低通滤波器

低通滤波器
低通滤波器

实验名称:FIR 低通滤波器的DSP 实现

一、实验目的

1、掌握用窗函数法设计FIR 数字滤波器的原理和方法。

2、熟悉线性相位FIR 数字滤波器的特性。

3、了解各种窗函数对数字滤波器的特性的影响。

二、实验设备

PC 兼容机一台(操作系统为Windows XP ),安装Code Composer Studio 2.2.1软件和MATLAB 6.5.1(含SIMULINK 工具包)软件。

三、实验内容

FIR 低通滤波器的DSP 实现

1、实验要求:用窗口法设计线性相位的FIR 低通滤波器,截止频率为1kHz ,采样速率为8kHz 。窗口大小N=11,分别加矩形窗和海明窗。检验结果并计算峰值的位置和过渡带宽度。

2、对设计要求的理解

(1)要设计的滤波器为理想低通滤波器,便于FIR 低通滤波器的实现。 (2)FIR 滤波器满足线性相位应具有以下两个条件:一是)1,,1,0()(-=N n n h 为

实数;二是h(n)满足以2

1

-=

N n 的偶对称或奇对称,即)1()(n N h n h --±=。 故使用窗函数设计滤波器时,所加的窗都以原点对称,设计的理想滤波器的单位脉冲响应d(k)都以原点为偶对称或奇对称。同时保证了d(k)加窗平移后得到的h(n)以M=(N-1)/2对称,也就是保证了设计出的FIR 滤波器具有线性相位。 (3)低通滤波器的系数采用MATLAB 软件仿真工具产生,并把仿真产生的系数导出成头文件,运用到CCS 程序中。课题一中要求采用两种窗函数设计滤波器,两者仅仅是窗函数不同,相应的滤波器系数不同。运用MATLAB 产生两个窗函数对应的系数文件。同时对两种窗函数滤波效果进行对比。

(4)峰值和过滤带的宽度通过理论计算后,再和实际的信号波形进行对比。

3、窗函数法设计FIR 滤波器的思路

首先从窗口大小N 中计算出M ,其中2

1

-=N M ;其次是利用离散时间傅里叶

反变换,从)(ωd 中计算出滤波器系数d(k);最后考虑到滤波器的因果性,把d(k)延迟M 个单位得到因果的滤波器系数h(n),其中1,,1,0,)()(-=-=N n M n d n h 。

四、实验原理

1、窗口法设计的滤波器系数的原理。 归一化截止频率是采样速率。

是截止频率,其中s c s

c

c f f f f ,2πω=

。 低通滤波器的频率响应)(ωD 定义为:

????

?≤<<≤-≤=π

,π,

0,

1)(ωωωωωωωc c c

D 或

利用离散时间傅里叶反变换(IDTFT )我们得到时域信号:

∞<<∞-=??????===---??k k

k jk e e e D k d c k j k j k

j c

c

c πωππωπωωωωωωωωωπ

π

)sin(22d .12d )()(c

对于k=0的时候需要单独考虑,由极限性质可以得到π

ωc

d =)0( 矩形窗函数)(n w 在时域的定义为:

???≤=其他

,0,1)(rec M

n n w

故滤波器的系数M M k k

k k w k d k d c ,0,,)

sin()()()('-===πω (1)

利用延时的性质把滤波器脉冲值响应移位成因果序列,所以FIR 低通滤波器系数1,1,0)

()]

(sin[)()('-=--=

-=N n M n M n M n d n h c πω

2、如采用同阶数的汉明窗,只需将)(rec n w 改为

???

??

≤≤--=其他

,0,πcos 46.054.0)(ham M n M M

n n w , 所以

。1,,1,0,)π()](sin[)(πcos 46.054.0)

()()(ham -=--?

??

? ??

