排列与组合.版块七.排列组合问题的常用方法总结1.学生版

排列与组合.版块七.排列组合问题的常用方法总结1.学生版
排列与组合.版块七.排列组合问题的常用方法总结1.学生版

1.基本计数原理 ⑴加法原理

分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.

⑵乘法原理

分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理.

⑶加法原理与乘法原理的综合运用

如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类

计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.

分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)

排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.

排列数公式:A (1)(2)

(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.

⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.

组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.

组合数公式:(1)(2)(1)!

C !!()!

m n n n n n m n m m n m ---+=

=-,,m n +∈N ,并且m n ≤. 知识内容

排列组合问题的常用方法总

结1

组合数的两个性质:性质1:C C m n m n n -=;性质2:1

1C C C m m m n n n -+=+.(规定0C 1n =)

⑶排列组合综合问题

解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法

元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;

2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.

3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.

4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.

5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元

素排成一排,从1n -个空中选1m -个空,各插一个隔板,有1

1m n C --.

7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.

1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:

①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;

③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.

求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.

2.具体的解题策略有:

①对特殊元素进行优先安排;

②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.

⑦对于一些排列数与组合数的问题,需要构造模型.

直接法

(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)

【例1】 从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活

动,要求翻译有2人参加,交通和礼仪各有1人参加,则不同的选派方法共有 .

【例2】 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、

中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为

A .12

4414

12

8

C C C B .124414

12

8

C A A C .1244

14128

33

C C C A

D .1244314128

3C C C A

【例3】 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴有3个点,将x 轴上这5

个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有( )

A .30个

B .35个

C .20个

D .15个

【例4】 一个口袋内有4个不同的红球,6个不同的白球,

⑴从中任取4个球,红球的个数不比白球少的取法有多少种?

⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

典例分析

【例5】一个口袋内装有大小相同的7个白球和1个黑球.

⑴从口袋内取出3个球,共有多少种取法?

⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?

⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?

【例6】有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷也会划右舷.从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有多

少种不同的选法?

【例7】若x A

∈,则1

A

x

∈,就称A是伙伴关系集合,集合

11

{101234}

32

M=-,,,,,,,的

所有非空子集中,具有伙伴关系的集合的个数为()A.15B.16C.82D.52

【例8】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,

则不同的抽取方法种数为______.

A .32

64C C ?

B .2

364C C ?

C .5

10C

D .32

64A A ?

【例9】 某城市街道呈棋盘形,南北向大街3条,东西向大街4条,一人欲从西南角走到东

北角,路程最短的走法有多少种.

【例10】 某幢楼从二楼到三楼的楼梯共11级,上楼可以一步上一级,也可以一步上两级,

若规定从二楼到三楼用7步走完,则上楼梯的方法有______种.

【例11】 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先

由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?

【例12】设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则T

S

的值为()

A.

20

128

B.

15

128

C.

16

128

D.

21

128

【例13】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动一个单位,经过5次跳动质点落在点(10)

,(允许重复过此点)处,则质点不同的运动方法种数为.

【例14】从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)

【例15】 在AOB 的边OA 上有1234A A A A ,,,四点,OB 边上有12345B B B B B ,,,,共9个

点,连结线段(1415)i j A B i j ≤≤,≤

≤,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:( )

A .60

B .80

C .120

D .160

【例16】 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?

⑴ A 、B 必须当选; ⑵ A 、B 都不当选; ⑶ A 、B 不全当选; ⑷ 至少有2名女生当选;

⑸ 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.

【例17】 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两

组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A .150种 B .180种 C .300种 D .345种

【例18】 从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入

选的不同选法的种数为( )

A .85

B .56

C .49

D .28

【例19】 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1

名女生,那么不同的选派方案种数为( ) A .14 B .24 C .28 D .48

【例20】 要从10个人中选出4个人去参加某项活动,其中甲乙必须同时参加或者同时不参

加,问共有多少种不同的选法?

