型化。同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。 产品采用的励磁技术,其主绝缘为树脂材料,采取真空浇注后再压力注射,保证产品的绝缘性能优良。确保产品各种工况的用户单位。同时产品的抗饱和系数可以做到3.5倍。 产品采用了优质硅钢片,降低工作磁密,从而保证了在最大的过电压下互感器不饱和,不会与输电线路的电容发生谐振。铁芯及线圈采用特殊性设计,

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节 摘要 在现实中系统功率并不是一个恒定的值,而是随时变化的,在系统中,每时每刻发电功 率和用电功率基本平衡。而功率又是影响频率的主要因素,当发电功率与用电功率平衡时,频率基本稳定,当发电功率大于用电功率时系统频率则上升,反之则下降,所以系统对有功 功率和频率进行调整。本文研究了电力系统频率及有功功率的自动调节进行了详细的研究与论证。 关键词:频率有功功率自动调节 第一章频率和有功功率自动控制的必要性 1电力系统频率控制的必要性A频率对电力用户的影响 (1)电力系统频率变化会引起异步电动机转速变化,这会使得电动机所驱动的加工工业产品的机械的转速发生变化,转速不稳定会影响产品质量”甚至会出现次品和废品。 (2)电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有 些设备甚至无法工作。这对一些重要工业和国防是不能允许的。 (3)电力系统频率降低将使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。 B频率对电力系统的影响 (1)频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。对于额定频率为50Hz的电力系统,当频率低到45Hz附近时,某些汽轮机的叶片可能因发生共振而断 裂,造成重大事故。(次同步谐振,1970、1971年莫哈维电厂790MV机组的大轴损坏事故) (2)频率下降到47-48HZ时,火电厂由异步电动机驱动的辅机(如送风机、送煤机)的出力随之下降,从而使火电厂发电机发出的有功功率下降。这种趋势如果不能及时制止,就会在短时间内使电力系统频率下降到不能允许的程度。这种现象称为频率雪崩。出现频率雪崩会造 成大面积停电,甚至使整个系统瓦解。 (3)在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。 (4)电力系统频率下降时,异步电动机和变压器的励磁电流增加,使无功消耗增加,引起系统 电压下降,频率下降还会引起励磁机出力下降,并使发电机电势下降,导致全系统电压水平降

电压频率转换

A1的反馈电阻决定其直流增益。调整电位器RP1(10kΩ),使输入频率为30kHz 时,A1输出为3V,这样对于输入0~30kHz频率,可得0~3V输出电压,线性度为0.005%左右。 温漂取决于电容C2、A1的反馈电阻以及基准电压(13脚电压)。为此,C2采用温度系数为-120ppm/℃的聚苯乙烯电容,R2(75kΩ)采用温度系数为+120ppm/℃的电阻,基准电压电路的稳压二极管VD1采用LT1004。 本电路开关电容滤波器采用LTC1043,A1采用LF356,也可用其他讼司类似产品代替。 如图是NE555构成的电压/频率转换电路。电路中n,A1和A2构成同相积分器,VT1和A3构成恒流源,NE555构成单稳多谐振荡器。VT2是受NE555控制使其开关工作,对恒流源实行通/断控制。 A1和A2构成同相积分器,即同相输入电位较高,则输出上升;反之,同相输入电位较低,则输出下降。恒流源电流对C1进行充电,由于A2的同相输入为零,致使A2输出向负方向变化。由于A2为反相器,因此,A1的输出当然是向正方向上升。若恒流源切断,则积分电流仅是与恒流源反向的输入电流对C1反向充电,又使A2的输出电压向正方向变化,同理A1的输出向负方向变化。由此可知,积分电流受VT2的控制改变方向,从而实现了A1的积分输出改变方向。A1的输出送至NE555的2脚,只要7脚内部晶体管开路,C2就由R4充电使其电压上升,当6脚电平达到(2/3)Ucc时就会使片内触发器翻转,3脚变为低电平,同时C2通过7脚放电返回到零电位。由于3脚为低电平,VD1导通使VT2截止,这就切断了恒流源向积分器的充电通路。这时,A1输出下降,一直降到(1/3)Ucc时又使NE555的2脚为低电平并处于触发状态,于是又开始新的一轮循环,即3脚输出高电平,C2通过R4充电,VD1截止使恒流源为积分器提供电流直到3脚返回到低电平为止。重复上述过程就形成振荡,将输入0~-1OV电压转换为0~100 kHz的频率输出。

