13.1复数的概念教案

13.1复数的概念教案
13.1复数的概念教案

13.1复数的概念

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

复数的概念与几何意义

1 第三章第一节 数系的扩充与复数的概念 学习目标 1.在问题情境中了解数系的扩充过程,体会数与现实世界的联系。 2.理解复数基本概念以及复数相等的充要条件。 自学探究 问题1. 在实数集中方程x 2-1=0是什么? 方程x 2 +1=0有实数解吗?联系从自然数系到实数系的扩充过程,你能 设想一种方法,使这个方程有解吗? 问题2.复数的概念是什么? 问题3.若复数a+bi=c+di ,则实数a 、b 、c 、d 满足什么条件? 问题4.你能对复数集进行恰当地分类吗?并举出相应例子。 练习题: (一)完成课本104页1,2,3 (二)1.实数m 取何值时,复数z=m+1+(m-1)i 是实数?虚数?纯虚数? 2.已知i 是虚数单位,复数Z=(m 2 -4)+(m+2)i ,当m 取何实数时,Z 是:(1)实数 (2)纯虚数 3. 如果222(32)z a a a a i =+-+-+为实数,求实数a 的值。 4.若(32)(5)172x y x y i i ++-=-,则,x y 的值是? 5.已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程x 2 -4x+3=0的两根,试求:,,a b k 的值。 [思考]:你能得出判断一个数是实数、虚数,纯虚数的方法吗? 第三章第二节 复数的几何意义 学习目标 1.通过复数与从原点出发的向量的对应关系了解复数的几何意义,从中体会数形结合的思想; 2.从复数几何意义的引入过程中体会用几何研究代数问题的方法。 自学探究 问题1.在直角坐标系中,有序实数对与点一一对应,类比此种对应,复数能与什么建立一一对应? 问题2.复数Z= (,)a bi a b R +∈( 可以与复平面的向量对应吗?复数的几何意义是什么? 问题3.怎样求一个复数的模? 练习题: (一)完成课本105页1,2,3;106页A 组全做 (二) 1.若复数12z i =+,求z 的模。 2.若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数m 的取值,并求z 的模。 3.在复平面内指出与复数112z i =+,223z i =,332z i =,42z i =-+对应的点1Z ,2Z ,3Z ,4Z . 试 判断这4个点是否在同一个圆上?并证明你的结论. 第三章第三节 复数代数形式的加减运算及其几何意义 1.会进行复数的代数形式的加、减运算,了解其几何意义; 2.通过复数加法几何意义的探究渗透数形结合、类比的数学思想。 自学探究 问题1.复数与复平面内的向量有一一对应的关系,类比向量加法,你能得出复数的加法运算法则吗? 复数加法的几何意义呢? 问题2.复数的加法满足交换律、结合律吗?请结合复数加法运算法则证明。 问题3.若复数z 1+z 2=z 3,你能否用z 2和z 3表示出z 1 ?请画图说明。 你能因此得出复数减法法则及其几何意义吗? 练习题: (一)完成课本109页1,2 (二)计算 (1)(56)(2)(34)i i i -+---+ (2)5i -(-2+3i )+(4-7i ) 2 . 已知平行四边形OABC 的三个顶点O 、A 、C 对应的复数分别为0,32i +,24i -+,试求: (1)AO 表示的复数; (2)CA 表示的复数; (3)B 点对应的复数. 3.ABCD 是复平面内的平行四边形,A ,B ,C 三点对应的复数分别是13,,2i i i +-+,求点D 对应的复数. 4. 当2 13 m <<时,复数(3)(2)m i i +-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 第三章第四节 复数代数形式的乘除运算 学习目标 1. 理解共轭复数的概念; 2. 能进行复数的代数形式的乘、除运算,从中体会类比数学思想。 自学探究 问题1.类比(a+b)(c+d)=ac+ad+bc+bd,你能得出(a+bi)(c+di)=? 问题2.复数的乘法是否满足交换律、结合律以及乘法对加法的分配律?请举例说明。 问题3.复数34i +与3-4i 有何关系?a bi +的共轭复数是什么?bi 的共轭复数是什么? 思考:若12,z z 是共轭复数,那么(1)在复平面内,它们所对应的点的位置关系如何? (2)12z z ?是一个怎样的数?有何特征? 问题4.类比实数的除法是乘法的逆运算,请探究(1+2i )Z =4+3i 中的复数Z =? 你能得出复数除法运算法则吗? 练习题: (一)完成课本111页1,2,3;112页A 组1至6题;116页A 组全做,B 组1,2题。 (二)1. 复数5 2 i -的共轭复数是( ) A .2i + B .2i - C .2i -- D .2i - 2.如果复数212bi i -+的实部和虚部互为相反数,那么实数b 的值为( ) A 2 B .-2 C .23- D .2 3 3. 若12z i =,则22z z -的值为 4. 计算 (1)13()(1)2i -+; (2)3113 ()()22-- 5. 若复数z 满足11z i z -=+,则|1|z +的值为 第三章 数系的扩充与复数的引入(复习课) 1. 设134z i =-,223z i =-+,则12z z +在复平面内对应的点( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 2(1)i i -?等于( ) A .22i - B .22i + C .2- D .2 3. 复数21 (1)i +的值是( ) A .2i B .2i - C .2 D .2-