【例21】 有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放

在两边的停车位上,共有多少种不同的停法?

【例22】 某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排

到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有( ) A .288种 B .72种 C .42种 D .36种

【例23】 某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女

学生均不少于2人的选法为( )

A .221302046C C C

B .555503020

C C C -- C .514415*********C C C C C --

D .3223

30203020C C C C +

【例24】用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个

⑴数字1不排在个位和千位

⑵数字1不在个位,数字6不在千位.

【例25】甲、乙、丙、丁、戊5名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:

“你当然不会是最差的”.从这个回答分析,5人的名次排列共有_______(用数字

作答)种不同情况.

【例26】某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不

同的选法共有()

A.45种B.56种C.90种D.120种

【例27】用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为()

A.120B.72C.48D.36

【例28】某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能

连续播放,则不同的播放方式有()

A.120种B.48种C.36种D.18种

【例29】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不

去巴黎游览,则不同的选择方案共有_____种(用数字作答).

【例30】从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()

A.108种B.186种C.216种D.270种

【例31】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()

A.150种B.180种C.300种D.345种

【例32】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).

【例33】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个

【例34】一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四

道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种

【例35】 2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只

有两位女生相邻,则不同排法的种数为 ( )

A .36

B .42

C . 48

D .60

【例36】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,

则不同的抽取方法种数为______.

A .32

64C C ?

B .2

364C C ?

C .5

10C

D .32

64A A ?

【例37】 7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则

不同的安排方案共有 种(用数字作答).

【例38】 给定集合{1,2,3,,}n A n =,映射:n n f A A →满足:

①当,,n i j A i j ∈≠时,()()f i f j ≠;

②任取n m A ∈,若2m ≥,则有{(1),(2),

,()}m f f f m ∈.

则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”.

表1 表2

已知表2表示的映射f :44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);

⑵若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.

【例39】 将7个不同的小球全部放入编号为2和3的两个小盒子里,使得每个盒子里的球的

个数不小于盒子的编号,则不同的放球方法共有__________种.

【例40】 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒

子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种

【例41】 一个口袋内有4个不同的红球,6个不同的白球,

⑴从中任取4个球,红球的个数不比白球少的取法有多少种?

⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

【例42】 正整数12

2221(1)n n n a a a a a n n --∈>N ,称为凹数,如果12n a a a >>>,且

2122n n n a a a -->>

>,其中{0129}(12)i a i ∈=,,,,,,,请回答三位凹数

12313()a a a a a ≠共有 个(用数字作答)

【例43】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选

派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A .36种 B .12种 C .18种 D .48种

【例44】 某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果

第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)

【例45】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次

出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?

【例46】 从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的

选派方法有( )

A .5557105C A A 种

B .5557105A

C P 种 C .55107C C 种

D .557

10C A

【例47】 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同

的分配方案共有( )

A .4

4412

8

4

C C C 种 B .344412

8

4

C C C 种 C .44312

8

3

C C A 种

D .4441284

33

C C C A 种

【例48】 袋中装有分别编号为1,2,3,4的4个白球和4个黑球,从中取出3个球,则取出球

的编号互不相同的取法有( )

A.24种 B.28种 C.32种 D.36种.

【例49】现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()

A.男生2人,女生6人B.男生3人,女生5人

C.男生5人,女生3人D.男生6人,女生2人.

【例50】将4个小球任意放入3个不同的盒子中,

⑴若4个小球各不相同,共有多少种放法?

⑵若要求每个盒子都不空,且4个小球完全相同,共有多少种不同的放法?

⑶若要求每个盒子都不空,且4个小球互不相同,共有多少种不同的放法?

【例51】将7个小球任意放入4个不同的盒子中,每个盒子都不空,

⑴若7个小球完全相同,共有多少种不同的放法?

⑵若7个小球互不相同,共有多少种不同的放法?

【例52】四个不同的小球,每球放入编号为1、2、3、4的四个盒子中.

⑴随便放(可以有空盒,但球必须都放入盒中)有多少种放法?