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

电能质量 电力系统频率允许偏差(GBT15945-1995)

中华人民共和国国家标准 电能质量电力系统频率允许偏差 GB/T159451995 Quality of electric energy supply Permissible deviation of frequency fof power system 国家技术监督局1995-12-21批准1996-08-01实施 1主题内容与适用范围 本标准规定了电力系统频率允许偏差值及其测量仪表的基本要求 本标准适用于正常运行下标称频率为50Hz的电力系统 本标准不适用于电气设备的频率允许偏差 2术语 2.1频率偏差frequency deviation 系统频率的实际值和标称值之差 2.2频率变动frequency variation 频率变化过程中相邻极值频率之差 2.3冲击负荷impact load 生产(或运行)过程中周期性或非周期性地从电网中取用快速变动功率的负荷 3频率偏差允许值 3.1电力系统正常频率偏差允许值为0.2Hz当系统容量较小时偏差值可以放宽到 0.5Hz 3.2用户冲击负荷引起的系统频率变动一般不得超过0.2Hz根据冲击负荷性质和大小以及系统的条件也可适当变动限值但应保证近区电力网发电机组和用户的安全稳定运行以及正常供电 4测量仪表 用于频率偏差指标评定的测量须用具有统计功能的数字式自动记录仪表其绝对误差不大于0.01Hz ______________ 附加说明 本标准由全国电压电流等级和频率标准化技术委员会提出并归口 本标准由电能质量电力系统频率允许偏差国标工作组负责起草 本标准由电力科学研究院机械标准化研究所国家电力调度中心电力部信息所纺织机械研究所牵引电气设备研究所等单位参加起草 本标准主要起草人林海雪俞莘民雷晓蒙向海平曹军梅罗新潮蔡邠