--=--=N n M n M n M M n M n d M n w n h c ω(2)

五、实验的设计

1、课题一的滤波器系数具体的求解

已知窗口大小N 为11,故52

1

1121=-=-=

N M 。归一化截止频率为:4

8122π

ππω=?==

s c c f f ,

由(1)式可得矩形窗设计的滤波器系数10,1,0)

5()]

5(4sin[)( =--=n n n n h ππ

,即可以得到:045

.0)10(,0.0)9(,075.0)8(,1592.0)7(,2251.0)6(,25.0)5(,2251.0)4(,1592.0)3(,

075.0)2(,0.0)1(,045.0)0(-==========-=h h h h h h h h h h h

由(2)式可以得到汉明窗设计的滤波器系数为:

1,1,0)]10

)5(2cos(46.054.0.[)5()]

5(4sin[)()(-=----=-=N n n n n M n d n h πππ

,计

算的:0036

.0)10(,0.0)9(,02985.0)8(,1086.0)7(,2053.0)6(,25.0)5(,2053.0)4(,1086.0)3(,

02985.0)2(,0.0)1(,0036.0)0(-==========-=h h h h h h h h h h h

2、使用MATLAB 仿真工具产生系数

实际在设计FIR 低通滤波器系数时采用MATLAB 仿真工具,具体操作如下: 第一步进入到MATLAB 软件Command Window 界面,输入fdatool 命令,进入到滤波器设计界面。

第二步在Filter Design 设计界面,按照课题要求选择FIR 滤波器,窗函数法,阶数为10,矩形窗。具体的界面如下图:

同时选择工具栏Analysis 中的Filter Coefficients 命令即可以观察滤波

器系数。系数具体如下图:

通过观察可以发现:仿真产生的滤波器系数与直接计算的结果相同。

第三步滤波器系数的导出,在工具栏中选择Targets 下的Export to Code Composer Studio 命令,即可以得到C 语言形式的头文件。该头文件命名为coeffRectangular.h,供CCS 软件中的程序调用。

对于汉明窗,只要在Window 下拉菜单中选择Hamming 即可实现汉明窗FIR 低通滤波器的设计。其滤波器系数得到如下图:

可以得到系数文件coeffHamming.h 供程序调用。

3、低通滤波的实现

已知输入信号是)(n x ,通过低通滤波器)(n h 之后,输出信号)(n y 为:

)()()(0m n x m h n y M

m -=∑=。

对于矩形窗的低通滤波器,其差分方程为:

)

10(045.0)8(075.0)7(1592.0)6(2251.0)5(25.0)4(2251.0)3(1592.0)2(075.0)(045.0)(---+-+-+

-+-+-+-+-=n x n x n x n x n x n x n x n x n x n y

同样对于汉明窗设计的FIR 低通滤波器,其差分方程为:

)

10(0036.0)8(02985.0)7(1086.0)6(2053.0)5(25.0)

4(2053.0)3(1086.0)2(02985.0)(0036.0)(---+-+-+-+-+-+-+-=n x n x n x n x n x n x n x n x n x n y

4、程序流程图

(1)输入信号的产生

波形发生

计算步常

调用标准的sin

和cos函数计算

当前波形值

返回波形值

调用sin、cos函数生成新的输入信号fIn[0],作为fInput。(2)FIR滤波器的实现

FIR滤波器

用滤波器系数乘

以保存的N-1个

输入值和当前输

入值并求和

返回计算结果

(3)输入信号通过低通滤波器的得到输出信号

开始

初始化工作

变量

调用波形发生子

程序产生混叠波

形(高频加低频成

分)

调用FIR滤波

子程序计算当

前输出

5、程序代码

1、矩形窗的系数文件coeffrectangular.h代码

#define FIRNUMBER 11

const float fHn[FIRNUMBER] =

{

-0.0450*******, 9.745429214e-018, 0.07502636313, 0.1591549367,

0.2250790745, 0.25, 0.2250790745, 0.1591549367,

0.07502636313, 9.745429214e-018, -0.0450*******

};

2、汉明窗系数文件coeffHamming.h代码

#define FIRNUMBER 11

const float fHn[11] =

{

-0.003601265373, 1.635791641e-018, 0.029********, 0.1085672006,

0.2053053975, 0.25, 0.2053053975, 0.1085672006,

0.029********, 1.635791641e-018, -0.003601265373

};

3、实验源代码(Fir.c)

#include "coeffrectangular.h" //矩形窗系数文件

//#include "coeffhamming.h" //汉明窗系数文件

#include

#define SIGNAL1F 1000

#define SIGNAL2F 4500

#define SAMPLEF 10000

#define PI 3.1415926

extern const float fHn[11];

float InputWave(); //输入波形子程序

float FIR(); //滤波器的实现

float fXn[FIRNUMBER]={ 0.0 };//输入信号初始化

float fInput,fOutput;

float fSignal1,fSignal2;

float fStepSignal1,fStepSignal2;

float f2PI;

int i;

float fIn[256],fOut[256];

int nIn,nOut;

main()

