dqpi-离心泵变频调速参数的优化控制

dqpi-离心泵变频调速参数的优化控制
dqpi-离心泵变频调速参数的优化控制

 万方数据

 万方数据

 万方数据

离心泵变频调速参数的优化控制

作者:郭俊忠, GUO Jun-zhong

作者单位:北京印刷学院,信息与机电工程学院,北京,102600

刊名:

北京印刷学院学报

英文刊名:JOURNAL OF BEIJING INSTITUTE OF GRAPHIC COMMUNICATION

年,卷(期):2005,13(3)

参考文献(7条)

1.Coulbeck B;Sterling M Optimal control of water distribution systems 1978(09)

2.Ormsbee L E;Lansey K E Optimal control of water supply pumping systems[外文期刊] 1994(02)

3.信昆仑;程声通;刘遂庆给水管网最优控制方法综述[期刊论文]-信息与控制 2004(04)

4.景有海关于水泵调速的最佳台数及最大调速范围的探讨[期刊论文]-给水排水 1994(02)

5.郭俊忠;常玉连;高胜注水系统运行方案运化研究[期刊论文]-系统工程理论与实践 2002(12)

6.王乐勤;王循明离心泵变频调速变压供水系统设计模型及求解[期刊论文]-流体机械 2003(09)

7.郭俊忠;常玉连;袁国英并联注水泵的优化运行调度[期刊论文]-石油矿场机械 2003(05)

本文链接:https://www.360docs.net/doc/1317783857.html,/Periodical_bjysxyxb200503006.aspx

水泵性能参数

水泵性能参数 单级单吸管道泵 产品型GD型号: 产品报 价: GD管道泵,GD型管道泵,单级管道泵一般供输送温度低于80?c无腐蚀性的清水或产品特物理、化学性质类似清水的液体。如果过流部件用不习惯制造,则可输送奶类、点: 饮料、酱油等卫生液体。 点击放大 GD型单级单吸管道泵的详细资料: GD管道泵,GD型管道泵,单级管道泵 GD型管道泵产品概述 GD型管道泵是立式单级管道泵,可以直接安装在管道中直接进行加压。泵的出入口在同一水平方向上,并成180?,泵主要由泵体、泵盖、叶轮、轴、机械密封等零件组成。

口径100mm及以下的泵与电动机共轴,叶轮直接装在电动机上,轴向力由电动机轴承承受。泵的支撑方式分无支承脚与有支承脚两种。 口径125mm及以上泵,泵轴与电动机分开,泵轴由中间轴承体轴承支承。电动机轴套入泵轴内。整机有底座支承,轴封采用机械密封。 泵由电动机直接驱动,从电动机端部看,泵为顺时针方向旋转。 GD型管道泵一般供输送温度低于80?c无腐蚀性的清水或物理、化学性质类似清水的液体。如果过流部件用不习惯制造,则可输送奶类、饮料、酱油等卫生液体。 GD管道泵轻便灵活,使用时可以直接将泵安装在水平管道中,小型泵还可以安装在竖直管道中运行。根据具体情况可以单台工作,也可多台串联或并联运行,适合工业系统中途加压、城市高层建筑给水及空调循环水输送使用。 GD型管道泵的性能范围:流量Q为6-200m3/h;扬程H为13-78m。 型号意义:列GD150-315A GD—管道离心泵 150—泵出入口直径(mm) 315—叶轮名义直径(mm) A—泵叶轮外径第一次切削。 GD型管道泵性能参数表 流量必需汽扬程转速配用功率重量 Capacity 效率蚀余量型号 Head Speed Motor Weight Efficiency (NPSH)r Type 米转/分千瓦千克米/时升/秒 (%) 米 (m) (r/min) (kW) (kg) (m/h) (l/s) (m) 4 1.11 15. 5 42 2.6 GD32-120 6 1.67 13 2800 0.55 45 3.2 15 7.2 2 11 43.5 4.2