简述电力系统运行控制目标及其控制自动化

简述电力系统运行控制目标及其控制自动化 发表时间:2018-06-22T14:16:41.007Z 来源:《电力设备》2018年第5期作者:吕平杰 [导读] 摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。 (身份证号码:33072219870826XXXX 浙江杭州 310000) 摘要:电力自动化技术在提高系统安全运行的同时,还能在一定程度上提高电力单位的经济效益。虽然,电力自动化技术的应用是一项极为复杂且繁琐的工作,但只要科学运用,势必会提高供电的安全性以及稳定性,同时,还能为电力建设行业的发展创造有利条件,最终为老百姓谋福利。 关键词:电力系统;运行控制;自动化技术;应用 1 电力系统的自动化控制以及它的控制目标 1.1 保证电力系统运行的安全 安全是一切生产的前提。每一个电力企业在电力生产中最常提的口号是“安全第一”。安全,就是要杜绝事故的发生,这是电力企业的头等大事。大家都知道,电力系统一旦发生事故,那将会造成极其严重的后果,轻者造成电气设备不同程度的损坏,严重影响居民的正常用电,同时也会给生产厂家造成成一定的损失;重者更是波及到电力系统覆盖的广大区域,使生产设备受到大规模严重破坏,更会造成人员的伤亡,严重影响到国民经济的健康发展。因此,努力保证电力系统的安全运行是电力企业最重要的任务。 1.2 保证电能符合质量标准 与所有的商品一样,电能也是有一定的质量标准的,通常是指波形、电压和频率三项指标。通常,发电机产生电压的为正弦波,因为整个系统中许许多多的设备在一开始设计的时候都将波形问题进行了充分的考虑,通常情况下,底层用户所获得的电压波形一般也是正弦波。一旦波形不是正弦的,那么电压波形就会有许许多种高次波,这样的电波对于电子设备会产生不利影响,通讯的线路也会有一定的干扰,电动机的效率也会降低,影响正常的操作运行。更为严重的是,这还可能使电力系统发生危险的高次谐波谐振,使电气设备遭到严重破坏。 频率是电能质量标准中要求最严格的一项,频率允许的波动范围在我国是50+0.2Hz(有的国家是±0.1Hz)。使频率稳定的关键是保证电力系统有功功率的供求数量时时刻刻都要平衡。前已说过,负荷是随时变动的,因此,只有让发电厂的有功出力时时刻刻跟踪负荷舶有功功率,随其变动而变动。以往那种调度员看到频率表指示的频率下降之后再打电话命令发电厂增加发电机出力的时代早已进去了。现在调频过程是由自动装置自动进行的。但是负荷如果突然发生了大幅度的变化,超出了自动调频的可调范围,频率还会有较大变化。 1.3 保证电力系统运行的经济性 运行控制在电力系统中,一方面要在意电能质量问题和剧增安全问题,另一方面要将发电成本控制到最低,降低传输损失,从而将整个电力系统的运行成本进行优化。在已经正常运行的电力系统中,调度方案对于其运行经济性有着至关重要的作用。一定要在保证系统的安全的基础上,对于安排备用容量的分布和组合进行整体优化,考虑发电机组的效率和性能,水电厂水头以及燃料种类情况,加上负荷中心距离发电厂的远近等因素,选择一个经济性能最优的电力调度方案。 2电力自动化技术的应用 2.1现场总线技术在电力工程中的的应用 从电力企业现行的发展状况分析,现场总线技术在诸多电力工程中均有所涉及。现场总线技术,引入了数据模型。利用变送器,能够对电量数据进行搜集,发送具体的信号。根据该模型,还可对信号作出处理,最终给出精准的判断。现场总线技术,并非对现场数据或是信息作出分析,更多的是为了有效地控制各类数据。电子工程在日常的活动中,电力装置均有明显的综合性。它将传感器、控制系统、数字通信以及计算机技术集合起来。现场总线技术,可以适应系统以及不同数据提出的变化需求,为信息共享提供诸多的便利。 2.2电网调度技术的自动化 即以计算机为支撑的电网调度系统,可以对电网实际的运行状况作出动态地监控,对设备潜在的故障进行处理,并分析其安全情况。换言之,借助计算机技术处理各类信息,提出针对性的管理方案,使电网系统可以有效地运行。借助电网调度自动化技术,有助于防范和规避电力工程中不同类型的安全事故,同时还可减小电网损耗,将电网损伤降低至最小,使电网可以顺畅地工作。除上述外,电网调度技术同时也能够对某些突发事件进行处置。所以,促进电网调度技术日渐地走向自动化,这是必然的趋势。 2.3变电站技术的自动化 也就是将通讯技术、计算机进行全面地整合,对信息数据作出均衡地处理。同时,也可以对变电站相关信息加以搜集,使变电站设备以及整个电力系统均可完成重组。借助变电站技术,可以适应电网不同程度的建设需求,同时也可以让操作变得更为简单。监控某些数据时,也可以对系统中某些单元模块有无故障作出识别,使其能够在安稳的状态下运行。 2.4主动对象数据库技术在电力工程中的应用 主动对象数据库技术,引入了电力系统本身的监视功能。借助存储技术,结合对象函数,能够对电力工程进行自动化运用。利用主动对象数据库技术,电力工程可以得到较好地监控,增加对数据的输入以及传输速率,为数据管理降低额外的压力。所以,主动对象数据库技术已被视作监控系统中相当有利的主导技术,并受到广泛的认可。 2.5光互联技术在电力工程中的应用 光互联技术,借助电子交换以及电子传输技术,可以对网络作出拓展,同时对编程结构予以重组。该项技术,能够对数据进行采集、分析和控制,让电力系统变得相当的灵活。电容负载,对光互联技术有极大的影响,可以适应不同类型的监控需求。另外,光互联技术同时也能够进行高级应用或是对电网进行分析,为调度员日常的调度工奠定可靠的基础。电力工程中,光互联技术已有较为普遍的运用。它能够提升处理器本身的干涉力,让设备有相当高的抗磁干扰力。同时,电力系统也能够变得更为安全,拥有更完善的功能。可见,将光互联技术引入到电力工程中,有深刻的现实意义。 3电力系统自动化技术的发展趋势 电力系统自动化是我国电力系统的重要发展方向,现如今,我国的电力系统自动化主要体现在发电和配电两个方面。而电力系统自动化技术的未来发展上,还要求对电力系统能够进行远程的监控,并对电力系统的故障进行相应的解决,实现最少人管理甚至无人管理,降

电力系统频率调整及控制汇总

12.1.1.1频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规 定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定 频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷 推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷 也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫 做负荷的频率静态特性。 综合负荷与频率的关系可表示成:

由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。 12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而 ①和②表示发电机出力分别为PG1和PG2时对应的频率。