{

nIn=0; nOut=0;

f2PI=2*PI;

fSignal1=0.0;

fSignal2=PI*0.1;

fStepSignal1=2*PI/30; //低频成分

fStepSignal2=2*PI*1.4; //高频成分

while ( 1 )

{

fInput=InputWave();

fIn[nIn]=fInput;

nIn++; nIn%=256;

fOutput=FIR();

fOut[nOut]=fOutput;

nOut++; /* break point */

if ( nOut>=256 )

{

nOut=0;

}

}

}

float InputWave()

{

for ( i=FIRNUMBER-1;i>0;i-- )

fXn[i]=fXn[i-1];

fXn[0]=sin((double)fSignal1)+cos((double)fSignal2)/6.0;

fSignal1+=fStepSignal1;

if ( fSignal1>=f2PI ) fSignal1-=f2PI;

fSignal2+=fStepSignal2;

if ( fSignal2>=f2PI ) fSignal2-=f2PI;

return(fXn[0]);

}

float FIR()

{

float fSum;

fSum=0;

for ( i=0;i

{

fSum+=(fXn[i]*fHn[i]); //

}

return(fSum);

}

六、实验过程和结果分析

1、启动CCS软件,打开Fir.pjt编译并load program。

2、设置观察窗口

(1)输入信号:选择菜单view->Graph->Time/Frequency,进行如下设置:

(2)输出信号设置与输入信号设置基本一致,只要把Start Address改为&fOutput。

(3)观察低通滤波器的频率响应,设置如下图:

3、设置断点:在主函数有注释“break point”的语句设置软件断点。

4、输出波形图

(1)输入信号波形图:

(2)FIR 低通滤波器的系数

矩形窗系数的时域与频域波形

汉明窗系数的时域与频域波形

从上面两个矩形窗与汉明窗频率响应可以得到如下区别:汉明窗的过滤带比矩形窗要常,但是汉明窗的旁瓣相对矩形窗较小。

(3)输出信号波形

实验结果分析:

(1)从时域上看,输出信号基本实现了过滤了输入信号中的“毛刺”;输出信号基本是低频的正弦信号。

(2) 从频域上看,输入信号在15π和π8.0有两个尖锐的峰值;通过截止频率为

4

π

的低通滤波器后,输出信号在π8.0处的频率分量受到了很大的衰减,而15

π

处的

分量大小基本不变。可以说明低通滤波器设计是成功的。

(3)矩形窗的过渡带宽度理论值为1122ππ=N ,汉明窗的过渡带宽度为11

44π

π=

N ,从上述的滤波器观察基本相同。

七、实验小结

1、实验的特点 (1)本实验的滤波器系数的设计是通过MATLAB 工具仿真产生,并把仿真产生的滤波器系数导入到CCS 软件中作为程序的头文件。如果滤波器的阶数较大,使用MATLAB 系数仿真工具比代公式计算更为方便。

(2)两个窗口法设计线性相位的FIR 低通滤波器,在源程序中包含两种窗函数系数的头文件,方便对两种窗函数的实现。

(3)波形发生器子程序中由sin 和cos 函数得到波形值并返回,在主函数不断循环并计算新的波形值,构成低频和高频信号的叠加。在输入波形中高频成分的幅度是低频的1/6。

2、实验调试过程以及遇到的问题和解决办法

(1)本实验遇到的最大的问题是:如何使用MATLAB 软件对滤波器系数的导出。最初使用sptool 工具,发现其设计的滤波器要求与题目有所不同,最后通过网上查找资料使用fdatool 工具,可以更好、更方便的观察滤波器系数,并且可以产生供程序方便调用的头文件。

(2)在滤波器系数导出时有一个头文件"tmwtypes.h",通过分析发现他只是一个对数据类型的定义,如32bit floating point 。可以不用这个头文件,直接修改fHn 数组的类型为float 。

(3)其次是对图形的观察存在一些问题,刚开始对Graph 菜单中每一行不是很明白。如观察输入信号时对Acquisition Buffer Size 这一项填写,通过分析发现输入信号fInput 是一个变量,观察时只需要一个内存单元,故这一项选项填写1。所有观察滤波器的冲击响应时观察fHn 时,这一项需要填写11。

3、实验体会和总结

(1)通过本次实验,掌握了用窗函数法设计FIR 数字滤波器的原理和方法。对于滤波器的系数计算采用MATLAB 仿真工具。熟悉了使用CCS 观察图象的方法。 (2)窗函数法设计时,从频率响应中对矩形窗和汉明窗设计的滤波器特性进行了对比,掌握并区分了两者的优缺点。