函数的概念第一课时教学反思

函数的概念第一课时教学反思 烟台四中李颖昕赵志丽 函数概念本质理解并非一次就能实现,它有一个循序渐进逐步完善通过多角度多章节的学习,学生才能有一个较完整的深刻理解。但我们在一开始让学生接触理解高中数学函数概念时尽可能的让学生从多角度的去思考理解。 首先从初中与高中数学中对函数定义的比较中,让学生能从初中的描述性概念把函数看成变量之间的依赖关系到高中用集合与对应的语言定义函数,从而达到函数概念的提升,从而更好地解决如y=3这样的常数函数概念的解释。 其次要用好课本,用课本教,而非教课本。充分利用好课本中函数概念的背景教学,通过三个实例:炮弹发射;大气层臭氧问题,恩格尔系数问题培养学生观察问题提出问题的探究能力,培养学生抽象概括逐步学会数学表达和交流。 第三充分发挥函数图像的集合直观作用,加强数形结合思想。 本节课有几个主要问题:首先,由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力,而高一学生抽象思维能力相对较弱。 其次,学生不容易认识到函数概念的整体性。原因是把函数单一的理解成对应关系等,甚至认为函数就是函数值。 第三,函数符号f(x)比较抽象,学生难以理解。 所以预想到这些问题后,我就把三个实例设计的问题是一致的,实例一的问题我提前预设,实例二和实例三的问题让学生类比实例一提出问题并回答,让学生积极参与到主动思考主动学习中来。组内合作交流选派代表回答问题,老师在黑板板书三个实例的集合对应,最后总结共性的时候还比较顺利,因为指向比较明确。 对例题的解答,看图像判断是否是函数没有问题,理解比较好。对f(a-1)有些疑惑,不确定是否整体代入进去即可,有的学生认为要关注a-1是否在定义域内,思维不错。 最后的本节课的学习过程回顾,让学生起来总结比较流利,说明这个学生对本节参与的比较认真扎实,对过程记忆比较清楚清晰,效果不错。 整体课堂比较流畅,学生参与积极度高,小组加分奖励实物制比较能刺激他们的积极性。要持续进行下去,以锻炼他们的思维主动性。 一点其他反思: 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

《复数的概念》教学设计【高中数学人教A版必修2(新课标)】

《复数的概念》教学设计 教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导. 复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解. 课时分配 1课时. 1.了解引进复数的必要性;理解虚数单位i以及i与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等).2.通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识. 3.通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念. ~ 难点:虚数单位i的引进及复数的概念. 引入新课 请同学们回答以下问题: (1)在自然数集N中,方程x+4=0有解吗