⑵四个盒都不空的放法有多少种?

⑶恰有一个空盒的放法有多少种?

⑷恰有两个空盒的放法有多少种?

⑸甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?

【例53】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点()

,处(允许重复过此点),则质点不同的运

30

动方法共___________种;若经过m次跳动质点落在点()0

n,处(允许重复过此点),其中m n

≥,且m n

-为偶数,则质点不同的运动方法共有_______种.【例54】设集合{12345}

I=,,,,,选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()

A.50种B.49种C.48种D.47种

【例55】f是集合{1234}

N=,,的映射,g是集合N到集合M的映M=,,,到集合{123}

射,则不同的映射f的个数是多少?g有多少?满足()()()()8

+++=

f a f b f c f d

的映射f有多少?满足[()]

f g

,有多少?

=的映射对()

f g x x

【例56】排球单循坏赛,胜者得1分,负者0分,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍,

设北方的球队数为x.

⑴试求北方球队的总得分以及北方球队之间比赛的总得分;

⑵证明:6

x=;

x=或8

⑶证明:冠军是一支南方球队.

【例57】 已知集合{}1,2,3,4A =,函数()f x 的定义域、值域都是A ,且对于任意

,()i A f i i ∈≠.设1234,,,a a a a 是1,2,3,4的任意的一个排列,定义数表1

2341234()()()()a a a a f a f a f a f a ?? ??

?,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为( ) A .216 B .108 C .48 D .24

间接法(直接求解类别比较大时) 【例58】 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它

们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?

【例59】 从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,

则所有不同的三位数的个数是( )

A .36

B .48

C .52

D .54

【例60】 以三棱柱的顶点为顶点共可组成 个不同的三棱锥.

【例61】 设集合{}1,2,3,

,9S =,集合{}123,,A a a a =是S 的子集,且123,,a a a 满足

123a a a <<,326a a -≤,那么满足条件的子集A 的个数为( )

A .78

B .76

C .84

D .83

【例62】 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且

甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A .18 B .24 C .30 D .36

【例63】 某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3 人

参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A .45种 B .56种 C .90种 D .120种

【例64】 对于各数互不相等的正数数组()12,,,n i i i ???(n 是不小于2的正整数),如果在

p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”

,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组()2,4,3,1中有顺序“2,4”,“2,3”,其“顺序数”等于2.若各数互不相等的正数数组()12345,,,,a a a a a 的“顺序数”是4,则()54321,,,,a a a a a 的“顺序数”是_________.

【例65】已知集合{5}

C=,,,从这三个集合中各取一个元素构A=,{12}

B=,,{134}

成空间直角坐标系中点的坐标,则确定的不同点的个数为()

A.33B.34C.35D.36

【例66】甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).

【例67】设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内,

⑴只有一个盒子空着,共有多少种投放方法?

⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?

⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多

少种投放方法?

【例68】在排成44

?的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外,在16个点中任选3个点构成三角形,其中至少有一顶点在圆内的三角形共有

()

A.312个B.328个C.340个D.264个

【例69】从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,

则不同的挑选方法共有( ) A .70种 B .112种 C .140种

D .168种

【例70】 若关于x y ,的方程组22

1

17

ax by x y +=??+=?有解,且所有解都是整数,则有序数对()a b ,的数目为( )

A .36

B .16

C .24

D .32

【例71】 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医

生都有,则不同的组队方案共有( ) A .70种 B .80种 C .100种 D .140种

【例72】 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的

选法共有( ) A .6种 B .12种 C .30种 D .36种

【例73】 {}129,

,,A =,则含有五个元素,且其中至少有两个偶数的A 的子集个数为_____.

【例74】 在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的

数共有_______个.

【例75】 在AOB ∠的OA 边上取4个点,在OB 边上取5个点(均除O 点外),连同O 点共10

个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?

【例76】,,,,

a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选

法总数是()

A.20B.16C.10D.6

【例77】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()

A.18B.24C.30D.36

【例78】三行三列共九个点,以这些点为顶点可组成___ _个三角形.