(3)本实验需要设计的输入信号是一个低频和高频信号的叠加,对参考例程进行分析,掌握了产生所需信号的方法。同时通过对观察的图形进行分析可以加强对滤波器实现的理解。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

matlab仿真一阶低通滤波器幅频特性和相频特性

freqs 模拟滤波器的频率响应 语法: h = freqs(b,a,w) [h,w] = freqs(b,a) [h,w] = freqs(b,a,f) freqs(b,a) 描述: freqs返回一个模拟滤波器的H(jw)的复频域响应(拉普拉斯格式) 请给出分子b和分母a h = freqs(b, a, w) 根据系数向量计算返回模拟滤波器的复频域响应。freqs计算在复平面虚轴上的频率响应h,角频率w确定了输入的实向量,因此必须包含至少一个频率点。 [h, w] = freqs(b, a) 自动挑选200个频率点来计算频率响应h [h, w] = freqs(b, a, f) 挑选f个频率点来计算频率响应h 例子: 找到并画出下面传递函数的频率响应 Matlab代码: a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1, 1);

logspace功能:生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量。n如果省略,则默认值为50。 freqs(b, a, w); You can also create the plot with: h = freqs(b,a,w); mag = abs(h); phase = angle(h); subplot(2,1,1), loglog(w,mag) subplot(2,1,2), semilogx(w,phase) To convert to hertz, decibels, and degrees, use: f = w/(2*pi); mag = 20*log10(mag); phase = phase*180/pi; 算法: freqs evaluates the polynomials at each frequency point, then divides the numerator response by the denominator response: s = i*w; h = polyval(b,s)./polyval(a,s)

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

一阶二阶无源所有滤波器正确设计

无源滤波器 1一阶RC 低通滤波器 频率响应 幅频特性:2 ) (11|)(|RC j H ωω+= ; 相频特性:)arctan( )(RC ωωφ-=; RC f c C ππτπω21 212=== ,C f 为截止频率。 1.1二阶RC 低通滤波器 采用1阶无源RC 滤波器觉得不够满意地方可以采用RC 滤波器简单地多级连接的方法。但需要较低的信号源阻抗和较高的负载阻抗。 可以求得 )(|)(|311 )(222ωθωωω∠=+-==j H RC j C R V V jw H i o 2 2 2 2 22 2 9)1(1 |)(|C R C R j H ωωω+-= 截止角频率τω3742 .06724.21= = RC c ,截止频率π ω=2f c C

2一阶RC 高通滤波电路 RC f c C ππτπω21212=== ,C f 为截止频率。 2.1二阶RC 高通滤波电路 RC RC C R R U U H ωωωωj 1j j 1)j (12 += + == τ RC ω1 1C ==

) 63(26724.2: 1 , ) 53(311 )(:00 2 0-= = --?? ? ??-= =RC f RC j U U j H c i o πωωωωωω截止频率其中传输函数 RC j U U j H i o 1, ) 93(31 )(:000= -? ?? ? ??--= =ωωωωωω其中传输函数 3二阶RC 带通滤波电路 在图(A )无源带通滤波器中,R 1=R 2=R ,C 1=C 2=C 时,分析可得 4二阶RC 带阻滤波电路 ) 123(3 arctan )(:) 113(23027 .0:)103(23027.3:0 0---=-=-=ω ωωωωθππ相频特性下限频率上限频率RC f RC f L H

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

一阶低通滤波原理

一阶低通滤波原理 Prepared on 22 November 2020

一阶低通滤波原理 将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能。 经推导,低通滤波算法如下:Yn=a*Xn+(1-a)*Yn-1,式中 Xn——本次采样值Yn-1——上次的滤波输出值; a——滤波系数,其值通常远小于1; Yn——本次滤波的输出值。 由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。 滤波算法的截止频率可用以下式计算:fL=a/(2π*t),π约为圆周率,式中 a——滤波系数; t——采样间隔时间; 例如:当t=(即每秒2次),a=1/32时;fL=(1/32)/(2**)= 当目标参数为变化很慢的物理量时,这是很有效的。 另外一方面,它不能滤除高于1/2采样频率的干扰信号,本例中采样频率为2Hz,故对 1Hz以上的干搅信号应采用其他方式滤除,低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。 设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H (小数)中。