RCS-993E型失步解列及频率电压紧急控制装置调试大纲

报告编号: 武安发电公司2×300MW机组工程 失步解列装置静态 调试大纲 电控维护班 2011-12-27编制人:韩辉

工程名称:大唐武安发电有限公司2×300MW机组工程报告名称:失步解列装置静态调试报告 报告编号: 编制:大唐武安发电有限公司生产准备部电控维护报告编写: 审核: 批准:

目录 ~~~~~~~~~~~~~~~

1 概述 武安发电有限公司2×300MW机组工程失步解列装置采用国网电力科学研究院稳定技术研究所南京南瑞集团公司稳定技术分公司生产的RCS-993E型失步解列及频率电压紧急控制装置,两条线路共配置两套装置,一条线路对应一套装置。该装置主要用于失步震荡解列,同时可完成低频、低压自动解列、切负荷功能。 2 调试目的 本次单体调试是对失步解列装置进行定值整定试验、逻辑功能试验以及整组传动等试验,保证装置可靠动作,确保系统安全运行。 3编制标准和依据 3.1《继电保护和电网安全自动装置检验规程》DL/T 995-2006 3.2《继电保护和安全自动装置技术规程》GB/T 14285-2006 3.3《河北南部电网继电保护运行管理规程》冀电调(2007)27文 3.4 《RCS-993E型失步解列及频率电压紧急控制装置技术及使用说明书》 4调试使用仪器 4.1天进MC2000系列继电保护测试仪 4.2 Kyoritsu 3007A型绝缘摇表(500V) 5 实验前注意事项 5.1试验前应检查屏柜及装置在运输过程中是否有明显的损伤或螺丝松动。 5.2一般不要插拨装置插件,不触摸插件电路,需插拨时,必须关闭电源,释放手上静 电或佩带静电防护带 5.3使用的试验仪器必须与屏柜可靠接地。 *以下除传动试验,均应断开保护屏上的出口压板。 5.4 RCS993E 频率电压紧急控制功能判断的对象是同一系统的两段母线电压或线路电压,所以试验时如果两组电压输入都加了量时,必须两组电压输入的正序电压或频率同

(高频切机)电压频率紧急控制的装置

SSE520系列频率电压紧急控制装置既可用于电网频率电压异常需要紧急控制的场合,如低频低压减载或高频切机等;还可作为一个终端执行装置,执行远方跳闸命令或区域稳定控制系统送来的切负荷、切机命令。该装置结构紧凑,采用模块化设计、通用性强,可以适用于电网电压频率紧急控制、系统解列、切机切负荷等场合。主要功能配置 1、减载功能:当地5轮低频低压减载的判别及出口;具有滑差加速、滑差闭锁功能; 2、切机功能:当地3轮高频切机; 3、远方功能:具有通信接口或远方跳闸接点输入,可执行远方跳闸命令或减载命令; 4、测量功能:可同时测量两段母线或两条联络线的电压、电流、功率、频率、功率方向等, 电力系统紧急控制是指在电网事故状态下,由于系统内部电源与负荷功率失去平衡,系统频率与电压将发生较大幅度的变化,尤其是在有功缺额、无功缺额或两者均不足而导致系统的崩溃事故状态下,为了保证主系统的安全运行和对重要用户的不间断供电(包括发电厂本身的厂用电)而进行的切负荷、切机和解列控制。 频率和电压是电力系统运行的两个最重要的指标。电力系统的频率反映了发电机组所发出的有功功率与负荷所需有功功率之间的平衡情况。 电压频率紧急控制的装置,这种装置能快速测量频率、电压及变化率, 区分出短路故障, 判断出系统内功率缺额的大小。一旦电力系统出现不稳定它能快速切除接近于功率缺额的负荷,抑制系统电压频率的快速降低,保证电网安全并保障一些重要用户的供电质量.