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

水泵的参数及性能

水泵的参数及性能 水泵的主要参数 水泵参数是指泵工作性能的主要技术数据,包括流量、扬程、转速、效率和比转数等。 1、流量(Q) 泵的流量是指单位时间内所排出的液体的数量。通常泵的流量用体积计算,以Q表示,单位为米3/时(m3/h)、米3/秒(m3/s)、升/秒(1/s),也可用重量计,以G表示,单位为吨/时(t/h)、吨/秒(t/s)、千克/秒(kg/s)。 G与Q的关系: G=r×Q r-液体重度(千克/米3) 因水的重量近似1000千克/米3,故 1升/秒=3.6米3/时=3.6吨/时 2、扬程(H) 泵的扬程是指单位重量的液体通过泵所增加的能量。以H表示,实质上就是水泵能够扬水的高度,又叫总扬程或全扬程。单位为米液柱高度,习惯上省去“液柱”,以米(m)表示。 泵的总扬程由吸水扬程与出水扬程两部分组成,因此 总扬程=吸水扬程=出水扬程 但由于水流经过管路时受到各种阻力而减少了泵的吸水扬程和出水扬程,因此 吸水扬程=实际吸水扬程+吸水损失扬程 出水扬程=实际出水扬程+出水损失扬程 损失扬程=吸水损失扬程+出水损失扬程 总扬程=实际扬程+损失扬程 由于水泵铭牌上标明的扬程是上述水泵的总扬程,因此不能误认为铭牌上的扬程是实际扬程数值,水泵的实际扬程都比水泵铭牌上的扬程数值小。因此在确

定水泵扬程时,这一点要特别注意。否则,如果只按实际扬程来确定水泵的扬程,订购来的水泵扬程就低了,那可能会降低水泵的效率,甚至打不上水来。损失扬程与管路上的水管和附件种类(低阀、闸阀、逆止阀、直管、弯管)、数量、水管内径、管长、水管内壁粗糙程度以及水泵流量等都有密切关系,这一点在管路设计和选配水管和附件时也应注意。 3、允许吸上真空高度(Hs) 允许吸上真空高度是指真空表读数吸水扬程,也就是泵的吸水扬程(简称泵的吸程),包括实际吸水扬程与吸水损失扬程之和。以Hs表示,单位为米(m)。 允许吸上真空高度是安装水泵高度的重要参数,安装水泵时,应使水泵的吸水扬程小于允许吸上真空高度值,否则安装过高,就吸不上水或生产气蚀现象。如生产气蚀,不仅水泵性能变坏,而且也可能使叶轮损坏。 4、转速(n) 转速是指泵叶轮每分钟的转数,以n表示,单位为转/分(r/min)。每台泵都有一定的转速,不能随意提高或降低,这个固定的转素称为额定转速,水泵铭牌上标定的转速即为额定转速。如泵运转超过额定转速,不但会引起动力机超载或转不动,而且泵的零部件也容易损坏;转速降低,泵的效率就会降低,影响水泵的正常工作。 5、比转数(ns) 在前述水泵型号中,有些型号的组成部分有比转数这个参数。比转数与转速是两个概念,水泵的比转数,简称比速,常用符号为ns。水泵的比转数是指一个假想的所谓标准水泵叶轮的转数,这个假想的水泵与真实水泵的叶轮各部分都几何相似,而在消耗功率为0.735千瓦、扬程为1米、流量为0.075立方米/秒时所具有的转数。叶轮形状相同或相似的水泵比转数相同,叶轮形状不相同或不相似的水泵比转数不相同。如轴流泵比转数比混流泵大,混流泵比转数也是反映水泵特性的综合性指标。此外,要注意比转数大的水泵,其转速不一定高;比转数小的,转速不一定低。大流量、低扬程的水泵,比转数大,反之则小。一般比转数较低的离心泵,其流量小、扬程高;而比转数较高的轴流泵,其流量大、扬程低。 6、功率

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

泵与风机的基本性能参数

1.泵与风机的基本性能参数。 2. 离心式叶轮按出口安装角β2y的大小可分为三种型式。 3、泵与风机的损失主要。 4、离心式泵结构的主要部件。 5、轴流式通风机的主要部件。 1.泵与风机的性能曲线主要包括()。 A扬程与流量、B轴功率与流量、C效率与流量。 2.泵与风机管路系统能头由()项组成。 A流体位能的增加值、B流体压能的增加值、C各项损失的总和。 3、通风机性能试验需要测量的数据()。 A压强、B流量、C功率、D、转速、E 温度。 4、火力发电厂常用的叶片泵() A给水泵、B循环水泵、C 凝结水泵、D 灰渣泵。 5、泵与风机非变速调节的方式。() A节流调节、B分流调节、C前导叶调节、E 动叶调节。 1.简述离心式泵与风机的工作原理 2. 影响泵与风机运行工况点变化的因素 3、泵与风机串并联的目的 4、比转速有哪些用途 1.有一单吸单级小型卧式离心泵,流量q v=68m3/h,NPSH c=2m,从封闭容器中抽送温度400C的清水,容器中液面压强为,吸入管路总的流动损失Σh w=,试求该泵的允许几何安装高度是多少(水在400C时的密度为992kg/m3。对应的饱和蒸汽压强7374Pa。)