实验报告基于MATLAB的数字滤波器设计

实验7\8基于MATLAB勺数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: 1 一6P 兰G(e^) ≤ 1 + 6P , for 国≤ ωP G(J") ≤ 6s, for 国s ≤ ⑷≤ ∏ 通带边缘频率:'P ,阻带边缘频率:'s, 通带起伏:J P,通带峰值起伏: C(P= —20 IOg io (^-OP )【d B 】阻带起伏.冠S PaSSband StOPband Tran Siti on band Fig 7.1 TyPiCaI magn itude SPeCifiCati On for a digital LPF :S = -20 log ιo(r)[dB 】 O 数字滤波器有IIR和FlR两种类型,它们的特点和设计方法不同。 在MATLAB^,可以用[b , a]=butter ( N,Wr)等函数辅助设计IIR数字滤波器,也可以用b=fir1(N,Wn, 'type ')等函数辅助设计FIR数字滤波器。 实验内容:利用MATLAB编程设计一个数字带通滤波器,指标要求如下: 通带边缘频率:??P1=0.45^,?? P2=0?65 二,通带峰值起伏:[dB】O 阻带边缘频率:'s1 0.3…,'s2 0.75…,最小阻带衰减:-S 4°[dB] O 分别用IIR和FlR两种数字滤波器类型进行设计。 实验要求:给出IIR数字滤波器参数和FIR数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。 实验内容: IRR代码: wp=[0.45*pi,0.65*pi]; ws=[0.3*pi,0.75*pi]; Ap=1; A S=40; [N,Wc]=buttord(wp∕pi,ws∕pi,Ap,As); [b,a]=butter(N,Wc)%[b,a] = butter( n, Wn,'ftype') 最小阻带衰减:

基于MATLAB的低通滤波器的设计

通信系统综合设计与实践 题目基于MATLAB的低通滤波器设计院(系)名称信院通信系 专业名称通信工程 学生姓名 学生学号 指导教师 2013 年 5 月25 日

摘要 (2) 1.巴特沃斯低通数字滤波器简介 (3) 1.1 选择巴特沃斯低通滤波器及双线性变换法的原因 (4) 1.2 巴特沃斯低通滤波器的基本原理 (4) 1.2.1 巴特沃斯低通滤波器的基本原理 (4) 1.2.2 双线性变换法的原理......... . (5) 1.3 数字滤波器设计流程图......... .. (7) 1.4 数字滤波器的设计步骤.......... . (7) 2. 巴特沃斯低通数字滤波器技术指标的设置 (8) 3. .................................................................................................................. 用matlab 实现巴特沃斯低通数字滤波器的仿真并分析 .. (9) 3.1 用matlab 实现巴特沃斯低通数字滤波器的仿真 (9) 3.2 波形图分析......... ........ (10) 4. .................................................................................................................. 用Simulink 实现巴特沃斯低通数字滤波器的仿真并分析 (11) 4.1 Simulink 简介........ ....... .. (11)

一阶巴特沃斯低通滤波器电路图

一阶巴特沃斯低通滤波器电路图 图1. 一阶巴特沃斯低通滤波器电路图 图1是一由运放741或351组成的一阶有源巴特沃斯低通滤波器电路图。截止频率fc = 1/{2π(RC),增益Gp = 1 + (RF/R1). The circuit shown in Figure 1 is a first-order Butterworth low-pass filter. A low-pass filter is a circuit that blocks signals with frequencies greater than a cut-off frequency fc. The circuit in Figure 1 uses an op-amp configured as a non-inverting amplifier, with an RC circuit at the non-inverting input to do the filtering of the high-frequency signals. The cut-off frequency fc of this circuit is determined by R and C, i.e., fc = 1/{2π(RC)}. The pass-band gain Gp of this filter is given by: Gp = 1 + (RF/R1). Thus, if the frequency f of the input s ignal is lower than fc, Vo ≈ Gp x Vin. If f = fc, Vo ≈ 0.707 Gp x Vin. If f > fc, Vo < Gp x Vin. 图2. 二阶巴特沃斯低通滤波器电路图 图2是一由运放741或351组成的二阶有源巴特沃斯低通滤波器电路图。截止频率fc = 1/{2π x sqrt(R2R3C2C3)},增益V o/Vin = (1+RF/R1). As the frequency of the input signal goes higher than fc, the gain of the first-order Butterworth

相关文档
最新文档