DPY-3x 频率电压稳定控制装置 功能特点 ·测量安装点母线的频率、电压以及它们的变化率 ·用于频率、电压紧急控制,具有低频、低压、过频、过压等频率电压控制功能 ·在电力系统由于有功缺额引起频率下降时,装置自动根据频率降低值切除部分电力用户负荷; 在有功功率过剩出现频率上升时装置自动根据频率升高值自动切除部分电源,使系统的电源与负荷重新平衡。 ·当电力系统有功缺额较大时,具有根据df/dt 加速切负荷的功能,在切第一轮时可加速切第二轮,尽早制止频率的下降; 当电力系统有功剩余较大时,具有根据df/dt 加速切的功能,在切 第一轮时可加速切第二轮,尽早制止频率的上升。 ·在电力系统由于无功不足引起电压下降时,自动根据电压降低值切除部分电力用户负荷,确保系统内无功的平衡,使电网的电压恢复正常; 在电力系统由于无功过剩引起电压上升时,自动根据电压上升值切除部分电源,确保系统内无功的平衡,使电网的电压恢复正常。·当电力系统电压下降太快时,可根据du/dt 加速切负荷,尽早制止 系统电压的下降,避免发生电压崩溃事故,并使电压恢复到允许的

AXY过电压抑制柜技术规格书(固定式)10kV

AXY过电压保护及PT柜技术规格书 1.1 设备使用条件 1.1.1 电源系统标称电压: 10kV±10% 1.1.2 额定频率: 50Hz 1.1.3 操作及控制电压: DC220V 1.1.4 照明电压: AC220V 1.1.5 使用环境: 极端最高温度: 40℃(户内) 极端最低温度: 1℃(户内) 累计年平均气温: 21.1℃ 1.1.6 月平均相对湿度最高值: 74.8% 月平均相对湿度最低值: 36% 累计年平均相对湿度: 55% 1.1.7 海拔高度: 2000m(及以下) 1.1.8 地震烈度: 7度 1.1.9 安装场所: 户内 2 技术规格 2.1 AXY过电压保护及PT柜(以下简称装置)的工作原理及性能 2.2.1工作原理 装置内采用过电压吸收器(APB-Z),能解决系统过电压类产品解决不彻底的过电压,有效平缓过电压的上升前沿并削平过电压尖峰,并且能够耐受一定的过电压所产生的大量能量,该产品与过电压保护器及消弧柜的保护特性相配合,可以更好地消除系统过电压保护,把过电压限制在系统绝缘水平范围内。 装置正常运行时,柜内32位微机控制器实时不间断检测PT提供的电压信号,一旦系统发生PT 断线、过电压、低电压、失压、谐振,微机控制器可根据PT提供的电压信号,利用高速仿真技术快速准确的处理能力实现对波形的实时采集,实施傅立叶级分析,准确地判析系统的故障情况,并显示出故障类别,输出相应的开关量接点信号。 当系统出现PT断线,过电压、低电压、失压故障,则装置输出相应的开关量接点信号,用于报警; 当系统出现谐振,装置控制器根据系统谐振的不同频率实现快速动作,并输出相应的开关量接点,用于报警,如是接地产生的铁磁谐振,激磁涌流过大,瞬间切断激磁涌流,不至于PT保险

过电压抑制柜

PT聚优柜 过电压抑制柜(聚优柜)就是PT、避雷器柜,采取加大氧化锌避雷器阀片尺寸和PT 中性点与地之间加装开关,就“可弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”及“可同时消除系统中的谐振过电压、断线过电压”等等。纯属欺骗!!!没听说“PT、避雷器柜”能“消除系统中的谐振过电压、断线过电压”。 1、过电压抑制柜(聚优柜)不可能“弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”。 所谓的“专用大容量过电压抑制器,或者尖峰吸收器等等”就是氧化锌避雷器。氧化锌避雷器动作是有门槛值的(即:直流1mA参考电压),必须符合国标要求,否则就会给系统安全运行带来严重危害。 直流1mA参考电压是根据多年的运行经验总结及理念确定的,是不能随便可以改变的。国标GB 11032-89《交流无间隙金属氧化物避雷器》规定电站和配电避雷器直流1mA参考电压:3~10kV 直流1mA参考电压≮2.4倍的系统额定电压。 35kV 直流1mA参考电压≮2.09倍的系统额定电压。 如果加串联间隙,串联间隙的动作值不能小于直流1mA参考电压。 避雷器直流1mA参考电压的理论根据是:在系统发生单相弧光接地时避雷器不动作,单相弧光接地最大过电压是相电压的3.5倍,即 3.5×相电压=3.5×(系统额定电压/√3)= 2.02×系统额定电压 因此,避雷器直流1mA参考电压要大于2.02倍的系统额定电压 ①过电压抑制柜(聚优柜)与避雷器一样的过电压保护死区和不足。 过电压抑制柜(聚优柜)的氧化锌避雷器直流1mA参考电压必须符合国标,因而过电压抑制柜(聚优柜)不能降低其避雷器的动作值,也就有了保护死区和不足,就是说小于直流1mA 参考电压的尖峰过电压,过电压抑制柜(聚优柜)是保护不了的。 操作过电压(除电容器、空线路开断过电压)都小于2.8倍的相电压,远小于直流1mA参考电压,避雷器是不会动作的。 显然过电压抑制柜(聚优柜)是不能防止操作过电压的。 ②过电压抑制柜(聚优柜)加大氧化锌阀片的尺寸,只能加大避雷器的标称放电电流,并不能随意改变直流1mA参考电压,不可能通过加大氧化锌阀片尺寸来改变其过电压保护死区的。 ③高压熔断器与避雷器串联,只能解决避雷器损坏后脱离系统,并不能改变氧化锌避雷器的特性。 总之,过电压抑制柜(聚优柜)只能是避雷器的过电压保护水平,根本不可能“弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”。 2、PT中性点与地之间加装开关不可能防止PT铁磁谐振,更不可能防止系统谐振。 防止PT铁磁谐振的方法有:微机消谐器、4PT接线方式、PT一次侧中性点与地之间加装电