2.有一输送冷水的离心泵,当转速为1450r/min时,流量q v=s,扬程H=70m,此时所需的轴功率P sh=1100KW,容积效率ηv=,机械效率ηm=,求流动效率为多少(已知水的密度ρ=1000kg/m3)。 1、试分析启动后水泵不输水(或风机不输风)的原因及解决措施 2.试分析泵与风机产生振动的原因 1、液力偶合器的主要部件,变速调节特点,性能特性参数,在火力电厂中的优点

风机水泵的变频调速节能分析

风机水泵的变频调速节能分析 节能降耗、增加效益是全社会应为之努力的方向。我国的电动机用电量占全国发电量 的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功 率大量消耗在挡板、阀门地截流过程中。另外,由于在通常的设计中为了满足峰值需求, 水泵选型的裕量往往过大,也造成了不应有的浪费。根据风机、水泵类的转矩特性,采用 变频调速器来调节流量、风量,将大大节约电能。下面就分析一下在风机水泵类负载中使 用变频器所能达到的效果。 一,通过变频调速达到的一次节能。 下面以水泵为例来说明,由图1可以看到: 流量Q正比于转速n 压力H正比于n2 转矩T正比于n2 功率P正比于n3 图1 水泵流量、压力、功率曲线…

在普通的水泵流量控制中使用阀门来调节,如图2所示: 图2 阀门控制水泵流量 管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数 电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O 所包容的面积。 电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致 管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。 采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。故其节能量与CBH2H3所包容的面积成正比, 输入功率大大减小。如图3所示: 图3 变频调节水泵流量

正如前面提到的,轴功率P与转速n的三次方成正比。采用变频器进行调速,当流量 下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效 率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。 二,变频调速所实现的二次节能 变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无 功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。 电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数; 电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变; 在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数. 由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失; 这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能). 声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。

离心泵的流量控制方法.

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为 60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况

水泵变频调速节能技术

水泵变频调速节能技术 目录 第一节概论 1.1 水泵的要紧功能和用途 1.2 水泵的性能参数 1.3 水泵的性能曲线 1.4 水泵拖动系统的要紧特点 第二节水泵并列运行分析 2.1. 水泵并联运行的一般情况 2.2 如何作出并联水泵的性能曲线(H-Q)或(P-Q) 2.3 当并联泵中的一台进行变速调节时,如何确定并联运行工况点? 2.4 静扬程(或静压)对调速范围的阻碍。 2.5. 变频泵与工频泵的并联运行分析 2.6. 高性能离心泵群的变频操纵方案 第三节水泵变频调速节能效果的计算方法 3.1 相似抛物线的求法 3.2. 调速范围的确定 3.3. 节能效果的计算

第四节水泵变频调速和液力偶合器调速节能比较 4.1.液力耦合器的工作原理和要紧特性参数 4.2.液力耦合器在风机水泵调速中的节能效果 4.3.风机水泵变频调速和液力耦合器调速对比计算 4.4.液力耦合器调速和变频调速的要紧优缺点比较 4.5.结论

第一节概论 风机与水泵是用于输送流体(气体和液体)的机械设备。风机与水泵的作用是把原动机的机械能或其它能源的能量传递给流体,以实现流体的输送。即流体获得机械能后,除用于克服输送过程中的通流阻力外,还能够实现从低压区输送到高压区,或从低位区输送到高位区。通常用来输送气体的机械设备称为风机(压缩机),而输送液体的机械设备则称为泵。 1.1 水泵的分类 水泵通常按工作原理及结构形式的不同进行分类,能够分为叶片式(又称叶轮式或透平式)、容积式(又称定排量式)和其他类型三大类。叶片式泵又能够分为离心泵、轴流泵、混流泵和漩涡泵;容积式泵又能够分为往复泵和回转泵,往复泵可分为活塞泵、柱塞泵和隔膜泵,而回转泵又可分为齿轮泵、螺杆泵、滑片泵和液环泵。 1.2 水泵的性能参数 水泵的差不多性能参数表示水泵的差不多性能,水泵的差不多性能参数有流量、扬程、轴功率、效率、转速、比转速、必须汽蚀余量或同意吸上真空高度等7个。 (1)流量以字母Q(q v、q m)表示,单位为(升)l/s、m3/s、