【例79】从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()

A.24种B.36种C.48种D.60种

【例80】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种()

A.1320B.288C.1530D.670

【例81】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

排列组合常用方法总结

/////////解决排列组合问题常见策略 学习指导 1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。 较复杂的排列组合问题一般是先分组,再排列。必须完成所有的分组再排列,不能边分组边排列。 排列组合问题的常见错误是重复和遗漏。弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧。 集合是常用的工具之一。为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。 “正难则反”是处理问题常用的策略。 常用方法: 一. 合理选择主元 例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同 的元素中任选3个元素放在3个位置上,共有种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。 二. “至少”型组合问题用隔板法 对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。 例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法? 解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有: (种) 三. 注意合理分类 元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。再用分类计数原理求出总数。 例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。解:比2015大的四位数可分成以下三类: 第一类:3×××,4×××,5×××,共有:(个); 第二类:21××,23××,24××,25××,共有:(个); 第三类:203×,204×,205×,共有:(个) ∴比2015大的四位数共有237个。

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A =

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合的二十种解法情况总结

排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 4 4 3

(完整版)排列组合知识点与方法归纳

排列组合知识点与方法归纳 一、知识要点 1.分类计数原理与分步计算原理 (1)分类计算原理(加法原理): 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完 成这件事共有N= m1+ m2+…+ m n种不同的方法。 (2)分步计数原理(乘法原理): 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有 m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= m1× m2×…× m n种不同的方法。 2.排列 (1)定义 从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不 同元素中取出m个元素的排列数,记为 . (2)排列数的公式与性质 a)排列数的公式: =n(n-1)(n-2)…(n-m+1)= 特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0! =1 b)排列数的性质: (Ⅰ) =(Ⅱ) (Ⅲ) 3.组合 (1)定义

a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取 出m个元素的一个组合 b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同 元素中取出m个元素的组合数,用符号表示。 (2)组合数的公式与性质 a)组合数公式:(乘积表示) (阶乘表示) 特例: b)组合数的主要性质: (Ⅰ)(Ⅱ) 4.排列组合的区别与联系 (1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 (2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是() A .5种 B.6种 C. 7种 D. 8种 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

高中数学排列组合知识点与典型例题总结二十一类21题型(生)教学内容

高中数学排列组合知识点与典型例题总结二十一类21题型(生)

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 三.不相邻问题插空策略 例3.一个晚会的节目有4 个舞蹈,2个相声,3个独唱 ,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 八.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 九.小集团问题先整体后局部策略 例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个? 十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究. 解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个 空隙中,所有分法数为11m n C --

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合知识点总结

排列组合 二项式定理 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列 出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同 3,组合 组合定义 从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 组合数 从n 个不同元素中,任取m (m ≤n )个元素的所有组合个数 m n C m n C = ! !()! n m n m - 性质 m n C =n m n C - 1 1m m m n n n C C C -+=+

排列组合题型总结 一. 直接法 1 .特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择 25A ,其余 2位有四个可供选择 24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有1 4A 种,余下的 有 24A ,共有14A 1 4A 24A =192所以总共有192+60=252 二 间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法 2 435462A A A +-=252 Eg 有五张卡片,它的正反面分别写 0与1,2与3,4与5,6与7,8与9, 将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数3 33352A C ??个,其中0在百 位的有22 4 2?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-22 4 2?C ?22A =432 Eg 三个女生和五个男生排成一排

排列组合的二十种解法总结

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力。 3.学会应用数学思想和方法解决排列组合问题。 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事。 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数? 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。 先排末位共有13C ,然后排首位共有1 4C , 最后排其它位置共有3 4A , 由分步计数原理得113 4 34288C C A =。 4 4 3

排列组合常用方法总结

排列组合常用方法总结 导读:排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是排列组合常用方法总结,请参考! 排列组合常用方法总结 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法

中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?

相关文档
最新文档