过电压抑制柜(聚优柜)

过电压抑制柜(聚优柜)就是PT、避雷器柜,采取加大氧化锌避雷器阀片尺寸和PT中性点与地之间加装开关,就“可弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”及“可同时消除系统中的谐振过电压、断线过电压”等等。纯属欺骗!!! 没听说“PT、避雷器柜”能“消除系统中的谐振过电压、断线过电压”。 1、过电压抑制柜(聚优柜)不可能“弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”。 所谓的“专用大容量过电压抑制器,或者尖峰吸收器等等”就是氧化锌避雷器。氧化锌避雷器动作是有门槛值的(即:直流1mA参考电压),必须符合国标要求,否则就会给系统安全运行带来严重危害。 直流1mA参考电压是根据多年的运行经验总结及理念确定的,是不能随便可以改变的。国标GB 11032-89《交流无间隙金属氧化物避雷器》规定电站和配电避雷器直流1mA参考电压: 3~10kV 直流1mA参考电压≮2.4倍的系统额定电压。 35kV 直流1mA参考电压≮2.09倍的系统额定电压。 如果加串联间隙,串联间隙的动作值不能小于直流1mA参考电压。 避雷器直流1mA参考电压的理论根据是:在系统发生单相弧光接地时避雷器不动作,单相弧光接地最大过电压是相电压的3.5倍,即 3.5×相电压=3.5×(系统额定电压/√3)= 2.02×系统额定电压 因此,避雷器直流1mA参考电压要大于2.02倍的系统额定电压(系统额定电压是线电压,与相电压相差√3倍)。 ①过电压抑制柜(聚优柜)与避雷器一样的过电压保护死区和不足。 过电压抑制柜(聚优柜)的氧化锌避雷器直流1mA参考电压必须符合国标,因而过电压抑制柜(聚优柜)不能降低其避雷器的动作值,也就有了保护死区和不足,就是说小于直流1mA参考电压的尖峰过电压,过电压抑制柜(聚优柜)是保护不了的。 操作过电压(除电容器、空线路开断过电压)都小于2.8倍的相电压,远小于直流1mA参考电压,避雷器是不会动作的。 显然过电压抑制柜(聚优柜)是不能防止操作过电压的。 ②过电压抑制柜(聚优柜)加大氧化锌阀片的尺寸,只能加大避雷器的标称放电电流,并不能随意改变直流1mA参考电压,不可能通过加大氧化锌阀片尺寸来改变其过电压保护死区的。 ③高压熔断器与避雷器串联,只能解决避雷器损坏后脱离系统,并不能改变氧化锌避雷器的特性。 总之,过电压抑制柜(聚优柜)只能是避雷器的过电压保护水平,根本不可能“弥补系统中过电压保护元件及装置的不足,提升了系统的过电压保护水平”。 2、所谓的“瞬悬复”技术,不仅不能防止PT谐振,还会增加PT谐振概率,更不可能防止系统谐振。 所谓的“瞬悬复”是:“同时抑制柜还采用了本公司专有的“瞬悬复”技术,研制了据有专利技术的智能开关(PTK),从根本上解决了系统单相接地故障消除后,三