变频水泵、变频增压泵及变频离心泵型号归总

产品简介 变频增压泵全名变频增压水泵,又简称为变频水泵,因绝大部分变频增压泵的增压泵都是采用离心泵,故变频增压泵又有变频离心泵的说法。变频增压泵是一种高级的全自动增压泵,主要由增压泵、变频控制器、恒压供水控制器、压力传感器、止回阀和稳压罐组成。具有全自动、恒压、自设压力、节能、低噪音等典型优点,无论是工业还是民用领域使用,变频增压泵都可全面取代压差式(上下限压力控制)全自动增压泵。 值得注意的是,我们常说的变频增压泵、变频水泵或变频离心泵都是指的一台增压泵驱动的全自动增压设备,如果需要备用泵则专业称呼为变频供水设备、恒压供水设备和无负压供水设备。 结构类型 变频增压泵原理上都是离心泵。外形结构根据采用泵类型主要分为立式和卧式结构两种。立式为管道式结构(进出水口都在同一水平线);卧式为端吸式结构(进水口在端面,出水口再顶部)。一般来说,卧式都是属于小流量低扬程的,立式结构的涵盖了大中小流量和扬程段。 如上图,左图为卧式端吸式结构;右图为立式管道式结构,以上示意图出自广州浩雄泵业。 主要用途 变频增压水泵的用途非常广泛。不管您是用于家用、别墅、宾馆、旅馆、酒店、度假村、写字楼、办公楼、工业生产、太阳能、空气能热水器、实验室、建筑工地等一切需要二次自动增压的场合。 基本功能

1、全自动。变频增压泵比传统的压差式(气压式)自动增压泵更加智能,不仅能在您需要 用水的时候自动开机,还知道您用水量的大小,可自动根据您用水量调节泵的转速,以实现恒压。简单的说,打开5个水龙头和打开1个水龙头时,泵的转速是不一样。这样可以避免压力上升过快或过慢而导致水压一大一小。 2、恒压。变频增压泵是始终基于一个目标压力值运行的。设定一个目标压力值,当用水导 致水压偏离目标压力值时,变频泵会进行补压,差多少补多少,直到差值为0为止。 3、自设压力。需要多少压力值,您自己根据实际需要设定。假如用于建筑工地用的变频增 压泵,会随着楼层的升高而需要更大的压力值才能压水上去,此时,您可以根据楼层的高度自行设定需要的压力值即可。 4、节能。变频增压泵是能感知用水量多少的,能根据用水量大小自动调节转速。用水量少时,设备的实际运行功耗会大大降低,用水量大则实际功耗会上升到额定功耗。可以避免开一个水龙头时和开多个水龙头时都是同一个功耗运行。 5、低噪音。若非高峰期,设备大部分时间都是工作在低频状态,低频时泵转速都比较低, 故运行的震动和噪音都低很多。 典型产品 以下产品型号以广州浩雄泵业产品为例,其他品牌尽管外观和颜色略不一样,但基本结构外形和外观都差不多。下面产品基本能适合绝大部分建筑和工业自动供水需求。 一、JWS-BL卧式变频增压水泵 产品简介 JWS-BL卧式全自动变频增压水泵是性能范围广泛、结构紧凑、外形美观、清洁卫生的多用途高级全自动增压泵。设备主要由增压泵、智能变频控制器、传感器、稳压罐及单相止回阀组成,具有性能广泛、稳定可靠、无极调速、恒压、清洁卫生、低噪音、节能环保、价格亲民等系列优点。非常适用于各种家庭和别墅、工业水循环系统给水、冷却系统给水、工业冲洗和洒水装置等清水自动增压。