(2)在整数集Z中,方程3x-2=0有解吗 (3)在有理数集Q中,方程x2-2=0有解吗 ) 活动设计:先让学生独立思考,然后小组交流,最后师生总结. 活动成果:问题(1)在自然数集中,方程x+4=0无解,为此引进负数,自然数→整数; 问题(2)在整数集中,方程3x-2=0无解,为此引进分数,整数→有理数; 问题(3)在有理数集中,方程x2-2=0无解,为此引进无理数,有理数→实数. 数集的每一次扩充,对数学本身来说,解决了在原有数集中某种运算不能实施的矛盾,如分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 提出问题:从自然数集N扩充到实数集R经历了几次扩充每一次扩充的主要原因是什么每一次扩充的共同特征是什么 活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结. 活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要. $ 扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律. 设计意图 回顾从自然数集N扩充到实数集R的过程,帮助学生认识数系扩充的主要原因和共同特征. 探究新知 提出问题:方程x2+1=0在R上有解吗如何对实数集进行扩充,使方程x2+1=0在新的数集中有解 活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成. 学情预测:学生讨论可能没有统一结果,无法描述. 类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0

复数的几何意义--教案

复数的几何意义 教学目标 1. 了解复数的几何意义,会用复平面内的点和向量来表示复数。 2. 了解复数加、减法的几何意义,进一步体会数形结合的思想。 教学重点 复数的几何意义与复数的加、减法的几何意义。 教学过程 前面我们是从“数”的角度研究了复数的概念及其四则运算,本节课我们将从“形”的角度来研究复数的几何表示和复数加减法的几何意义。 一、 问题情境 我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示,那么,复数是否也能用点来表示呢? 二、 学生活动 知识回顾: ①形如bi a +的数叫复数,通常用字母z 表示,即bi a z +=),(R b a ∈,其中a 与b 分别叫做复数的实部与虚部。???=≠=+=时为纯虚数)当虚数 (实数 (复数0)(0) 0a b b bi a z 。 ②两个复数相等的充要条件是它们的实部与虚部分别相等 即 ???==?+=+d b c a di c bi a 。 问题1 复数相等的充要条件表明,任何一个复数bi a +都可以由一个有序实数对),(b a 惟一确定,而有序实数对),(b a 与平面直角坐标系中的点是一一对应的,那么,我们怎么用平面内的点来表示复数呢?

问题2 我们知道平面直角坐标系中的点A 与以原点O 为起点、A 为终点的向量OA 是一一对应的,那么复数能用平面向量来表示吗? 三、 建构数学 师生共同活动: 1. 在平面直角坐标系xOy 中,以复数bi a z +=的实部a 为横坐标、虚部b 为纵坐标就确定了点),(b a Z ,我们可以用点),(b a Z 来表示复数bi a +,这就是复数的几何意义。 2. 建立了直角坐标系来表示复数的平面叫做复平面(也称为高斯平面),x 轴叫做实轴,y 轴叫做虚轴。实轴上的的点都表示实数,除原点外虚轴上的点都表示虚数。 3. 因为复平面内的点),(b a Z 与以原点O 为起点、Z 为终点的向量一一对应(实数0与零向量对应),所以我们也可以用向量OZ 来表示复数bi a +,这也是复数的几何意义。 4. 根据上面的讨论,我们可以得到复数bi a z +=、复平 面内的点),(b a Z 和平面向量OZ 这间的关系(如图)。今后, 常把复数bi a z +=说成点Z 或向量(并且规定相等的 向量表示同一个复数) 5. 相对于复数的代数形式bi a z +=,我们把点),(b a Z 称为复数z 的几何形式,向量称为复数的向量形式。 四、数学运用 运用1 (1)例1 在复平面内,分别用点和向量表示下列复数 4,i +2,i -,i 31+-,i 23-