电力系统自动化技术专业介绍

电力系统自动化技术专业 一、专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装臵,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装臵等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装臵和以离线计算为基础的经济功率分配装臵,并广泛采用远动通信技术。各种新型自动装臵如晶体管保护装臵、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装臵和继电保护装臵中广泛采用微型计算机。 主要领域按照电能的生产和分配过程,电力系统自动化包括电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息自动传输系统、电力系统反事故自动

频率电压紧急控制装置运行技术标准 (1)

安控装置运行技术标准 Q/MLH.EGB.JS.YX.22-2013 1 主题内容与适用范围 本标准规定了俄公堡电厂安控装置的运行操作、巡回检查及故障、事故处理等内容。 本标准适用于俄公堡电厂安控装置运行与维护工作。 2 引用标准 《四川并网水电厂(网)安控装置调度运行规程》 南瑞继保《RCS-994B 型频率电压紧急控制装置技术和使用说明书》 3 保护定值 序号 定值名称 符号 定值 备注 过频切机定值 1 过频第1轮定值 FH1 51 Hz 过频第2轮定值 FH 2 65 Hz 过频第3轮定值 FH 3 65 Hz 过频第4轮定值 FH 4 6 5 Hz 过频第5轮定值 FH5 65 Hz 过频第6轮定值 FH 6 65 Hz 过频第1轮延时 TFH1 0.5 S 过频第2轮延时 TFH2 25 S 2 过频第3轮延时 TFH3 25 S 3 过频第4轮延时 TFH4 25 S 4 过频第5轮延时 TFH5 25 S 5 过频第6轮延时 TFH6 25 S 过频解列定值 6 过频解列定值 FH JL 55Hz 7 过频解列延时 TFH JL 0.5 S 过压解列定值 8 过压定值 UH 1.3 即130%Un 9 过压延时 TUH 0.5 S 以下整定控制字如无特殊说明,则置“1”表示相应功能投入,置“0”表示相应功能推出 1 过频第1轮 FH1 1 1:表示投入 0:表示退出 2 过频第2轮 FH2 0 3 过频第3轮 FH3 0 4 过频第4轮 FH4 0 5 过频第5轮 FH5 0 6 过频第6轮 FH6

7 过频解列FH JL 1 8 过压解列UH 1 注:过频1-6轮动作时切除发电机出口开关;过频解列、过压解列动作时切除220kV俄木线251开关。 4 运行规定及要求 4.1 安装于我厂的RCS-994B型频率电压紧急控制装置,调度命名为:俄公堡安控装置。 4.2 按四川并网水电厂(网)安控装置要求,我厂安控装置均配置了过频切机、过频解列以及过压解列功能。过频切机功能可切除电厂所有机组,过频、过压解列功能可解列并网线路。 4.3 俄公堡安控装置压板设置有:投检修态、总功能投入、过频切机投入、过频解列投入、过压解列投入、允许切#1机组、允许切#2机组、允许切#3机组等功能压板;各机组跳闸出口、过频解列出口、过压解列出口等跳闸压板。 4.4 俄公堡安控装置启用期间,按以下要求管理俄公堡安控装置切机组允切和出口压板以及解列线路的出口压板: 4.4.1高周切机功能: 4.4.1.1俄公堡电厂双机及以上运行时,投入一台运行机组的允切和出口压板,退出其余运行机组的允切和出口压板。 4.4.1.2俄公堡电厂单机运行时,不切机,退出该机组的允切和出口压板。 4.4.2高周解列功能:高周解列功能启用期间,投入解列220kV俄木线开关出口压板。 4.4.3高压解列功能:高压解列功能启用期间,投入解列220kV俄木线开关出口压板。 4.5 安控装置的巡回检查 4.5.1装置“运行”灯为绿色,正常运行时应点亮; 4.5.2“TV断线”灯为黄色,当发生电压回路断线时点亮; 4.5.3“装置异常”灯为黄色,当装置异常时点亮; 4.5.4“跳闸”灯为红色,当装置动作出口时点亮,在“信号复归”后熄灭; 4.5.5液晶显示屏上显示时间正确; 4.5.6电压及频率测量结果正确; 4.5.7保护压板的投、退与运行方式一致; 4.5.8通讯插件通讯正常。 4.6安控装置直流电源引自厂用220V直流Ⅰ号直流馈电柜1K02,交流电源引自副厂房配电屏2号动力柜12D02。 5 安控装置的操作

相关文档
最新文档