离心泵主要参数

离心泵主要參數: 一、流量Q(m3/h或m3/s) 离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的液体体积。 泵的流量取决于泵的结构尺寸(主要为叶轮的直径与叶片的宽度)和转速等。操作时,泵实际所能输送的液体量还与管路阻力及所需压力有关。 二、扬程H(m) 离心泵的扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 泵的扬程大小取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等、转速。目前对泵的压头尚不能从理论上作出精确的计算,一般用实验方法测定。 泵的扬程可同实验测定,即在泵进口处装一真空表,出口处装一压力表,若不计两表截面上的动能差(即Δu2/2g=0),不计两表截面间的能量损失(即∑f1-2=0),则泵的扬程可用下式计算 注意以下两点: (1)式中p2为泵出口处压力表的读数(Pa);p1为泵进口处真空表的读数(负表压值,Pa)。 (2) 注意区分离心泵的扬程(压头)和升扬高度两个不同的概念。 扬程是指单位重量流体经泵后获得的能量。在一管路系统中两截面间(包括泵)列出柏努利方程式并整理可得 式中H为扬程,而升扬高度仅指Δz一项。 例2-1现测定一台离心泵的扬程。工质为20℃清水,测得流量为60m /h时,泵进口真空表读数为-0.02Mpa,出口压力表读数为0.47Mpa(表压),已知两表间垂直距离为0.45m若泵的吸入管与压出管管径相同,试计算该泵的扬程。 解由式

查20℃, h =0.45m p =0.47Mpa=4.7*10 Pa p =-0.02Mpa=-2*10 Pa H=0.45+ =50.5m 三、效率 泵在输送液体过程中,轴功率大于排送到管道中的液体从叶轮处获得的功率,因为容积损失、水力损失物机械损失都要消耗掉一部分功率,而离心泵的效率即反映泵对外加能量的利用程度。 泵的效率值与泵的类型、大小、结构、制造精度和输送液体的性质有关。大型泵效率值高些,小型泵效率值低些。 四、轴功率N(W或kW) 泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η计算,即 (kW)

离心泵的控制方案

一、 离心泵的控制方案 1、离心泵工作原理 离心泵是通过离心力的原理工作的。离心泵工作原理是在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下被甩向外围而流进泵壳,于是叶轮中心压力降低,这个压力低于进水池液面的压力,液体就在这个压力的作用下有吸入池进入叶轮,这样泵就可以不断的吸入压出,完成液体的输送。 2、离心泵的主要参数 离心泵的主要参数包括:流量、扬程、功率、效率、转速和汽蚀余量等。 3、泵的类型 ①叶片式泵:它对介质的输送是靠有叶片的叶轮高速旋转而完成的。 ②容积式泵:它对介质的输送是靠泵体工作室容积的周期性变化而完成的。 ③其他类型泵:只改变输送介质的位能和利用输送介质本身能量的泵。 4、离心泵特性 由于离心泵的叶轮和机壳之间存在空隙,泵的出口阀全闭,液体在泵体内循环,泵的排量为零,压头最大;随着出口阀的逐步开启,排出量随之增大,出口压力将慢慢下降。 泵的压头H ,排量Q 和转速n 之间的函数关系:、 排出量Q → ↑ 压头 n 1 n 2 n 3 n 4 a a’

H =R 1n 2 – R 2Q 2 5、管路特性 HL=hp+hL+hf +hv 4项阻力: 1)管路两端的静压差引起的压头hp ; 2)管路两端的静压柱高度hL ; 3)管路中的摩擦损失压头hf ; 4)控制阀两端节流损失压头hv ; 当系统达到稳定工作状态时,泵的压头H 必然等于HL ,这是建立平衡得条件。左图中泵的 特性曲线与管路特性曲线的交点C ,即是泵的平衡工作点。 工作点C 的流量应符合工艺预定的要求,可以通过改变hv 或其它手段来满足这一要求,这是离心泵的压力(流量)的控制方案的主要依据。 6、离心泵的控制方案 1)直接节流法 排出量Q → ↑ 压头

第二讲水泵变频调速节能技术

科陆变频节能技术讲座: 第二讲水泵变频调速节能技术 目录 第一节概论 1.1 水泵的主要功能和用途 1.2 水泵的性能参数 1.3 水泵的性能曲线 1.4 水泵拖动系统的主要特点 1.5 水泵变频调速节能改造能效审计数据调查表 第二节水泵并列运行分析 2.1.水泵并联运行的一般情况 2.2如何作出并联水泵的性能曲线(H-Q)或(P-Q) 2.3当并联泵中的一台进行变速调节时,如何确定并联运行工况点? 2.4静扬程(或静压)对调速范围的影响。 2.5.变频泵与工频泵的并联运行分析 2.6.高性能离心泵群的变频控制方案 第三节水泵变频调速节能效果的计算方法 3.1 相似抛物线的求法 3.2. 调速范围的确定 3.3. 节能效果的计算 第四节水泵变频调速和液力偶合器调速节能比较 4.1.液力耦合器的工作原理和主要特性参数 4.2.液力耦合器在风机水泵调速中的节能效果 4.3.风机水泵变频调速和液力耦合器调速对比计算 4.4.液力耦合器调速和变频调速的主要优缺点比较 4.5.结论