3-1-2 复数的几何意义

基础巩固强化 一、选择题 1.若OZ →=(0,-3),则OZ →对应的复数为( ) A .0 B .-3 C .-3i D .3 [答案] C [解析] 由OZ →=(0,-3),得点Z 的坐标为(0,-3), ∴OZ →对应的复数为0-3i =-3i.故选C. 2.复数z 与它的模相等的充要条件是( ) A .z 为纯虚数 B .z 是实数 C .z 是正实数 D .z 是非负实数 [答案] D [解析] ∵z =|z |,∴z 为实数且z ≥0. 3.已知复数z =a +i(其中a ∈R ,i 为虚数单位)的模为|z |=2,则a 等于( ) A .1 B .±1 C. 3 D .±3 [答案] D [解析] ∵|z |=2,∴a 2+1=4,∴a =±3. 4.在复平面内,复数6+5i ,-2+3i 对应的点分别为A 、B .若C 为线段AB 的中点,则点C 对应的复数是( ) A .4+8i B .8+2i

C .2+4i D .4+i [答案] C [解析] 由题意,得点A (6,5),B (-2,3).由C 为线段AB 的中点,得点C (2,4), ∴点C 对应的复数为2+4i. 5.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2或a ≠-1 C .a =2或a =0 D .a =0 [答案] C [解析] 由题意知a 2-2a =0, 解得a =0或2. 6.当2 30,m -1<0. 二、填空题 7.已知复数x 2-6x +5+(x -2)i 在复平面内的对应点在第三象限,则实数x 的取值范围是________. [答案] (1,2) [解析] 由已知,得? ???? x 2-6x +5<0 x -2<0,

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

第二讲 复数的模及其几何意义

第二讲 复数的模及其几何意义 (一)复数模的运算 复数()R b a bi a ∈+,的模:z = ; 例1. 已知84z z i +=-,求复数z 。 例2. 已知复数12cos ,sin z i z i θθ=-=+,求12z z ?的最值。 运算律: ; ; ; 例1:已知()()() 2321331i i i z --+=,则—z = 例2:复数()()()223321i a i a i z ---=,则3 2=z ,则a =

(二)复数的几何意义 1. 复数加法,减法的运算的几何意义满足 ; 2. 21z z -表示复平面上 ; 例1:复平面内,说出下列复数z 对应的点的集合构成的图形; (1)1z = (2)1z i -+=(3)4z i z i ++-= (4)|1|||z z i +=- 例2:(1)若 2=z ,则i z +-1的取值范围为 。 (2)已知C z ∈,且132=--i z ,求cos sin z i θθ--?的最大值和最小值。 (3)若 622=-++i z i z ,则i z 5-的取值范围为 。 (4)复平面内,曲线11=+-i z 关于直线x y =的对称曲线方程为 。

例3:已知1z =,设2 1u z i =-+,求u 的取值范围。 例4:已知123,5z z ==,126z z +=,求12z z -的值。 (三)综合问题 例1. 已知复数z 的实部大于零,且满足)()cos sin z i R θθθ= +∈,2z 的虚部为2. (1)求复数z ; (2)设22 z z z z -、、在复平面上的对应点分别为,,A B C ,求AB AC ? 的值.