第一节 风机与水泵是用于输送流体(气体和液体)的机械设备。风机与水泵的作用是把原动机的机械能或其它能源的能量传递给流体,以实现流体的输送。即流体获得机械能后,除用于克服输送过程中的通流阻力外,还可以实现从低压区输送到高压区,或从低位区输送到高位区。通常用来输送气体的机械设备称为风机(压缩机),而输送液体的机械设备则称为泵。 1.1水泵的分类 水泵通常按工作原理及结构形式的不同进行分类,可以分为叶片式(又称叶轮式或透平式)、容积式(又称定排量式)和其他类型三大类。叶片式泵又可以分为离心泵、轴流泵、混流泵和漩涡泵;容积式泵又可以分为往复泵和回转泵,往复泵可分为活塞泵、柱塞泵和隔膜泵,而回转泵又可分为齿轮泵、螺杆泵、滑片泵和液环泵。 1.2水泵的性能参数 水泵的基本性能参数表示水泵的基本性能,水泵的基本性能参数有流量、 扬程、轴功率、效率、转速、比转速、必须汽蚀余量或允许吸上真空高度等7 个。 (1)流量以字母Q(q v、q m)表示,单位为(升)l/s、mVs、nVh等。泵的流量是指单位时间内从泵出口排出并进入管路系统的液体体积。泵的流量除 用上述体积流量q v外,还可用质量流量q m表示。q m定义为单位时间内从泵出口排出并进入管路的液体质量。显然q v与q m间的关系为: q m q v (2)扬程水泵的扬程H表示液体经泵后所获得的机械能。泵的扬程H 是指单位重量液体经过泵后所获得的机械能。水泵扬程的计算式为: 2 2 P2 P1 V W H (Z2 ZJ m g 2g 式中:Z2、p2、v2与Z1、p1、v1分别为泵的出口截面2和进口截面1的位置高度、压力和速度值。泵的扬程即为泵所产生的总水头,其值等于泵的出口总水头和进口总水头的代数差。

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理 相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。 流量 按照相似定律,由连续运动方程流量公式: φπη η ????? =?? =d D A v m v m v v v q 流速公式: 60 π ??= n D v m 式中: q v ——体积流量, s m 3 ; η v ——容积效率,实际容积效率约为0.95; A ——有效断面积(与轴面速度v m 垂直的断面积),m2; D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ; v m ——圆周速度,m/s ; φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95; 按照电机学的基本原理,交流异步电动机转速公式: p f s n ??-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。 流量、转速和频率关系式: φππφππ ηη????????-?=???????= ?d D p f s D d D n D v v v q 60 60)1(60 f n q v ∞∞? 可见流量和转速的一次方成正比,和频率的一次方成正比。

扬程 按照流体力学定律,扬程公式:2 2 1 v m H ??=ρ 扬程、转速和频率关系式: 2 22 1 2 1 6060)1(602 2 f n H H p f s D n D ∞∞???=??=?? ? ? ?????-?? ? ? ????ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。 式中:H ——水泵或风机的扬程,m ; 功率 风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。 水泵:H g q P v e ???=ρ 或 风机: P q P v e ?= ? ? ? ?????-?? ? ? ????????????????-?? ?=????????????=6060)1(602 2 21 6060)1(21 60πηπηρφππρρφππρp f s D n D P d D p f s D g d D n D g v v e f n P e 3 3 ∞ ∞? 可见有效功率和转速的三次方成正比,和频率的三次方成正比。 式中: P e ——有功功率,w ; ρ——流体质量密度,m Kg 3 ; P ——压力,Pa ;

离心泵节能降耗方法在生产中的应用

离心泵节能降耗方法在生产中的应用 摘要:离心泵节能措施通常采用最佳工况点、变频等方法,在生产中,需要分 析节能方法中的优点和缺点,进行综合利用,达到单耗最低,最节电的运行方式。 关键词:离心泵节能措施生产中应用 离心泵具有结构简单、使用寿命长、维修成本低等特点,在工业生产中广泛 应用,通常采用佳工况点控制、转数调整等节能降耗方法。在生产现场以流量、 扬程为主要控制参数,通过计算效率、单耗、绘制特性曲线等对离心泵的节能效 果进行对比分析,制定相应的控制参数,达到节能降耗的目的。 一、最佳工况点节能方法 离心泵特性曲线分析找最佳工况点的方法,是离心泵节能降耗措施常用的方 法之一。在离心泵转数不变的情况下,通过调整流量参数后,扬程、轴功率、效 率参数随着流量的变化而发生变化的性能曲线,进行分析泵是否在高效率区间工作。通常将额定工况点的效率称为最佳工况点,最佳工况点的效率为以下7% (或10%)为高效率区,通常是离心泵效率较高,单耗较低点,是生产现场流量 参数控制区间。从离心泵性能曲线可以看出,当离心泵的流量在额定流量时,离 心泵工作的点为最佳工况点,此时效率最高,单耗最低,当流量高于或低于此点时,效率都是在降低的。 在转数不变的情况下,最佳工况点的控制往往都是利用控制离心泵出口阀门 的开启度,进行流量调节,随着流量下降,扬程相对升高,这时离心泵的泵压和 管压之间的压差也随之升高。造成离心泵能量损失增大,离心泵效率降低,虽然 离心泵在高效区工作,但利用出口阀门调整流量的方法不但不经济,而且还存在 安全风险,尤其是离心泵出口阀门控制的较小,泵出口端压力较高,极容易增加 离心泵出口端的盘根泄漏量,增加离心泵的容积损失,又成为安全风险,造成环 境污染。 采用最佳工况点的方法虽然操作简单,易于实现,但对于使用时间较长、维 修保养不到位的离心泵来说,需要重新测算最佳工况点,才能保证离心泵始终在 高效区内工作,达到节能降耗的目的。 二、改变转速的节能方法 生产现场通常使用变频器,进行交流电动机的转速控制,通过改变电动机的 转数实现节能。其主要特点是驱动性能和控制特性良好。应用变频技术是应用效 果最理想,节能效果最明显的方法。变频器是把电压频率固定不变的交流电,变 换成为电压或频率可变的交流电的装置。生产现场使用最普遍的变频器是交—直—交变频器,由整流器、中间电路、逆变器和控制电路4个主要部分组成。变频 器节能效果好,中转差率小,转差损耗小,定子转子磨损小,磨损随频率的降低 而下降,可获得较高的节能效果。 变频装置在现场应用时,由于一次性投入成本较高,往往采用一拖二或一拖 三的方式,即一台变频装置可以带两、三台交流电动机,但这三台电动机不能同 时使用变频装置。在现场应用时,将输出频率控制在30-45Hz节能效果最好,对 于变频装置和电动机磨损都是最小,因此在现场应用时,也通常会采用两种方式 进行转速控制,一种是自动调整状态,在液量充足稳定的情况下,根据生产实际 需要的离心泵流量,做为稳定参数,通过变频装置自动运行模式将频率设为控制 参数,变频装置会根据离心泵管线压力、进口压力等参数的改变,进行调整频率,将流量控制在生产要求范围内;另外一种是手动控制,需要根据实际生产需要的

QJ系列潜水泵主要技术参数

QJ系列潜水泵主要技术参数

QJ系列潜水泵主要技术参数YQS系列井用充水式潜水三相异步电动机主要技术参数适用最 小井径(毫米)型号 流量 (立 方米 /小 时) 扬程 (米) 转速 (转/ 分 钟) 泵 效 率 (%) 扬水管直 径(毫米) 配用功率(千 瓦) 机 组 最 大 外 径 (毫 米) 200 200QJ20-40/32040285067504184 200QJ20-50/4205028506650 5.5184 200QJ20-54/4205428506750 5.5184 200QJ20-67/52067285067507.5184 200QJ20-81/62081285067507.5184 200QJ20-93/72093285067509.2184 200QJ20-108/8201082850675011184 200QJ20-121/9201212850675013184 200QJ20-148/11201482850675015184 200QJ20-175/13201752850675018.5184 200QJ20-202/15202022850675022184 200QJ20-243/18202432850675025184 200QJ20-270/20202702850675030184 200QJ32-26/2322628507075 5.5184 200QJ32-39/33239285070757.5184 200QJ32-52/43252285070757.5184 200QJ32-65/53265285070759.2184 200QJ32-78/632782850707513184 200QJ32-91/732912850707515184 200QJ32-104/8321042850707515184 200QJ32-117/9321172850707518.5184 200QJ32-130/10321302850707522184 200QJ32-143/11321432850707525184 200QJ32-169/13321692850707530184 200QJ32-195/15321952850707530184 200QJ32-247/19322472850707530184 200QJ40-26/2402628507275 5.5184 200QJ40-39/34039285072757.5184