(完整word版)复数的概念及其几何意义练习题

一.选择题(共10小题) 1.(2015?遵义校级一模)已知i是虚数单位,则复数z=i2015的虚部是() A.0 B.﹣1 C.1 D.﹣i 2.(2015?安庆校级三模)设i是虚数单位,则复数1﹣2i+3i2﹣4i3等于() A.﹣2﹣6i B.﹣2+2i C.4+2i D.4﹣6i 3.(2015?广西校级学业考试)实数x,y满足(1+i)x+(1﹣i)y=2,则xy的值是() A.2 B.1 C.﹣1 D.﹣2 4.(2015?泉州校级模拟)如果复数z=a2+a﹣2+(a2﹣3a+2)i为纯虚数,那么实数a的值为()A.﹣2 B.1 C.2 D.1或﹣2 5.(2015?潍坊模拟)设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为() A.B.C.±1 D. 6.(2015?浠水县校级模拟)已知复数z与(z+2)2﹣8i是纯虚数,则z=() A.﹣2i B.2i C.﹣i或i D.2i或﹣2i 7.(2015?新课标II)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=() A.﹣1 B.0 C.1 D.2 8.(2015?南平模拟)已知x,y∈R,i为虚数单位,且yi﹣x=﹣1+i,则(1﹣i)x+y的值为()A.2 B.﹣2i C.﹣4 D.2i 9.(2015?宜宾模拟)在复平面内,复数3﹣4i,i(2+i)对应的点分别为A、B,则线段AB的中点C对应的复数为() A.﹣2+2i B.2﹣2i C.﹣1+i D.1﹣i 10.(2015?上饶校级一模)已知i为虚数单位,a∈R,若a2﹣1+(a+1)i为纯虚数,则复数z=a+(a﹣2)i 在复平面内对应的点位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限 二.填空题(共5小题) 11.(2015?岳阳二模)已知z=x+yi,x,y∈R,i为虚数单位,且z=(1+i)2,则ix+y=.12.(2015春?常州期中)计算i+i2+…+i2015的值为. 13.(2015春?肇庆期末)从{0,1,2,3,4,5} 中任取2个互不相等的数a,b组成a+bi,其中虚数有个. 14.(2015?泸州模拟)设复数z满足(1﹣i)z=2i,则z=. 15.(2014?奎文区校级模拟)设O是原点,向量、对应的复数分别为2﹣3i,﹣3+2i,那么,向量 对应的复数是. 三.解答题(共8小题) 17.(2015?赫章县校级模拟)已知复平面内平行四边形ABCD,A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3﹣i. (1)求点C,D对应的复数; (2)求平行四边形ABCD的面积. 18.(2015春?蠡县校级期末)实数m取什么数值时,复数z=m2﹣1+(m2﹣m﹣2)i分别是:

1-1复数的基本概念

§1.1 复数的基本概念 授课要点:复数的定义,复数的代数表示,三角式、指数式及它们与复数几何表示(二维向量)之间的关系 1、 复数的定义: 设有一个有序数对(),a b ,遵从如下的运算法则 加法:()()()11221212,,,a b a b a a b b +=++ 乘法:()(),,(,) a b c d ac bd ad bc =-+ 则称这一有序数对(),a b 为复数,记为α,即 α=(),a b 其中a 为α实部,b 为α的虚部,记为 a =Re α, b =Im α 纯实数a =(),0a ,纯虚数记为b =()0,b ,所以有 α=(),0a +()0,b =a(1,0)+b (0,1) 其中(0,1)即为虚数单位,常记为i. 2、 复数的相等与大小 两个复数相等的充要条件是:实部、虚部分别相等. 复数不能比较大小!这一点可用反证法证明: 假设认为i >0,则在不等式两边同乘以一个大于0的数i ,不等式符号应当不变,即 20i > 即 -1>0,这显然是错误的! 3、 几个特殊的复数: (0,0):(0,0)(,)(,)(0,0)(,)(0,0)a b a b a b +=??=? (1,0):(1,0)(,)(,)a b a b = (0,1):(0,1)(0,1)=(-1,0)=-1 (0,1)是-1的平方根,是虚数单位,记为i =(0,1) 4、 共轭复数:(,)a b α=,* (,)a b α=-互为共轭复数 性质:**()αα=(共轭的共轭等于自己)

*2ααα+=为实数(两个互为共轭的复数相加,结果必为实数) *22a b αα?=+,为非负实数(α的模方) 5、 复数的减法、除法 减法:()()()()a ib c id a c i b d +-+=-+- 除法:2222()()()()a ib a ib c id ac bd bc ad i c id c id c id c d c d ++-+-==+++-++ ↑“分母实数化” 6、 复数的几何表示: (1) 任何一个复数都可以和复平面上的一点对应,将这一点和原点连起来(原点为起 点),形成一个二维矢量,这是一个二维自由向量,即将op 平移后,仍代表同一 矢量(如右图所示) (2) 加法的几何表示(平行四边形法则与三角形法则) γαβ=+ (3) 减法的几何表示:

17.3复数的几何意义和三角形式学习资料

南京商业学校教案 授课日期2015年月日第周时数课型新课课题§17.3复数的几何意义和三角形式 教学目标知识目标:了解复平面的概念;掌握复数的几何表示和向量表示; 理解复数的模、辐角及辐角主值的概念;掌握复数的 三角形式及其特征。 能力目标:会在复平面内描出表示复数的点及向量;会求复数的模和辐角、和辐角主值(特殊角);会进行复数的三 角形式与代数形式的互化。 情感目标:培养学生数形结合的数学思想和辩证唯物主义思想。 教学重点用复平面上的点、向量和三角形式表示复数;复数的模和辐角、辐角主值的概念。 教学难点复数几何表示法的理解;复数几种表示形式的互化;复数辐角的求法。 教学资源课本,教学参考书,学习指导书,网络 教法与学法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 学情分析(含更新、补充、删节内容) 复数的几何表示和向量表示是复数的两种常见形式,复数的向量表示学生不易理解的,教学时要充分揭示复数与向量之间的关系,并借助向量进一步加强学生对复数的理解。 板书设计 17.3复数的几何意义和三角形式 1. 复平面例1 例3 2. 复数的几何表示 3.复数的向量表示例2 4.复数的三角形式

教后记

教学程序和教学内容(包括课外作业和板书设计) 师生活动 一、引入新课 根据复数的定义,复数表示为)(R b ,a bi a z ∈+=的形式,我们把这种形式叫做复数的代数形式,复数还有其他表现形式吗?这些表示形式之间有什么关系? 二、讲授新课 1.复平面 在平面上建立直角坐标系xOy ,横轴、纵轴上的坐标分别表示复数的实部和虚部,这样的平面叫做复平面,其中横轴叫做实轴,纵轴叫做虚轴。 2.复数的几何表示 有序实数对()b ,a 与直角坐标系内的点一一对应的,由复数代数形式bi a z +=可以知道,任何一个复数)(R b ,a bi a z ∈+=,都可以有一个有序的实数对(b ,a )唯一确定,即复数 图1 bi a z +=与有序实数对(b ,a )之间一一对应。由此可知,复数bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的(如图1所示),即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。我们把这种表示形式叫做复数的几何表示。 想一想:实数、纯虚数、虚数表示的点分别在复平面的什么位置? (复平面内,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示非纯虚数的点分别在四个象限内.) 3. 复数的向量表示 直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。 r 学生思考并回答 图2 y Z(b ,a ) O x b a

复数概念教学设计1终稿

§3.1.1 数系的扩充与复数的概念 学生情况分析: 在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。 一、教学目标 1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。 2.理解复数的基本概念以及复数相等的充要条件。 3.了解复数的代数表示法及其几何意义。 4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。 二、教学重难点 重点: 理解虚数单位i的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用.

三、教具 多媒体 四、教学过程 (一)引入 1.前面我们学习的数系扩充:N Z Q R 思考:如何解决方程210x +=在实数集中无解的问题? (二)新知导学 探究1复数的引入 引导1: 为了解决方程210x +=在实数集中无解的问题,我们设想我们 引入一个新数i ,并规定:(1)=2i -1 ; (2)实数可以与i 进行加法和乘法运算: 实数a 与数i 相加记为: a i + ;实数b 与数i 相乘记为:bi ;实数a 与实数b 和i 相乘的结果相加,结果记为:bi a +; (3)实数与i 进行加法和乘法时,原有的加法、乘法运算律仍然成立.i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i 引导2:复数的有关概念: (1)我们把形如bi a +()R b a ∈,的数叫做复数,其中i 叫做虚数单位 , 全体复数所组成的集合叫做复数集,常用大写.. 字母 C 表示。 (2)复数的代数形式:

新人教版高中数学必修第二册 第7章 复数 7.1.2 复数的几何意义

7.1.2 复数的几何意义 考点 学习目标 核心素养 复平面 了解复平面的概念 数学抽象 复数的几何意义 理解复数、复平面内的点、复平面内的向量之间的对应关系 直观想象 复数的模 掌握复数的模的概念,会求复数的模 数学运算 共轭复数 掌握共轭复数的概念,并会求一个复数的共轭复数 数学运算 问题导学 预习教材P70-P72的内容,思考以下问题: 1.复平面是如何定义的? 2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么? 1.复平面 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. 2.复数的两种几何意义 (1)复数z =a +b i(a ,b ∈R )←――→一一对应 复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ←――→一一对应平面向量OZ →. ■名师点拨 (1)复平面内的点Z 的坐标是(a ,b ),而不是(a ,b i).也就是说,复平面内的虚轴上的单位长度是1,而不是i. (2)当a =0,b ≠0时,a +b i =0+b i =b i 是纯虚数,所以虚轴上的点(0,b )(b ≠0)都表示纯虚数. (3)复数z =a +b i(a ,b ∈R )中的z ,书写时应小写;复平面内的点Z (a ,b )中的Z ,书写时应大写. 3.复数的模

复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ → 的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2. ■名师点拨 如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(a 的绝对值). 4.共轭复数 (1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. (2)虚部不等于0的两个共轭复数也叫做共轭虚数. (3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z - =a -b i . ■名师点拨 复数z =a +b i 在复平面内对应的点为(a ,b ),复数z - =a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称. 判断(正确的打“√”,错误的打“×”) (1)原点是实轴和虚轴的交点.( ) (2)实轴上的点表示实数,虚轴上的点表示纯虚数.( ) (3)若|z 1|=|z 2|,则z 1=z 2.( ) (4)若z 1与z 2互为共轭复数,则|z 1|=|z 2|.( ) 答案:(1)√ (2)× (3)× (4)√ 复数1-2i 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D 复数z =1+3i 的模等于( ) A .2 B .4 C.10 D .2 2 答案:C 复数z =-2+5i 的共轭复数z - =________. 答案:-2-5i

学习知识资料讲解复数(基础学习知识)

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈). 2. 概念

形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即: 如果,,,a b c d R ∈,那么a bi c di a c b d +=+?==且. 特别地: 00a bi a b +=?==. 应当理解: (1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样. (2)复数相等的充要条件是将复数转化为实数解决问题的基础. 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小。 6.共轭复数: 两个复数的实部相等,而且虚部相反,那么这两个复数叫做共轭复数。即: 复数z a bi =+和z a bi a bi =+=-(,a b R ∈)互为共轭复数。 考点二:复数的代数表示法及其四则运算 1.复数的代数形式: 复数通常用字母z 表示,即a bi +(,a b R ∈),把复数表示成a bi +的形式,叫做复数的代数形式。 2.四则运算

复数教学设计(省优质课)

§5.1 数系的扩充与复数的引入 江西省永新县任弼时中学 文辉 【教学目标】 (1) 了解引进复数的必要性,理解复数的基本概念,了解复数的代数法表示, 理解虚数单位,理解复数相等的充要条件. (2) 了解复数的几何意义,理解复数模的概念,了解复数与复平面内的点的 对应关系. (3) 体会实际需求与数学内部的矛盾在数学扩充过程中的作用,感受人类理 性思维在数系的扩充过程的作用以及数与现实世界的联系。 (4) 通过复数与复平面内的点的对应关系,体会二维空间中数与形之间的内 在联系. 【教学重难点】 重点:引进虚数单位i 的必要性,对i 的规定,复数的有关概念. 难点:实数系扩充到复数系的过程的理解,复数的概念的理解. 教学方法:1.启发式教学法. 2.激励---探索---讨论---发现. 教具准备:多媒体,投影仪. 教学过程 Ⅰ.课题导入 ㈠引导学生回顾数的变化发展过程 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展. 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和零)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么﹛有理数﹜=﹛分数﹜=﹛循环小数﹜. 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以﹛实数﹜=﹛小数﹜. ㈡设置问题情境,探究实践 问题①:请类比引进2,就可以解决方程02x 2=-在有理数集中无解的问题,怎么解决方程01x 2=+在实数集中无解的问题?

相关文档
最新文档