水泵的主要参数

(1)水泵的主要参数 水泵参数是指泵工作性能的主要技术数据,包括流量、扬程、转速、效率和比转数等。 1、流量(Q) 泵的流量是指单位时间内所排出的液体的数量。通常泵的流量用体积计算,以Q表示,单位为米3/时(m3/h)、米3/秒(m3/s)、升/秒(1/s),也可用重量计,以G表示,单位为吨/时(t/h)、吨/秒(t/s)、千克/秒(kg/s)。 G与Q的关系: G=r×Q??r-液体重度(千克/米3) 因水的重量近似1000千克/米3,故 1升/秒=米3/时=吨/时 2、扬程(H) 泵的扬程是指单位重量的液体通过泵所增加的能量。以H表示,实质上就是水泵能够扬水的高度,又叫总扬程或全扬程。单位为米液柱高度,习惯上省去“液柱”,以米(m)表示。 泵的总扬程由吸水扬程与出水扬程两部分组成,因此 总扬程=吸水扬程=出水扬程 但由于水流经过管路时受到各种阻力而减少了泵的吸水扬程和出水扬程,因此 吸水扬程=实际吸水扬程+吸水损失扬程 出水扬程=实际出水扬程+出水损失扬程 损失扬程=吸水损失扬程+出水损失扬程 总扬程=实际扬程+损失扬程 由于水泵铭牌上标明的扬程是上述水泵的总扬程,因此不能误认为铭牌上的扬程是实际扬程数值,水泵的实际扬程都比水泵铭牌上的扬程数值小。因此在确定水泵扬程时,这一点要特别注意。否则,如果只按实际扬程来确定水泵的扬程,订购来的水泵扬程就低了,那可能会降低水泵的效率,甚至打不上水来。损失扬程与管路上的水管和附件种类(低阀、闸阀、逆止阀、直管、弯管)、数量、水管内径、管长、水管内壁粗糙程度以及水泵流量等都有密切关系,这一点在管路设计和选配水管和附件时也应注意。 3、允许吸上真空高度(Hs) 允许吸上真空高度是指真空表读数吸水扬程,也就是泵的吸水扬程(简称泵的吸程),包括实际吸水扬程与吸水损失扬程之和。以Hs表示,单位为米(m)。 允许吸上真空高度是安装水泵高度的重要参数,安装水泵时,应使水泵的吸水扬程小于允许吸上真空高度值,否则安装过高,就吸不上水或生产气蚀现象。如生产气蚀,不仅水泵性能变坏,而且也可能使叶轮损坏。 4、转速(n) 转速是指泵叶轮每分钟的转数,以n表示,单位为转/分(r/min)。每台泵都有一定的转速,不能随意提高或降低,这个固定的转素称为额定转速,水泵铭牌上标定的转速即为额定转速。如泵运转超过额定转速,不但会引起动力机超载或转不动,而且泵的零部件也容易损坏;转速降低,泵的效率就会降低,影响水泵的正常工作。 5、比转数(ns)

离心泵特性曲线实验报告(学习类别)

化工原理实验报告 实验名称:离心泵特性曲线实验报告姓名:张克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、实验目的 1.了解离心泵的结构与特征,熟悉离心泵的使用。 2.测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。 3.熟悉孔板流量计的构造与性能以及安装方法。 变化的规律。 4.测量孔板流量计的孔流系数C岁雷诺数R e 5.测量管路特性曲线。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:z1+++H=z2+++ (1-1) 由于两截面间的管子较短,通常可忽略阻力项,速度平方差也很小,故也可忽略,则有 H=(z1-z2)+=H1+H2(表值)+H3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N的测量与计算 N=N电k(w) (1-3) 其中,N电为电功率表显示值,k代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。泵的有效功率Ne可用下式计算:

相关文档
最新文档